1
|
Gautam SK, Paul RK, Sawant DM, Sarwal A, Raza K. Critical Review on Balanites aegyptiaca Delile: Phytoconstituents, Pharmacological Properties and Nanointerventions. Chin J Integr Med 2024; 30:653-663. [PMID: 37930510 DOI: 10.1007/s11655-023-3563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 11/07/2023]
Abstract
Balanites aegyptiaca Delile (BA) is an enduring xerophytic woody and spinous flowering tree and is commonly known as desert date or Ingudi (Hingot). It belongs to the family Zygophyllaceae, which is specific to be drought areas of Nigeria, Africa, South Asia and India (Rajasthan). In Ayurveda, this traditional medicinal plant is reported for the management of jaundice, syphilis, yellow fever, metabolic disorders, liver, and spleen problems. The main aim of the review is to compile its medicinal uses and further advancements to showcase the promises inherited in various parts of the plant for the benefit of mankind. As per the literature survey, various researchers have focused on the detailed investigation of BA including the phytopharmacological evidence, chemical constituents, nano-formulations, commercialized products, and clinical trials. Several remarkable scaffolds and isolated compounds like diosgenin, yamogenin, balanitin1/2, balanitin 3, bal4/5, bal6/7, rutin-3-glycosides, 3,7-diglycosides, (3, 12, 14, 16)-(12-hydroxycholest-5-ene-3,16-diyl-bis)-D-glucopyranoside and balanitoside have been identified. Additionally, this traditional plant has been scientifically proven by in vitro and in vivo. Based on the complete review of this plant, most of the compounds have been isolated from the fruit and kernel part. Additionally, based on the literature, a histogram was developed for pharmacological activity in which antidiabetic study was found to be more compared to other pharmacological activity. As a spinous desert dates, this plant needs to be explored more to bring out newer phytochemicals in the management of various diseases.
Collapse
Affiliation(s)
- Surendra Kumar Gautam
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Amita Sarwal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
2
|
Zaky AS, Kandeil M, Abdel-Gabbar M, Fahmy EM, Almehmadi MM, Ali TM, Ahmed OM. The Antidiabetic Effects and Modes of Action of the Balanites aegyptiaca Fruit and Seed Aqueous Extracts in NA/STZ-Induced Diabetic Rats. Pharmaceutics 2022; 14:263. [PMID: 35213996 PMCID: PMC8876146 DOI: 10.3390/pharmaceutics14020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that threatens human health. Medicinal plants have been a source of wide varieties of pharmacologically active constituents and used extensively as crude extracts or as pure compounds for treating various disease conditions. Thus, the aim of this study is to assess the anti-hyperglycemic and anti-hyperlipidemic effects and the modes of action of the aqueous extracts of the fruits and seeds of Balanites aegyptiaca (B. aegyptiaca) in nicotinamide (NA)/streptozotocin (STZ)-induced diabetic rats. Gas chromatography-mass spectrometry analysis indicated that 3,4,6-tri-O-methyl-d-glucose and 9,12-octadecadienoic acid (Z,Z)- were the major components of the B. aegyptiaca fruit and seed extracts, respectively. A single intraperitoneal injection of STZ (60 mg/kg body weight (b.w.)) 15 min after intraperitoneal NA injection (60 mg/kg b.w.) was administered to induce type 2 DM. After induction was established, the diabetic rats were treated with the B. aegyptiaca fruit and seed aqueous extracts (200 mg/kg b.w./day) via oral gavage for 4 weeks. As a result of the treatments with the B. aegyptiaca fruit and seed extracts, the treated diabetic-treated rats exhibited a significant improvement in the deleterious effects on oral glucose tolerance; serum insulin, and C-peptide levels; liver glycogen content; liver glucose-6-phosphatase and glycogen phosphorylase activities; serum lipid profile; serum free fatty acid level; liver lipid peroxidation; glutathione content and anti-oxidant enzyme (glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase) activities; and the mRNA expression of the adipose tissue expression of the insulin receptor β-subunit. Moreover, the treatment with fruit and seed extracts also produced a remarkable improvement of the pancreatic islet architecture and integrity and increased the islet size and islet cell number. In conclusion, the B. aegyptiaca fruit and seed aqueous extracts exhibit potential anti-hyperglycemic and anti-hyperlipidemic effects, which may be mediated by increasing the serum insulin levels, decreasing insulin resistance, and enhancing the anti-oxidant defense system in diabetic rats.
Collapse
Affiliation(s)
- Asmaa S. Zaky
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt; (A.S.Z.); (M.A.-G.)
| | - Mohamed Kandeil
- Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt;
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt; (A.S.Z.); (M.A.-G.)
| | - Eman M. Fahmy
- Department of Internal Medicine, Faculty of Medicine, Helwan University, Helwan 11795, Egypt;
| | - Mazen M. Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| |
Collapse
|
3
|
Elbahrawy SA, Motaal AA, Abdallah OM. Development and Validation of Novel Gas Chromatography (GC) and Thin Layer Chromatography (TLC) Densitometry Methods for the Quantification of Stigmasterol 3-O-β-D-Glucopyranoside (S3G) in Balanites Aegyptiaca Extract: Application to Newly Formulated Balanites Capsules. LCGC NORTH AMERICA 2021. [DOI: 10.56530/lcgc.na.ca3765o5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Balanites aegyptiaca is a commonly used antihyperglycemic in Egyptian folk medicine. The objective of the present study is to develop two chromatographic methods for standardizing the Balanites extract by quantification of its main component, stigmasterol 3-O-β-D-glucopyranoside (S3G). The first method is gas chromatography (GC) where nitrogen was adopted as the carrier gas. The second method was thin layer chromatography (TLC) densitometry where chromatographic separation was established on aluminum plates using chloroform; methanol was used as the mobile phase followed by a densitometric measurement at 254 nm. Validation of the proposed methods was applied per International Council for Harmonization (ICH) guidelines. Both methods were adopted for quantification of S3G in Balanites capsules. The standard calibration curve was established for S3G in the concentration range of 10–130 μg/mL and 0.5–7.5 μg/mL for the GC and TLC methods, respectively. A good linearity with a correlation coefficient of 0.999 was obtained for both methods. Furthermore, the mean percentage recovery was found to be 99.46% for GC and 100.67% for TLC. Good precision was achieved, with relative standard deviation values <1%, and finally, the limits of detection and quantification were 2.51 and 7.59 μg/mL for GC and 0.13 and 0.40 μg/mL for TLC, respectively.
Collapse
|
4
|
Hu C, Tang Y, Snooks HD, Sang S. Novel Steroidal Saponins in Oat Identified by Molecular Networking Analysis and Their Levels in Commercial Oat Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7084-7092. [PMID: 34143624 DOI: 10.1021/acs.jafc.1c02728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Through the use of the Global Natural Product Social (GNPS) feature-based networking system, a series of newly identified steroidal saponins were discovered in oat. The structures of the three new major steroidal saponins, sativacosides A-C (1-3), were characterized by analyzing their high-resolution MS, 1D and 2D NMR spectra, and an additional eight new steroidal saponins were also tentatively identified (4-11) based on their tandem mass spectra and typical fragments. Using ultrahigh-performance liquid chromatography with tandem mass spectrometry techniques, a complete profile of the new sativacoside series was established, and the contents of sativacosides A-C were quantified in 18 different commercial oat products. The total levels of sativacosides A-C varied from 62.2 to 192.9 μg/g in these 18 products, in which oat bran (11 samples) and oatmeal (3 samples) had higher levels than cold oat cereal (4 samples).
Collapse
Affiliation(s)
- Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter D Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
5
|
Chromatic intervention and biocompatibility assay for biosurfactant derived from Balanites aegyptiaca (L.) Del. Sci Rep 2021; 11:4186. [PMID: 33603004 PMCID: PMC7893048 DOI: 10.1038/s41598-021-83573-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Extraction of biosurfactants from plants is advantageous than from microbes. The properties and robustness of biosurfactant derived from the mesocarp of Balanites aegyptiaca have been reported. However, the dark brown property of biosurfactant and lack of knowledge of its biocompatibility limits its scope. In the present work, the decolorization protocol for this biosurfactant was optimized using hydrogen peroxide. The hemolytic potential and biocompatibility based on cell toxicity and proliferation were also investigated. This study is the first report on the decolorization and toxicity assay of this biosurfactant. For decolorization of biosurfactant, 34 full factorial design was used, and the data were subjected to ANOVA. Results indicate that 1.5% of hydrogen peroxide can decolorize the biosurfactant most efficiently at 40 °C in 70 min at pH 7. Mitochondrial reductase (MTT) and reactive oxygen species (ROS) assays on M5S mouse skin fibroblast cells revealed that decolorized biosurfactant up to 50 µg/mL for 6 h had no significant toxic effect. Hemolysis assay showed ~ 2.5% hemolysis of human RBCs, indicating the nontoxic effect of this biosurfactant. The present work established a decolorization protocol making the biosurfactant chromatically acceptable. Biocompatibility assays confirm its safer use as observed by experiments on M5S skin fibroblast cells under in vitro conditions.
Collapse
|
6
|
Murthy HN, Yadav GG, Dewir YH, Ibrahim A. Phytochemicals and Biological Activity of Desert Date ( Balanites aegyptiaca (L.) Delile). PLANTS 2020; 10:plants10010032. [PMID: 33375570 PMCID: PMC7823407 DOI: 10.3390/plants10010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
Many underutilized tree species are good sources of food, fodder and possible therapeutic agents. Balanites aegyptiaca (L.) Delile belongs to the Zygophyllaceae family and is popularly known as “desert date”, reflecting its edible fruits. This tree grows naturally in Africa, the Middle East and the Indian subcontinent. Local inhabitants use fruits, leaves, roots, stem and root bark of the species for the treatment of various ailments. Several research studies demonstrate that extracts and phytochemicals isolated from desert date display antioxidant, anticancer, antidiabetic, anti-inflammatory, antimicrobial, hepatoprotective and molluscicidal activities. Mesocarp of fruits, seeds, leaves, stem and root bark are rich sources of saponins. These tissues are also rich in phenolic acids, flavonoids, coumarins, alkaloids and polysterols. Some constituents show antioxidant, anticancer and antidiabetic properties. The objective of this review is to summarize studies on diverse bioactive compounds and the beneficial properties of B. aegyptiaca.
Collapse
Affiliation(s)
| | | | - Yaser Hassan Dewir
- Plant Production Department, P.O. Box 2460, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence:
| | - Abdullah Ibrahim
- Plant Production Department, P.O. Box 2460, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
7
|
Abdel Motaal A, El-Askary H, Crockett S, Kunert O, Sakr B, Shaker S, Grigore A, Albulescu R, Bauer R. Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca. PHYTOMEDICINE 2015. [PMID: 26220630 DOI: 10.1016/j.phymed.2015.05.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Balanites aegyptiaca Del. (Zygophyllaceae) fruits are used to treat hyperglycemia in Egyptian folk medicine and are sold by herbalists in the Egyptian open market for this purpose. Nevertheless, the fruits have not yet been incorporated into pharmaceutical dosage forms. The identity of the bioactive compounds and their possible mechanisms of action were not well understood until now. PURPOSE Aldose reductase inhibitors are considered vital therapeutic and preventive agents to address complications caused by hyperglycemia. The present study was carried out to identify the primary compounds responsible for the aldose reductase inhibitory activity of Balanites aegyptiaca fruits. STUDY DESIGN The 70% ethanolic extract of Balanites aegyptiaca fruit mesocarp and its fractions were screened for inhibition of the aldose reductase enzyme. Bio-guided fractionation of the active butanol fraction was performed and the primary compounds present in the saponin-rich fraction (D), which were responsible for the inhibitory activity, were characterized. HPLC chromatographic profiles were established for the different fractions, using the isolated compounds as biomarkers. METHODS Aldose reductase inhibition was tested in vitro on rat liver homogenate. The butanol fraction of the 70% ethanolic extract was fractionated using vacuum liquid chromatography (VLC, RP-18 column). The most active sub-fraction D, which was eluted with 75% methanol, was subjected to preparative HPLC to isolate the bioactive compounds. RESULTS The butanol fraction displayed inhibitory activity against the aldose reductase enzyme (IC50 = 55.0 ± 6 µg/ml). Sub-fraction D exhibited the highest inhibitory activity (IC50 = 12.8 ± 1 µg/ml). Five new steroidal saponin derivatives were isolated from this fraction. The isolated compounds were identified as compound 1a/b, a 7:3 mixture of the 25R:25S epimers of 26-O-β-D-glucopyranosyl-furost-5-ene-3,22,26-triol 3-O-[α-L-rhamnopyranosyl-(1→3)- β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; compound 2, 26-O-β-D-glucopyranosyl-(25R)-furost-5-ene-3,22,26-triol 3-O-[ β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; compound 3, 26-O-β-D-glucopyranosyl-(25R)-furost-5,20-diene-3,26-diol 3-O-[α-L-rhamnopyranosyl-(1→3)- β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; compound 4, 26-O-β-D-glucopyranosyl-(25R)-furost-5,20-diene-3,26-diol 3-O-[ β-D-glucopyranosyl-(1→2)]- α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside; and compound 5, which is the 25S epimer of compound 4, by using various spectroscopic methods [MS,1D and 2D NMR (HSQC, HMBC, DQF-COSY, HSQC-TOCSY)]. Compounds 1a/b, 2, 3, 4, 5 exhibited highly significant aldose reductase inhibitory activities (IC50 values were 1.9 ± 0.2, 1.3 ± 0.5, 5.6 ± 0.2, 5.1 ± 0.4, 5.1 ± 0.6 µM, respectively) as compared to the activity of the reference standard quercetin (IC50 = 6.6 ± 0.3 µM). CONCLUSION The aldose reductase inhibitory activity of Balanites fruits is due to the steroidal saponins present. HPLC chromatographic profiles of the crude butanol fraction and its 4 sub-fractions showed that the most highly bioactive fraction D contained the highest amount of steroidal saponins (75%) as compared to the 21% present in the original butanol fraction. The isolated furostanol saponins proved to be highly active in an in vitro assay.
Collapse
Affiliation(s)
- Amira Abdel Motaal
- Faculty of Pharmacy, Cairo University, Kasr-El-Ainy St., Cairo 11562, Egypt; Faculty of Pharmacy and Drug Technology, Heliopolis University, 2834 El Horreya, Cairo, Egypt.
| | - Hesham El-Askary
- Faculty of Pharmacy, Cairo University, Kasr-El-Ainy St., Cairo 11562, Egypt.
| | - Sara Crockett
- Institute of Pharmaceutical Sciences, University of Graz, A-8010 Graz, Austria.
| | - Olaf Kunert
- Institute of Pharmaceutical Chemistry and Pharmaceutical Technology, University of Graz, A-8010 Graz, Austria.
| | - Basma Sakr
- Faculty of Pharmacy and Drug Technology, Heliopolis University, 2834 El Horreya, Cairo, Egypt.
| | - Sherif Shaker
- Faculty of Pharmacy and Drug Technology, Heliopolis University, 2834 El Horreya, Cairo, Egypt.
| | - Alice Grigore
- National Institute for Chemical - Pharmaceutical Research and Development (ICCF), Bucharest, Romania.
| | - Radu Albulescu
- National Institute for Chemical - Pharmaceutical Research and Development (ICCF), Bucharest, Romania.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
8
|
Dawidar AEM, Mortada MM, Raghib HM, Abdel-Mogib M. Molluscicidal activity of Balanites aegyptiaca against Monacha cartusiana. PHARMACEUTICAL BIOLOGY 2012; 50:1326-1329. [PMID: 22889050 DOI: 10.3109/13880209.2012.674950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Balanites aegyptiaca (L.) Delile (Zygophyllaceae) is a tropical tree that has many folk uses in various countries. The bark extract is used for the control of the fresh water snails that act as intermediary host of Schistosoma. OBJECTIVE Study the molluscicidal activity and chemical constituents of seed oil and seed glycosides of B. aegyptiaca against Monacha cartusiana and determine the structure-activity relationship. MATERIALS AND METHODS Two bioassay methods (residual film application and the leaf dipping technique) were used to evaluate the toxicity effect of the seed oil and glycosides, in concentrations of 1.000, 0.500, 0.250 and 0.125%. The seed oil was analysed by GC/MS. Acid hydrolysis and chromatographic separation were used to study the seed saponins. RESULTS The bioassay of B. aegyptiaca against the land snail, M. cartusiana, indicated the activity of the seed oil and the high activity of the seed saponins. The seed glycosides gave 30.0, 53.3, 73.0 and 73.3% mortality for concentrations of 0.125, 0.250, 0.500 and 1.00%, respectively. The LC(50) values were 0.335 and 0.256%, respectively. The seed oil was analysed by GC/MS. Acid hydrolysis of the seed saponins gave a mixture of diosgenin, yamogenin and 3,5-spirostadiene. DISCUSSION AND CONCLUSION To study the structure-activity relationship, a triterpenoidal saponin and a triterpenoidal saponins rich extract (of Zygophyllum coccenum) were proven to be inactive. Thus, the activity is associated with the steroidal, not triterpenoidal saponins. Moreover, a spirostane aglycone without sugar moiety, was found to be inactive and attained the activity by glycosidation.
Collapse
|
9
|
Motaal AA, Shaker S, Haddad PS. Antidiabetic Activity of Standardized Extracts of Balanites aegyptiaca Fruits using Cell-based Bioassays. ACTA ACUST UNITED AC 2012. [DOI: 10.5530/pj.2012.30.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Chothani DL, Vaghasiya HU. A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn Rev 2011; 5:55-62. [PMID: 22096319 PMCID: PMC3210005 DOI: 10.4103/0973-7847.79100] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Indexed: 11/16/2022] Open
Abstract
Balanites aegyptiaca Del. (Zygophyllaceae), known as ‘desert date,’ is spiny shrub or tree up to l0 m tall, widely distributed in dry land areas of Africa and South Asia. It is traditionally used in treatment of various ailments i.e. jaundice, intestinal worm infection, wounds, malaria, syphilis, epilepsy, dysentery, constipation, diarrhea, hemorrhoid, stomach aches, asthma, and fever. It contains protein, lipid, carbohydrate, alkaloid, saponin, flavonoid, and organic acid. Present review summarizes the traditional claims, phytochemistry, and pharmacology of B. aegyptiaca Del reported in scientific literature.
Collapse
Affiliation(s)
- Daya L Chothani
- Department of Pharmacognosy, Pioneer Degree Pharmacy College, Vadodara, Gujarat, India
| | | |
Collapse
|
11
|
Chapagain BP, Saharan V, Wiesman Z. Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. BIORESOURCE TECHNOLOGY 2008; 99:1165-8. [PMID: 17433667 DOI: 10.1016/j.biortech.2007.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Accepted: 02/16/2007] [Indexed: 05/14/2023]
Abstract
Seeking an alternative approach for producing a larvicidal product from Balanites aegyptiaca plants, callus was produced from in vitro cultures of root explants and its larvicidal activity against Aedes aegypti mosquito larvae was evaluated. Concentrations of 0, 50, 100, 500, 1000, and 1500 ppm of saponins from the root-derived callus of B. aegyptiaca were used to determine larvicidal effects and consequent effect on adult emergence. A dose-dependent effect was observed. In a chronic mortality assessment (after 7 days of exposure), concentrations of 500 ppm or greater killed 100% of the test larvae population. Fifty parts per million showed no difference in larval mortality compared to the control (0 ppm); however, this concentration allowed one-fourth of the adult emergence of the control treatment. These results suggest that saponins from in vitro cultures of the root explant of B. aegyptiaca can be used as a larvicidal agent against A. aegypti larvae.
Collapse
Affiliation(s)
- Bishnu P Chapagain
- The Phyto-Lipid Biotechnology Laboratory, The Institutes for Applied Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
12
|
Chapagain BP, Wiesman Z. Larvicidal Properties of the Three Major Furostanol Saponins of Balanites aegyptiaca Fruit Mesocarp against Aedes agypti Mosquito Larvae. Nat Prod Commun 2007. [DOI: 10.1177/1934578x0700200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among various biological activities, saponin-rich extracts have been found to be larvicidal against mosquito larvae; however, no study so far has reported using pure furostanol saponins. In this study, three major furostanol saponins: 26-( O-β-D-glucopyranosyl)-3β,22,26-trihydroxyfurost-5-ene 3- O-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (1), 26-( O-β-D-glucopyranosyl)-22- O-methylfurost-5-ene-3β,26-diol 3- O-β-D-xylopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (2), and 26-( O-β-D-glucopyranosyl)-22- O-methylfurost-5-ene.3β,26-diol 3- O-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (3) were isolated from methanol extracts of the fruit mesocarp of Balanites aegyptiaca (L.) Del. (desert date). Their identification was carried out by ESI-MSn and structures were elucidated by 800 MHz 1H NMR spectroscopy. The larvicidal properties of these saponins against the Aedes aegypti mosquito larvae were evaluated. Results suggest that all three saponins possess larvicidal activity, but the activity was found to be related to the structure of the saponins, basically in the C-22 position of the aglycone and in the oligosaccharide chain. A furostanol saponin that presents -OCH3 at the C-22 position compared to an -OH group, and the lack of a xylose molecule compared to its presence is found to be more larvicidal.
Collapse
Affiliation(s)
- Bishnu P. Chapagain
- The Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, The Institutes for Applied Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Wiesman
- The Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, The Institutes for Applied Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
13
|
Chapagain BP, Wiesman Z. Determination of saponins in the kernel cake of Balanites aegyptiaca by HPLC-ESI/MS. PHYTOCHEMICAL ANALYSIS : PCA 2007; 18:354-62. [PMID: 17623371 DOI: 10.1002/pca.990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The kernel cake produced from Balanites aegyptiaca fruit of Israeli origin was analysed for its saponin constituents using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The HPLC was equipped with a reversed-phase C18 column and a refractive index detector (RID), and elution was isocratic with methanol and water (70:30). The MS system was equipped with electrospray ionisation (ESI). Nine compounds were chromatographically separated, their masses were determined in the negative ion mode and subsequent fragmentation of each component was carried out. From the nine components, six saponins with molecular masses of 1196, 1064, 1210, 1224, 1078 and 1046 Da were identified, with the compound of mass 1210 Da being the main saponin (ca. 36%). Saponins with masses of 1224 and 1046 Da have not been previously reported in B. aegyptiaca. In all saponins, diosgenin was found to be the sole aglycone. This study shows that HPLC-ESI/MS is a quick and reliable technique for characterizing the saponins from kernel cake of B. aegyptiaca.
Collapse
Affiliation(s)
- Bishnu P Chapagain
- The Phyto-Lipid Biotechnology Laboratory, the Institutes for Applied Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
14
|
Macías FA, Guerra JO, Simonet AM, Nogueiras CM. Characterization of the fraction components using 1D TOCSY and 1D ROESY experiments. Four new spirostane saponins from Agave brittoniana Trel. spp. Brachypus. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45:615-20. [PMID: 17516586 DOI: 10.1002/mrc.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A careful NMR analysis, especially 1D TOCSY and 1D ROESY, of two refined saponin fractions allowed us to determine the structures of four new saponins from a polar extract of the Agave brittoniana Trel. spp. Brachypus leaves. A full assignment of the 1H and 13C spectral data for these new saponins, agabrittonosides A-D (1-4), and one previously known saponin, karatavioside A (5) is reported. Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, ROESY, g-HSQC, g-HMBC and g-HSQC-TOCSY) NMR techniques and ESI-MS. Moreover, the work represents a new approach to structural elucidation of saponins in refined fractions by NMR investigations.
Collapse
Affiliation(s)
- Francisco A Macías
- Grupo de Alelopatía, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, C/República Saharaui, s/n, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|