1
|
Dia M, Farjon J, Raveleau C, Simpson A, Peyneau PE, Béchet B, Courtier-Murias D. Understanding the Interactions of Nanoparticles and Dissolved Organic Matter at the Molecular Level by 1H 2D Multi-Exponential Transverse Relaxation NMR Spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415470 DOI: 10.1002/mrc.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
The interaction between humic acid (HA) and engineered nanoparticles (NPs) is critical in environmental sciences, especially for understanding the behavior of NPs in natural waters. This study employs 1H 2D Multi-Exponential Transverse Relaxation (METR) NMR spectroscopy to examine the molecular-level interactions between Pahokee Peat humic acid (HA) and carboxyl-functionalized iron oxide nanoparticles (NPCOs). First, 1H 2D METR NMR spectroscopy allowed not only the identification of HA in terms of its chemical composition but also the separation of molecules with the same chemical shift values but different rates of molecular tumbling. Then, using solutions with varying NPCO concentrations (0, 10, 40, and 100 μM), we observed significant changes in the T2 relaxation times of HA components, indicating interactions between HA and NPCO. Analysis showed the biggest effect on two chemical shift regions, corresponding to lipids and carbohydrates, revealing that smaller molecules within these regions exhibit the most significant changes in T2 values upon the addition of NPCO. This suggests that these molecules are the initial sites of interaction, with the entire HA system being affected at higher NPCO concentrations. These findings highlight the utility of METR NMR spectroscopy in studying complex environmental mixtures and provide insights into the behavior of HA and NPs, essential for understanding the fate of NPs in the environment.
Collapse
Affiliation(s)
- Malak Dia
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| | | | - Clotilde Raveleau
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- CNRS, CEISAM UMR 6230, Nantes Université, Nantes, France
| | - André Simpson
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | | | - Béatrice Béchet
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| | - Denis Courtier-Murias
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| |
Collapse
|
2
|
Foster HM, Li R, Wang Y, Castañar L, Nilsson M, Adams RW, Morris GA. Rationalising spin relaxation during slice-selective refocusing pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107789. [PMID: 39447419 DOI: 10.1016/j.jmr.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Slice-selective refocusing pulses are powerful building blocks in contemporary magnetic resonance experiments, but their use in quantitative applications is complicated by the site-dependent signal loss they introduce. One source of this attenuation is the spin relaxation that occurs during such pulses, which causes losses that depend on the specific longitudinal and transverse relaxation time constants for a given resonance. This dependence is complicated both by any amplitude shaping of the radiofrequency pulse, and by the presence of the spatial encoding pulsed field gradient. The latter causes the net signal measured to be the weighted sum of signal contributions from a continuous range of offsets from resonance. In general, each offset will make a different contribution to the overall signal, and will be attenuated by a different mixture of longitudinal and transverse relaxation that is dictated by the different trajectories that the nuclear magnetisations take during experiments. Despite this complex behaviour, we present evidence from experiments and numerical simulations showing that in practical experimental applications a relatively simple empirical function can be used to accurately predict relaxational attenuation during slice-selective refocusing pulses. This approach may be of practical use in correcting for relaxational losses in quantitative applications of slice-selective pulse methods such as Zangger-Sterk pure shift NMR.
Collapse
Affiliation(s)
- Howard M Foster
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Runchao Li
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Yushi Wang
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Laura Castañar
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom; Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid 28040, Spain
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Gareth A Morris
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
3
|
Lorandel B, Rocha H, Cazimajou O, Mishra R, Bernard A, Bowyer P, Nilsson M, Dumez JN. Speedy Component Resolution Using Spatially Encoded Diffusion NMR Data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415466 DOI: 10.1002/mrc.5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) is a powerful tool to analyse mixtures. Spatially encoded (SPEN) DOSY enables recording a full DOSY dataset in just one scan by performing spatial parallelisation of the gradient dimension. The simplest and most widely used approach to processing DOSY data is to fit each peak in the spectrum with a single or multiple exponential decay. However, when there is peak overlap, and/or when the diffusion decays of the contributing components are too similar, this method has limitations. Multivariate analysis of DOSY data, which is an attractive alternative, consists of decomposing the experimental data, into compound-specific diffusion decays and 1D NMR spectra. Multivariate analysis has been very successfully used for conventional DOSY data, but its use for SPEN DOSY data has only recently been reported. Here, we present a comparison, for SPEN DOSY data, of two widely used algorithms, SCORE and OUTSCORE, that aim at unmixing the spectra of overlapped species through a least square fit or a cross-talk minimisation, respectively. Data processing was performed with the General NMR Analysis Toolbox (GNAT), with custom-written code elements that now expands the capabilities, and makes it possible to import and process SPEN DOSY data. This comparison is demonstrated on three different two-component mixtures, each with different characteristics in terms of signal overlap, diffusion coefficient similarity, and component concentration.
Collapse
Affiliation(s)
| | - Hugo Rocha
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester, UK
| | | |
Collapse
|
4
|
Afrough A, Mokhtari R, Feilberg KL. Simple MATLAB and Python scripts for multi-exponential analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:698-711. [PMID: 38813596 DOI: 10.1002/mrc.5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Multi-exponential decay is prevalent in magnetic resonance spectroscopy, relaxation, and imaging. This paper describes simple MATLAB and Python functions and scripts for regularized multi-exponential analysis methods for 1D and 2D data and example test problems and experiments. Regularized least-squares solutions provide production-quality outputs with robust stopping rules in ~5 and ~20 lines of code for 1D and 2D inversions, respectively. The software provides an open-architecture simple solution for transforming exponential decay data to the distribution of their decay lifetimes. Examples from magnetic resonance relaxation of a complex fluid, a Danish North Sea crude oil, and fluid mixtures in porous materials-brine/crude oil mixture in North Sea reservoir chalk-are presented. Developed codes may be incorporated in other software or directly used by other researchers, in magnetic resonance relaxation, diffusion, and imaging or other physical phenomena that require multi-exponential analysis.
Collapse
Affiliation(s)
- Armin Afrough
- Danish Offshore Technology Centre, Technical University of Denmark, Kongens Lyngby, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasoul Mokhtari
- Danish Offshore Technology Centre, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karen L Feilberg
- Danish Offshore Technology Centre, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Granzow BN, Repeta DJ. What Is the Molecular Weight of "High" Molecular Weight Dissolved Organic Matter? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14709-14717. [PMID: 39102585 PMCID: PMC11339928 DOI: 10.1021/acs.est.4c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The use of ultrafiltration to isolate high molecular weight dissolved organic matter (HMWDOM) from seawater is a fundamental tool in the environmental organic chemist's toolbox. Yet, important characteristics of HMWDOM relevant to its origin and cycling, such as its molecular weight distribution, remain poorly defined. We used diffusion-ordered NMR spectroscopy coupled with mixed-mode chromatography to separate and characterize two major components of marine HMWDOM: acylpolysaccharides (APS) and high molecular weight humic substances (HS). The molecular weights (MWs) of APS and HS both fell within distinct, narrow envelopes; 2.0-16 kDa for APS and 0.9-6.5 kDa for HS. In water samples from the North Pacific Ocean the average MW of both components decreased with depth through the mesopelagic. However, the minimum MW of APS was >2 kDa, well above the molecular weight cutoff of the ultrafilter, suggesting APS removal processes below 2 kDa are highly efficient. The MW distribution of APS shows only small variations with depth, while the MW distribution of HS narrowed due to removal of HMW components. Despite the narrowing of the MW distribution, the concentration of HS did not decrease with depth between 15 and 915 m. This suggests that HMW HS produced in surface waters was either degraded into lower MW compounds without significant remineralization, or that HMW HS was remineralized but replaced by an additional source of HS in the mesopelagic ocean. Based on these results, we propose potential pathways for the production and removal of these major components of HMWDOM.
Collapse
Affiliation(s)
- Benjamin N. Granzow
- Geoscience
Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Daniel J. Repeta
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
6
|
Tooley O, Pointer W, Radmall R, Hall M, Swift T, Town J, Aydogan C, Junkers T, Wilson P, Lester D, Haddleton D. Real-Time Determination of Molecular Weight: Use of MaDDOSY (Mass Determination Diffusion Ordered Spectroscopy) to Monitor the Progress of Polymerization Reactions. ACS POLYMERS AU 2024; 4:311-319. [PMID: 39156557 PMCID: PMC11328330 DOI: 10.1021/acspolymersau.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 08/20/2024]
Abstract
Knowledge of molecular weight is an integral factor in polymer synthesis, and while many synthetic strategies have been developed to help control this, determination of the final molecular weight is often only measured at the end of the reaction. Herein, we provide a technique for the online determination of polymer molecular weight using a universal, solvent-independent diffusion ordered spectroscopy (DOSY) calibration and evidence its use in a variety of polymerization reactions.
Collapse
Affiliation(s)
- Owen Tooley
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - William Pointer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Rowan Radmall
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mia Hall
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School
of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Thomas Swift
- Department
of Chemistry, University of Bradford, Bradford BD7 1DP, West Yorkshire, United
Kingdom
| | - James Town
- Polymer
Characterization RTP, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cansu Aydogan
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tanja Junkers
- School
of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Paul Wilson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel Lester
- Polymer
Characterization RTP, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Haddleton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Polymer
Characterization RTP, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
8
|
Vieira J, Karampatsi D, Vercalsteren E, Darsalia V, Patrone C, Duarte J. Nuclear magnetic resonance spectroscopy reveals biomarkers of stroke recovery in a mouse model of obesity-associated type 2 diabetes. Biosci Rep 2024; 44:BSR20240249. [PMID: 38864508 PMCID: PMC11230867 DOI: 10.1042/bsr20240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024] Open
Abstract
Obesity and Type 2 diabetes (T2D) are known to exacerbate cerebral injury caused by stroke. Metabolomics can provide signatures of metabolic disease, and now we explored whether the analysis of plasma metabolites carries biomarkers of how obesity and T2D impact post-stroke recovery. Male mice were fed a high-fat diet (HFD) for 10 months leading to development of obesity with T2D or a standard diet (non-diabetic mice). Then, mice were subjected to either transient middle cerebral artery occlusion (tMCAO) or sham surgery and allowed to recover on standard diet for 2 months before serum samples were collected. Nuclear magnetic resonance (NMR) spectroscopy of serum samples was used to investigate metabolite signals and metabolic pathways that were associated with tMCAO recovery in either T2D or non-diabetic mice. Overall, after post-stroke recovery there were different serum metabolite profiles in T2D and non-diabetic mice. In non-diabetic mice, which show full neurological recovery after stroke, we observed a reduction of isovalerate, and an increase of kynurenate, uridine monophosphate, gluconate and N6-acetyllysine in tMCAO relative to sham mice. In contrast, in mice with T2D, which show impaired stroke recovery, there was a reduction of N,N-dimethylglycine, succinate and proline, and an increase of 2-oxocaproate in serum of tMCAO versus sham mice. Given the inability of T2D mice to recover from stroke, in contrast with non-diabetic mice, we propose that these specific metabolite changes following tMCAO might be used as biomarkers of neurophysiological recovery after stroke in T2D.
Collapse
Affiliation(s)
- João P.P. Vieira
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83 Stockholm, Sweden
| | - Joao M.N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
9
|
Zainal S, Alsudani A, Adams RW, Nilsson M, Fan X, D'Agostino C. Exploring the effect of molecular size and framework functionalisation on transport in metal-organic frameworks using pulsed-field gradient nuclear magnetic resonance. Phys Chem Chem Phys 2024; 26:18276-18284. [PMID: 38910559 DOI: 10.1039/d4cp00447g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Molecular transport is an important aspect in metal-organic frameworks (MOFs) as it affects many of their applications, such as adsorption/separation, drug delivery and catalysis. Yet probing the fundamental diffusion mechanisms in MOFs is challenging, and the interplay between the MOF's features (such as the pore structure and linker dynamics) and molecular transport remains mostly unexplored. Here, the pulsed-field gradient nuclear magnetic resonance (PFG NMR) technique is used to probe the diffusion of several probe molecules, i.e., water, xylenes and 1,3,5-triisopropylbenzene (TIPB), within the UiO-66 MOF and its derivatives (UiO-66NH2 and UiO-66Br). Exploiting differences in the size of probe molecules we were able to probe the diffusion rate selectively in the different pore environments of the MOFs. In particular, when relatively small molecules, such as water and small hydrocarbons, were used as probes, the PFG NMR log attenuation plots were non-linear with two distinctive diffusion regions, suggesting faster diffusion in the inter-crystalline space and slower diffusion within crystal aggregates, the latter occurring mostly inside the framework of the MOFs. Conversely, experiments with a larger probe molecule, i.e., TIPB, with a kinetic diameter of 0.95 nm, which makes it unable to access the framework windows of the MOF crystals, showed linear PFG NMR log attenuation plots, which indicates diffusion occurring in a single environment, most likely in the inter-crystalline space. Analysis of the apparent tortuosity values of the systems under investigation highlights the role of linker functionalisation in influencing the molecular diffusion of the probe molecules, which affects both intra-molecular interactions and pore accessibility within the MOF crystals. The findings of this work demonstrate that the diffusion behaviour of probe molecules within MOFs is influenced by the pore size, structure, functionalisation of the MOF linker and molecular interactions. Our study contributes to further advance the understanding of mass transport in MOFs by PFG NMR and provides insights that can inform the design and optimisation of MOF-based materials for various applications.
Collapse
Affiliation(s)
- Shima Zainal
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ahmed Alsudani
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xiaolei Fan
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315048, China
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
10
|
Papp D, Carlström G, Nylander T, Sandahl M, Turner C. A Complementary Multitechnique Approach to Assess the Bias in Molecular Weight Determination of Lignin by Derivatization-Free Gel Permeation Chromatography. Anal Chem 2024; 96:10612-10619. [PMID: 38888104 PMCID: PMC11223100 DOI: 10.1021/acs.analchem.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The growing interest in lignin valorization in the past decades calls for analytical techniques for lignin characterization, ranging from wet chemistry techniques to highly sophisticated chromatographic and spectroscopic methods. One of the key parameters to consider is the molecular weight profile of lignin, which is routinely determined by size-exclusion chromatography; however, this is by no means straightforward and is prone to being hampered by considerable errors. Our study expands the fundamental understanding of the bias-inducing mechanisms in gel permeation chromatography (GPC), the magnitude of error originating from using polystyrene standards for mass calibration, and an evaluation of the effects of the solvent and type of lignin on the observed bias. The developed partial least-squares (PLS) regression model for lignin-related monomers revealed that lignin is prone to association mainly via hydrogen bonding. This hypothesis was supported by functional group-based analysis of the bias as well as pulse field gradient (pfg) diffusion NMR spectroscopy of model compounds in THF-d8. Furthermore, although the lack of standards hindered drawing conclusions based on functionalities, direct infusion electrospray ionization mass spectrometry indicated that the relative bias decreases considerably for higher molecular weight species. The results from pfg-diffusion NMR spectroscopy on whole lignin samples were comparable when the same solvents were used in both experiments; in addition, the comparison between results obtained by pfg-diffusion NMR in different solvents gives some additional insights into the aggregation.
Collapse
Affiliation(s)
- Daniel Papp
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Göran Carlström
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Tommy Nylander
- Department
of Chemistry, Physical Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Margareta Sandahl
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Charlotta Turner
- Department
of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| |
Collapse
|
11
|
Foster H, Nilsson M, Adams RW, Morris GA. Universally Quantitative Band-Selective Pure Shift NMR Spectroscopy. Anal Chem 2024; 96:9601-9609. [PMID: 38812212 PMCID: PMC11170551 DOI: 10.1021/acs.analchem.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
NMR spectroscopy is often described as a quantitative analytical technique. Strictly, only the simple pulse-acquire experiment is universally quantitative, but the poor signal resolution of the 1H NMR pulse-acquie experiment frequently complicates quantitative analysis. Pure shift NMR techniques provide higher resolution, by reducing signal overlap, but they are susceptible to a variety of sources of site-dependent signal loss. Here, we introduce a new method that corrects for signal loss from such sources in band-selective pure shift NMR experiments, by performing different numbers of iterations of the same pulse sequence elements before acquisition to allow extrapolation back to the loss-free signal. We apply this method to both interferogram and semi-realtime acquisition modes, obtaining integrals within 1% of those acquired from a pulse-acquire experiment for a three-component mixture.
Collapse
Affiliation(s)
- Howard
M. Foster
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gareth A. Morris
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
12
|
McCarney ER, Kristoffersen KA, Anderssen KE. Quantitative at-line monitoring of enzymatic hydrolysis using benchtop diffusion nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:452-462. [PMID: 38237933 DOI: 10.1002/mrc.5427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.
Collapse
Affiliation(s)
| | - Kenneth A Kristoffersen
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Kathryn E Anderssen
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Department of seafood industry, Nofima AS, Tromsø, Norway
| |
Collapse
|
13
|
Lorandel B, Mishra R, Cazimajou O, Marchand A, Bernard A, Dumez JN. Accounting for gradient non-uniformity in spatially-encoded diffusion-ordered NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107543. [PMID: 37708612 DOI: 10.1016/j.jmr.2023.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) is a powerful tool for the analysis of mixtures. Spatially-encoded (SPEN) DOSY makes it possible to collect a complete DOSY data set in a single scan, through spatial parallelisation of the gradient dimension. One limitation of current SPEN DOSY experiments is that the data is analysed assuming that the field gradient is uniform over the sample. This is usually not the case for high resolution NMR probes, and even less for triple-axis gradient probes. In this work, we have developed methods to account for gradient non-uniformity in the processing of SPEN DOSY experiment. We have first mapped the field gradient, using a stimulated echo (STE) NMR sequence with a weak readout gradient. We have then modified the calculation of the position-dependent effective gradient pulse area that is used in the analysis of SPEN DOSY data. The resulting model was validated through numerical simulations. A comparison of results obtained with and without inclusion of the effect of non-uniform gradients shows that the proposed approach increases the accuracy of SPEN DOSY experiments.
Collapse
Affiliation(s)
| | - Rituraj Mishra
- Nantes Université, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | | | | | - Aurélie Bernard
- Nantes Université, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | | |
Collapse
|
14
|
Vieira JPP, Ottosson F, Jujic A, Denisov V, Magnusson M, Melander O, Duarte JMN. Metabolite Profiling in a Diet-Induced Obesity Mouse Model and Individuals with Diabetes: A Combined Mass Spectrometry and Proton Nuclear Magnetic Resonance Spectroscopy Study. Metabolites 2023; 13:874. [PMID: 37512581 PMCID: PMC10385288 DOI: 10.3390/metabo13070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy techniques have been used extensively for metabolite profiling. Although combining these two analytical modalities has the potential of enhancing metabolite coverage, such studies are sparse. In this study we test the hypothesis that combining the metabolic information obtained using liquid chromatography (LC) MS and 1H NMR spectroscopy improves the discrimination of metabolic disease development. We induced metabolic syndrome in male mice using a high-fat diet (HFD) exposure and performed LC-MS and NMR spectroscopy on plasma samples collected after 1 and 8 weeks of dietary intervention. In an orthogonal projection to latent structures (OPLS) analysis, we observed that combining MS and NMR was stronger than each analytical method alone at determining effects of both HFD feeding and time-on-diet. We then tested our metabolomics approach on plasma from 56 individuals from the Malmö Diet and Cancer Study (MDCS) cohort. All metabolic pathways impacted by HFD feeding in mice were confirmed to be affected by diabetes in the MDCS cohort, and most prominent HFD-induced metabolite concentration changes in mice were also associated with metabolic syndrome parameters in humans. The main drivers of metabolic disease discrimination emanating from the present study included plasma levels of xanthine, hippurate, 2-hydroxyisovalerate, S-adenosylhomocysteine and dimethylguanidino valeric acid. In conclusion, our combined NMR-MS approach provided a snapshot of metabolic imbalances in humans and a mouse model, which was improved over employment of each analytical method alone.
Collapse
Affiliation(s)
- João P P Vieira
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - Filip Ottosson
- Department of Clinical Sciences-Malmö, Faculty of Medicine, Lund University, 20502 Malmö, Sweden
| | - Amra Jujic
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Clinical Sciences-Malmö, Faculty of Medicine, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 21428 Malmö, Sweden
| | - Vladimir Denisov
- Biomedical Engineering Division, Department of Clinical Sciences-Lund, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Martin Magnusson
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Clinical Sciences-Malmö, Faculty of Medicine, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 21428 Malmö, Sweden
- Hypertension in Africa Research Team, North-West University, Potchefstroom 2520, South Africa
| | - Olle Melander
- Department of Clinical Sciences-Malmö, Faculty of Medicine, Lund University, 20502 Malmö, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| |
Collapse
|
15
|
Simić K, Miladinović Z, Todorović N, Trifunović S, Avramović N, Gavrilović A, Jovanović S, Gođevac D, Vujisić L, Tešević V, Tasic L, Mandić B. Metabolomic Profiling of Bipolar Disorder by 1H-NMR in Serbian Patients. Metabolites 2023; 13:metabo13050607. [PMID: 37233648 DOI: 10.3390/metabo13050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Bipolar disorder (BD) is a brain disorder that causes changes in a person's mood, energy, and ability to function. It has a prevalence of 60 million people worldwide, and it is among the top 20 diseases with the highest global burden. The complexity of this disease, including diverse genetic, environmental, and biochemical factors, and diagnoses based on the subjective recognition of symptoms without any clinical test of biomarker identification create significant difficulties in understanding and diagnosing BD. A 1H-NMR-based metabolomic study applying chemometrics of serum samples of Serbian patients with BD (33) and healthy controls (39) was explored, providing the identification of 22 metabolites for this disease. A biomarker set including threonine, aspartate, gamma-aminobutyric acid, 2-hydroxybutyric acid, serine, and mannose was established for the first time in BD serum samples by an NMR-based metabolomics study. Six identified metabolites (3-hydroxybutyric acid, arginine, lysine, tyrosine, phenylalanine, and glycerol) are in agreement with the previously determined NMR-based sets of serum biomarkers in Brazilian and/or Chinese patient samples. The same established metabolites (lactate, alanine, valine, leucine, isoleucine, glutamine, glutamate, glucose, and choline) in three different ethnic and geographic origins (Serbia, Brazil, and China) might have a crucial role in the realization of a universal set of NMR biomarkers for BD.
Collapse
Affiliation(s)
- Katarina Simić
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Nina Todorović
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Snežana Trifunović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nataša Avramović
- University of Belgrade - Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26, 11000 Belgrade, Serbia
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases "Kovin", Cara Lazara 253, 26220 Kovin, Serbia
| | - Silvana Jovanović
- Special Hospital for Psychiatric Diseases "Kovin", Cara Lazara 253, 26220 Kovin, Serbia
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ljubodrag Vujisić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Vele Tešević
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ljubica Tasic
- Institute of Chemistry, Organic Chemistry Department, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Boris Mandić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Strobl J, Kozak F, Kamalov M, Reichinger D, Kurzbach D, Becker CFW. Understanding Self-Assembly of Silica-Precipitating Peptides to Control Silica Particle Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207586. [PMID: 36509953 PMCID: PMC11475327 DOI: 10.1002/adma.202207586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The most advanced materials are those found in nature. These evolutionary optimized substances provide highest efficiencies, e.g., in harvesting solar energy or providing extreme stability, and are intrinsically biocompatible. However, the mimicry of biological materials is limited to a few successful applications since there is still a lack of the tools to recreate natural materials. Herein, such means are provided based on a peptide library derived from the silaffin protein R5 that enables rational biomimetic materials design. It is now evident that biomaterials do not form via mechanisms observed in vitro. Instead, the material's function and morphology are predetermined by precursors that self-assemble in solution, often from a combination of protein and salts. These assemblies act as templates for biomaterials. The RRIL peptides used here are a small part of the silica-precipitation machinery in diatoms. By connecting RRIL motifs via varying central bi- or trifunctional residues, a library of stereoisomers is generated, which allows characterization of different template structures in the presence of phosphate ions by combining residue-resolved real-time NMR spectroscopy and molecular dynamics (MD) simulations. Understanding these templates in atomistic detail, the morphology of silica particles is controlled via manipulation of the template precursors.
Collapse
Affiliation(s)
- Johannes Strobl
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Fanny Kozak
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Meder Kamalov
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christian FW Becker
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
17
|
Harvey N, Takis PG, Lindon JC, Li JV, Jiménez B. Optimization of Diffusion-Ordered NMR Spectroscopy Experiments for High-Throughput Automation in Human Metabolic Phenotyping. Anal Chem 2023; 95:3147-3152. [PMID: 36720172 PMCID: PMC9933041 DOI: 10.1021/acs.analchem.2c04066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023]
Abstract
The diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY) experiment allows the calculation of diffusion coefficient values of metabolites in complex mixtures. However, this experiment has not yet been broadly used for metabolic profiling due to lack of a standardized protocol. Here we propose a pipeline for the DOSY experimental setup and data processing in metabolic phenotyping studies. Due to the complexity of biological samples, three experiments (a standard DOSY, a relaxation-edited DOSY, and a diffusion-edited DOSY) have been optimized to provide DOSY metabolic profiles with peak-picked diffusion coefficients for over 90% of signals visible in the one-dimensional 1H general biofluid profile in as little as 3 min 36 s. The developed parameter sets and tools are straightforward to implement and can facilitate the use of DOSY for metabolic profiling of human blood plasma and urine samples.
Collapse
Affiliation(s)
- Nikita Harvey
- Section
of Bioanalytical Chemistry, Division of Systems Medicine, Department
of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Hammersmith Hospital Campus, London W12 0NN, U.K.
- National
Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, , IRDB Building, Hammersmith
Campus, London W12 0NN, U.K.
| | - Panteleimon G Takis
- Section
of Bioanalytical Chemistry, Division of Systems Medicine, Department
of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Hammersmith Hospital Campus, London W12 0NN, U.K.
- National
Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, , IRDB Building, Hammersmith
Campus, London W12 0NN, U.K.
| | - John C Lindon
- Section
of Biomolecular Medicine, Division of Systems Medicine, Department
of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Hammersmith Hospital Campus, London W12 0NN, U.K.
| | - Jia V Li
- Section
of Nutrition, Division of Digestive Diseases, Department of Metabolism,
Digestion and Reproduction, Imperial College
London, Commonwealth Building, Hammersmith Hospital Campus, London W12 0NN, U.K.
| | - Beatriz Jiménez
- Section
of Bioanalytical Chemistry, Division of Systems Medicine, Department
of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Hammersmith Hospital Campus, London W12 0NN, U.K.
- National
Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, , IRDB Building, Hammersmith
Campus, London W12 0NN, U.K.
| |
Collapse
|
18
|
Draper SL, McCarney ER. Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:106-129. [PMID: 34286862 DOI: 10.1002/mrc.5197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique well known for its ability to elucidate structures and analyse mixtures and its quantitative nature. However, the cost and maintenance of high field NMR instruments prevent its widespread use by forensic chemists. The introduction of benchtop NMR spectrometers to the market operating at 40-80 MHz have a small footprint, are easy to use and cost much less than high field instruments, which makes them well suited to meet the needs of forensic chemists. These modern low field spectrometers are often capable of running multiple nuclei including 1 H, 13 C, 19 F and 31 P; 2D NMR experiments and advanced experiments such as solvent suppression and diffusion-ordered spectroscopy (DOSY) are possible. This has resulted in a number of publications in the area of forensic chemistry using benchtop NMR spectroscopy in the last 5 years that was previously missing from the literature. This mini review summarises this research including examples of benchtop NMR being used to identify and quantify compounds relevant to forensics and some advanced methods that may be used to overcome some of the limitations of these instruments for forensic analysis. Further validation and automation are likely required for widespread uptake of benchtop NMR in industry; however, it has been demonstrated as a useful complement to other analytical techniques commonplace of forensic laboratories.
Collapse
Affiliation(s)
- Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
19
|
Li R, Castañar L, Nilsson M, Morris GA. Relaxational signal attenuation during soft refocusing pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107337. [PMID: 36470177 DOI: 10.1016/j.jmr.2022.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Quantitative NMR is widely used, but the systematic errors introduced when signals are excited by anything other than a single hard pulse are not always well understood. One important source of error in experiments using soft pulses is the spin relaxation that takes place during pulses, which contains contributions from both spin-spin and spin-lattice relaxation. Here it is shown that relaxation on resonance during shaped soft 180° refocusing pulses in practical experiments can be well represented by biexponential decay, with rate constants R2 and a shape-dependent linear combination of R1 and R2, where R1 and R2 are the inverses of the spin-lattice and spin-spin relaxation times T1 and T2. In principle this would allow correction for relaxational losses in experiments using on-resonance selective refocusing pulses.
Collapse
Affiliation(s)
- Runchao Li
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK.
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK.
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK.
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
20
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
21
|
Steimers E, Matviychuk Y, Holland DJ, Hasse H, von Harbou E. Accurate measurements of self-diffusion coefficients with benchtop NMR using a QM model-based approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:1113-1130. [PMID: 35906502 DOI: 10.1002/mrc.5300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The measurement of self-diffusion coefficients using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy is a well-established method. Recently, benchtop NMR spectrometers with gradient coils have also been used, which greatly simplify these measurements. However, a disadvantage of benchtop NMR spectrometers is the lower resolution of the acquired NMR signals compared to high-field NMR spectrometers, which requires sophisticated analysis methods. In this work, we use a recently developed quantum mechanical (QM) model-based approach for the estimation of self-diffusion coefficients from complex benchtop NMR data. With the knowledge of the species present in the mixture, signatures for each species are created and adjusted to the measured NMR signal. With this model-based approach, the self-diffusion coefficients of all species in the mixtures were estimated with a discrepancy of less than 2 % compared to self-diffusion coefficients estimated from high-field NMR data sets of the same mixtures. These results suggest benchtop NMR is a reliable tool for quantitative analysis of self-diffusion coefficients, even in complex mixtures.
Collapse
Affiliation(s)
- Ellen Steimers
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, Kaiserslautern, 67663, Germany
| | - Yevgen Matviychuk
- Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Daniel J Holland
- Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, Kaiserslautern, 67663, Germany
| | - Erik von Harbou
- Laboratory of Reaction and Fluid Process Engineering, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, Kaiserslautern, 67663, Germany
| |
Collapse
|
22
|
Marchand A, Mishra R, Bernard A, Dumez J. Online Reaction Monitoring with Fast and Flow‐Compatible Diffusion NMR Spectroscopy. Chemistry 2022; 28:e202201175. [DOI: 10.1002/chem.202201175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Rituraj Mishra
- Nantes Université CNRS CEISAM UMR 6230 44000 Nantes France
| | | | | |
Collapse
|
23
|
Smith MJ, Castañar L, Adams RW, Morris GA, Nilsson M. Giving Pure Shift NMR Spectroscopy a REST─Ultrahigh-Resolution Mixture Analysis. Anal Chem 2022; 94:12757-12761. [PMID: 36069721 PMCID: PMC9494296 DOI: 10.1021/acs.analchem.2c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most interesting problems in chemistry, biology, and pharmacy involve mixtures. However, analysis of such mixtures by NMR remains a challenge, often requiring the mixture components to be physically separated before analysis. A variety of methods have been proposed that exploit species-specific properties such as diffusion and relaxation to distinguish between the signals of different components in a mixture without the need for laborious separation. However, these methods can struggle to distinguish between components when signals overlap. Here, we exploit the relaxation properties of selected nuclei to distinguish between different components of a mixture while using pure shift methods to increase spectral resolution by up to an order of magnitude, greatly reducing signal overlap. The advantages of the new method are demonstrated in a mixture of d-xylose and l-arabinose, distinguishing unambiguously between the five major species present.
Collapse
Affiliation(s)
- Marshall J Smith
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ralph W Adams
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
24
|
Schirone D, Gentile L, Olsson U, Palazzo G. Optimum formulation conditions for cationic surfactants via rheo-titration in turbulent regime. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Floresta G, Memdouh S, Pham T, Ma MT, Blower PJ, Hider RC, Abbate V, Cilibrizzi A. Targeting integrin αvβ6 with gallium-68 tris (hydroxypyridinone) based PET probes. Dalton Trans 2022; 51:12796-12803. [PMID: 35972045 PMCID: PMC9425781 DOI: 10.1039/d2dt00980c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Expression of the cellular transmembrane receptor αvβ6 integrin is mostly restricted to malignant epithelial cells in a wide variety of carcinomas, including pancreatic and others derived from epithelial tissues. Thus, this protein is considered an attractive target for tumour imaging and therapy. Two different 68Ga hexadentate tris (3,4-hydroxypyridinone) (THP) chelators were produced in this study and coupled to the αvβ6 integrin-selective peptide cyclo(FRGDLAFp(NMe)K) via NHS chemistry. Radiolabelling experiments confirmed a high radiochemical yield of the two PET probes. In addition, cellular binding studies showed high binding affinities in the nanomolar range. The two integrin αvβ6-peptide-THP synthesized and radiolabeled in this study will facilitate in vivo monitoring of transmembrane receptor αvβ6 integrin by using the advantage of THP chemistry for rapid, efficient and stable gallium chelation.
Collapse
Affiliation(s)
- Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London SE1 9NH, UK.
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Siham Memdouh
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London SE1 9NH, UK.
| | - Truc Pham
- King's College London, Division of Imaging Sciences and Biomedical Engineering, Fourth Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Michelle T Ma
- King's College London, Division of Imaging Sciences and Biomedical Engineering, Fourth Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip J Blower
- King's College London, Division of Imaging Sciences and Biomedical Engineering, Fourth Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Robert C Hider
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London SE1 9NH, UK.
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London SE1 9NH, UK.
| | - Agostino Cilibrizzi
- King's College London, Institute of Pharmaceutical Science, Franklin Wilkins Building, London SE1 9NH, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
26
|
Tang B, Chong K, Massefski W, Evans R. Quantitative Interpretation of Protein Diffusion Coefficients in Mixed Protiated-Deuteriated Aqueous Solvents. J Phys Chem B 2022; 126:5887-5895. [PMID: 35917500 PMCID: PMC9376945 DOI: 10.1021/acs.jpcb.2c03554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy
is widely used for the analysis of mixtures, dispersing the signals
of different species in a two-dimensional spectrum according to their
diffusion coefficients. However, interpretation of these diffusion
coefficients is typically purely qualitative, for example, to deduce
which species are bigger or smaller. In studies of proteins in solution,
important questions concern the molecular weight of the proteins,
the presence or absence of aggregation, and the degree of folding.
The Stokes–Einstein Gierer–Wirtz estimation (SEGWE)
method has been previously developed to simplify the complex relationship
between diffusion coefficient and molecular mass, allowing the prediction
of a species’ diffusion coefficient in a pure solvent based
on its molecular weight. Here, we show that SEGWE can be extended
to successfully predict both peptide and protein diffusion coefficients
in mixed protiated–deuteriated water samples and, hence, distinguish
effectively between globular and disordered proteins.
Collapse
Affiliation(s)
- Bridget Tang
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K
| | - Katie Chong
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham B4 7ET, U.K
| | - Walter Massefski
- Department of Chemistry Instrumentation Facility, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K
| |
Collapse
|
27
|
Simić K, Todorović N, Trifunović S, Miladinović Z, Gavrilović A, Jovanović S, Avramović N, Gođevac D, Vujisić L, Tešević V, Tasić L, Mandić B. NMR Metabolomics in Serum Fingerprinting of Schizophrenia Patients in a Serbian Cohort. Metabolites 2022; 12:707. [PMID: 36005580 PMCID: PMC9416612 DOI: 10.3390/metabo12080707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a widespread mental disorder that leads to significant functional impairments and premature death. The state of the art indicates gaps in the understanding and diagnosis of this disease, but also the need for personalized and precise approaches to patients through customized medical treatment and reliable monitoring of treatment response. In order to fulfill existing gaps, the establishment of a universal set of disorder biomarkers is a necessary step. Metabolomic investigations of serum samples of Serbian patients with schizophrenia (51) and healthy controls (39), based on NMR analyses associated with chemometrics, led to the identification of 26 metabolites/biomarkers for this disorder. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models with prediction accuracies of 0.9718 and higher were accomplished during chemometric analysis. The established biomarker set includes aspartate/aspartic acid, lysine, 2-hydroxybutyric acid, and acylglycerols, which are identified for the first time in schizophrenia serum samples by NMR experiments. The other 22 identified metabolites in the Serbian samples are in accordance with the previously established NMR-based serum biomarker sets of Brazilian and/or Chinese patient samples. Thirteen metabolites (lactate/lactic acid, threonine, leucine, isoleucine, valine, glutamine, asparagine, alanine, gamma-aminobutyric acid, choline, glucose, glycine and tyrosine) that are common for three different ethnic and geographic origins (Serbia, Brazil and China) could be a good start point for the setup of a universal NMR serum biomarker set for schizophrenia.
Collapse
Affiliation(s)
- Katarina Simić
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (K.S.); (N.T.); (D.G.)
| | - Nina Todorović
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (K.S.); (N.T.); (D.G.)
| | - Snežana Trifunović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (S.T.); (L.V.); (V.T.)
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia; (A.G.); (S.J.)
| | - Silvana Jovanović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia; (A.G.); (S.J.)
| | - Nataša Avramović
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (K.S.); (N.T.); (D.G.)
| | - Ljubodrag Vujisić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (S.T.); (L.V.); (V.T.)
| | - Vele Tešević
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (S.T.); (L.V.); (V.T.)
| | - Ljubica Tasić
- Institute of Chemistry, Organic Chemistry Department, State University of Campinas, Campinas 13083-970, SP, Brazil;
| | - Boris Mandić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; (S.T.); (L.V.); (V.T.)
| |
Collapse
|
28
|
Cardoso PHS, de Oliveira ES, Lião LM, de Almeida Ribeiro Oliveira G. 1H NMR as a simple methodology for differentiating barn and free-range chicken eggs. Food Chem 2022; 396:133720. [PMID: 35870239 DOI: 10.1016/j.foodchem.2022.133720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 12/21/2022]
Abstract
The conventional intensive system produces cheap and safe chicken eggs, but exposes the animals to stress due to overcrowding on farms. This work compared the 1HNMR lipidic profile of chicken eggs produced in conventional and free-range systems. Sample preparation consisted of a single-step extraction and centrifugation, and the 1H NMR experimental time was just 3 min per sample. Eggs from free-range chickens had higher concentrations of ω-3 and ω-6 polyunsaturated fatty acids. The ratio between the signals at δ2.85 and 4.14 from bis-allylic polyunsaturated fatty acids and glycerol moiety, respectively, was able to correctly classify 93.8 % of the samples. These results were similar to those of PLS-DA, used for comparative purposes. Therefore, the proposed method could be easily used to assist quality control and fraud prevention in the egg industry. Free-range eggs had higher concentrations of cholesterol but, as they are smaller, similar amounts to conventional ones.
Collapse
Affiliation(s)
| | - Enya Silva de Oliveira
- LabRMN, Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Luciano Morais Lião
- LabRMN, Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.
| | | |
Collapse
|
29
|
Whitehead RD, Teschke CM, Alexandrescu AT. Pulse-field gradient nuclear magnetic resonance of protein translational diffusion from native to non-native states. Protein Sci 2022; 31:e4321. [PMID: 35481638 PMCID: PMC9047038 DOI: 10.1002/pro.4321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/31/2023]
Abstract
Hydrodynamic radii (Rh -values) calculated from diffusion coefficients measured by pulse-field-gradient nuclear magnetic resonance are compared for folded and unfolded proteins. For native globular proteins, the Rh -values increase as a power of 0.35 with molecular size, close to the scaling factor of 0.33 predicted from polymer theory. Unfolded proteins were studied under four sets of conditions: in the absence of denaturants, in the presence of 6 M urea, in 95% dimethyl sulfoxide (DMSO), and in 40% hexafluoroisopropanol (HFIP). Scaling factors under all four unfolding conditions are similar (0.49-0.53) approaching the theoretical value of 0.60 for a fully unfolded random coil. Persistence lengths are also similar, except smaller in 95% DMSO, suggesting that the polypeptides are more disordered on a local scale with this solvent. Three of the proteins in our unfolded set have an asymmetric sequence-distribution of charged residues. While these proteins behave normally in water and 6 M urea, they give atypically low Rh -values in 40% HFIP and 95% DMSO suggesting they are forming electrostatic hairpins, favored by their asymmetric sequence charge distribution and the low dielectric constants of DMSO and HFIP. While diffusion-ordered NMR spectroscopy can separate small molecules, we show a number of factors combine to make protein-sized molecules much more difficult to resolve in mixtures. Finally, we look at the temperature dependence of apparent diffusion coefficients. Small molecules show a linear temperature response, while large proteins show abnormally large apparent diffusion coefficients at high temperatures due to convection, suggesting diffusion reference standards are only useful near 25°C.
Collapse
Affiliation(s)
- Richard D Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
30
|
Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of Redox-Inactive Metal Ions in Modulating the Reduction Potential of Uranyl Schiff Base Complexes: Detailed Experimental and Theoretical Studies. Inorg Chem 2022; 61:7130-7142. [PMID: 35467851 DOI: 10.1021/acs.inorgchem.2c00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear uranyl complex, [UO2L] (1), has been synthesized with the ligand N,N'-bis(3-methoxy-2-hydroxybenzylidene)-1,6-diamino-3-azahexane (H2L). The complex showed a reversible U(VI)/U(V) redox couple in cyclic voltammetric measurements. The reduction potential of this couple showed a positive shift upon the addition of redox-inactive alkali- and alkaline-earth Lewis acidic metal ions (Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) to an acetonitrile solution of complex 1. The positive shift of the reduction potential has been explained on the basis of the Lewis acidity and internal electric-field effect of the respective metal ions. The bimetallic complexes [UO2LLi(NO3)] (2), [UO2LNa(BF4)]2 (3), [UO2LK(PF6)]2 (4), [(UO2L)2Ca]·(ClO4)2·CH3CN (5), [(UO2L)2Sr(H2O)2]·(ClO4)2·CH3CN (6), and [(UO2L)2Ba(ClO4)]·(ClO4) (7) have also been isolated in the solid state by reacting complex 1 with the corresponding metal ions and characterized by single-crystal X-ray diffraction. Density functional theory calculations of the optimized [UO2LM]n+ complexes have been used to rationalize the experimental reduction and electric-field potentials imposed by the non-redox-active cations.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Soumavo Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
31
|
Mishra R, Dumez JN. Quadratic spacing of the effective gradient area for spatially encoded diffusion NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 334:107114. [PMID: 34915244 DOI: 10.1016/j.jmr.2021.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Diffusion NMR experiments rely on the measurement of signal attenuation as a function of the area of diffusion-encoding pulsed magnetic-field gradients. In conventional experiments, arbitrary series of gradient values can be used, and different gradient spacing strategies have different advantages. Ultrafast diffusion NMR relies on the spatial parallelisation of effective gradient area values to collect full 2D diffusion data sets in a single scan. Until recently, only linear spacing was available. We have shown that quadratic spacing can be achieved using a tailored frequency swept pulse. Here we describe the design of the pulse and validate it with numerical spin simulations, that make it possible to check the effect of the quadratic spacing pulse at different stages of the pulse sequence. We also show that quadratic spacing makes it possible to use a recently reported analysis method for diffusion NMR, the Matrix Pencil Method. We describe the results obtained with the MPM and those obtained with the direct exponential curve resolution algorithm (DECRA), which also requires quadratic gradient spacing. Overall, these developments open new opportunities for applications of spatially encoded diffusion experiments, such as ultrafast DOSY NMR and ultrafast Laplace NMR.
Collapse
Affiliation(s)
- Rituraj Mishra
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | | |
Collapse
|
32
|
Jacquemmoz C, Mishra R, Guduff L, van Heijenoort C, Dumez JN. Optimisation of spatially-encoded diffusion-ordered NMR spectroscopy for the analysis of mixtures. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:121-138. [PMID: 34269476 DOI: 10.1002/mrc.5194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY NMR) is a widely used method for the analysis of mixtures. It can be used to separate the spectra of a mixture's components and to analyse interactions. The classic implementation of DOSY experiments, based on an incrementation of the diffusion-encoding gradient area, requires several minutes or more to collect a 2D data set. Spatially-encoded (SPEN) DOSY makes it possible to collect a complete data set in less than 1 s, by spatial parallelisation of the effective gradient area. While several short descriptions of SPEN DOSY experiments have been reported, a thorough characterisation of its features and its practical use is missing, and this hinders the use of the method. Here, we present the unusual principles and implementation of the SPEN DOSY experiment, an understanding of which is useful to make optimal use of the method. The encoding and acquisition steps are described, and the parameter relations that govern the setup of SPEN DOSY experiments are discussed. The influence of key parameters, including on sensitivity, is illustrated experimentally on mixtures of small molecules. This study should be useful for the setup of SPEN DOSY experiments, which are particularly useful for systems that evolve in time.
Collapse
Affiliation(s)
| | - Rituraj Mishra
- Université de Nantes, CNRS, CEISAM, UMR 6230, Nantes, France
| | - Ludmilla Guduff
- Université Paris-Saclay, CNRS, ICSN, UPR 2301, Gif-sur-Yvette, France
| | | | | |
Collapse
|
33
|
Franconi F, Lemaire L, Gimel JC, Bonnet S, Saulnier P. NMR diffusometry: A new perspective for nanomedicine exploration. J Control Release 2021; 337:155-167. [PMID: 34280413 DOI: 10.1016/j.jconrel.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/09/2022]
Abstract
Nuclear Magnetic Resonance (NMR) based diffusion methods open new perspectives for nanomedicine characterization and their bioenvironment interaction understanding. This review summarizes the theoretical background of diffusion phenomena. Self-diffusion and mutual diffusion coefficient notions are featured. Principles, advantages, drawbacks, and key challenges of NMR diffusometry spectroscopic and imaging methods are presented. This review article also gives an overview of representative applicative works to the nanomedicine field that can contribute to elucidate important issues. Examples of in vitro characterizations such as identification of formulated species, process monitoring, drug release follow-up, nanomedicine interactions with biological barriers are presented as well as possible transpositions for studying in vivo nanomedicine fate.
Collapse
Affiliation(s)
- Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | | | - Samuel Bonnet
- Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
34
|
Epasto LM, Georges T, Selimović A, Guigner JM, Azaïs T, Kurzbach D. Formation and Evolution of Nanoscale Calcium Phosphate Precursors under Biomimetic Conditions. Anal Chem 2021; 93:10204-10211. [PMID: 34251166 PMCID: PMC8319911 DOI: 10.1021/acs.analchem.1c01561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulated body fluids (SBFs) that mimic human blood plasma are widely used media for in vitro studies in an extensive array of research fields, from biomineralization to surface and corrosion sciences. We show that these solutions undergo dynamic nanoscopic conformational rearrangements on the timescale of minutes to hours, even though they are commonly considered stable or metastable. In particular, we find and characterize nanoscale inhomogeneities made of calcium phosphate (CaP) aggregates that emerge from homogeneous SBFs within a few hours and evolve into prenucleation species (PNS) that act as precursors in CaP crystallization processes. These ionic clusters consist of ∼2 nm large spherical building units that can aggregate into suprastructures with sizes of over 200 nm. We show that the residence times of phosphate ions in the PNS depend critically on the total PNS surface. These findings are particularly relevant for understanding nonclassical crystallization phenomena, in which PNS are assumed to act as building blocks for the final crystal structure.
Collapse
Affiliation(s)
- Ludovica M Epasto
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Tristan Georges
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Albina Selimović
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Jean-Michel Guigner
- Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), Sorbonne Université, 4, Place Jussieu, F-75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
35
|
Fillbrook LL, Günther JP, Majer G, Price WS, Fischer P, Beves JE. Comment on "Using NMR to Test Molecular Mobility during a Chemical Reaction". J Phys Chem Lett 2021; 12:5932-5937. [PMID: 34162209 DOI: 10.1021/acs.jpclett.1c00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A study reported in The Journal of Physical Chemistry Letters (Wang et al., 2021, 12, 2370) of "boosted mobility" measured by diffusion NMR experiments contains significant errors in data analysis and interpretation. We carefully reanalyzed the same data and find no evidence of boosted mobility, and we identify several sources of error.
Collapse
Affiliation(s)
| | - Jan-Philipp Günther
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Günter Majer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - William S Price
- Nanoscale Group, School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | |
Collapse
|
36
|
Vaneeckhaute E, De Ridder S, Tyburn JM, Kempf JG, Taulelle F, Martens JA, Breynaert E. Long-Term Generation of Longitudinal Spin Order Controlled by Ammonia Ligation Enables Rapid SABRE Hyperpolarized 2D NMR. Chemphyschem 2021; 22:1170-1177. [PMID: 33851495 DOI: 10.1002/cphc.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Indexed: 01/19/2023]
Abstract
Symmetry breaking of parahydrogen using iridium catalysts converts singlet spin order into observable hyperpolarization. In this contribution, iridium catalysts are designed to exhibit asymmetry in their hydrides, regulated by in situ generation of deuterated ammonia governed by ammonium buffers. The concentrations of ammonia (N) and pyridine (P) provide a handle to generate a variety of stereo-chemically asymmetric N-heterocyclic carbene iridium complexes, ligating either [3xP], [2xP;N], [P;2xN] or [3xN] in an octahedral SABRE type configuration. The non-equivalent hydride positions, in correspondence with the ammonium buffer solutions, enables to extend singlet-triplet or S ⟩ → T 0 ⟩ mixing at high magnetic field and experimentally induce prolonged generation of non-equilibrium longitudinal two-spin order. This long-lasting magnetization can be exploited in hyperpolarized 2D-OPSY-COSY experiments providing direct structural information on the catalyst using a single contact with parahydrogen. Separately, field cycling revealed hyperpolarization properties in low-field conditions. Controlling catalyst stereochemistry by introducing small and deuterated ligands, such as deuterated ammonia, simplifies the spin-system. This is shown to unify experimental and theoretically derived field-sweep experiments for four-spin systems.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Sophie De Ridder
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium
| | - Jean-Max Tyburn
- Bruker Biospin, 34 rue de l'Industrie BP 10002, 67166, Wissembourg Cedex, France
| | - James G Kempf
- Bruker Biospin, 15 Fortune Dr., Billerica, 01821, Massachusetts, United States
| | - Francis Taulelle
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Johan A Martens
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| | - Eric Breynaert
- COK-kat, Centre for Surface Chemistry and Catalysis-Characterisation and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, B-3001, Leuven, Belgium.,NMRCoRe, NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, 3001, Leuven, Belgium
| |
Collapse
|
37
|
De Man WL, Vaneeckhaute E, De Brier N, Wouters AGB, Martens JA, Breynaert E, Delcour JA. 1H Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopic Analysis of Water-Extractable Arabinoxylan in Wheat ( Triticum aestivum L.) Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3912-3922. [PMID: 33780246 DOI: 10.1021/acs.jafc.1c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structural heterogeneity of water-extractable arabinoxylan (WE-AX) impacts wheat flour functionality. 1H diffusion-ordered (DOSY) nuclear magnetic resonance (NMR) spectroscopy revealed structural heterogeneity within WE-AX fractions obtained via graded ethanol precipitation. Combination with high-resolution 1H-1H correlation NMR spectroscopy (COSY) allowed identifying the relationship between the xylose substitution patterns and diffusion properties of the subpopulations. WE-AX fractions contained distinct subpopulations with different diffusion rates. WE-AX subpopulations with a high self-diffusivity contained high levels of monosubstituted xylose. In contrast, those with a low self-diffusivity were rich in disubstituted xylose, suggesting that disubstitution mainly occurs in WE-AX molecules with large hydrodynamic volumes. In general, WE-AX fractions precipitating at higher and lower ethanol concentrations had higher and lower self-diffusivity and more and less complex substitution patterns. Although 1H DOSY NMR, as performed in this study, was valuable for elucidating WE-AX structural heterogeneity, physical limitations arose when studying WE-AX populations with high molecular weight dispersions.
Collapse
Affiliation(s)
- Wannes L De Man
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
| | - Ewoud Vaneeckhaute
- COK-KAT, KU Leuven, Celestijnenlaan 200F-box 2461, B-3001 Heverlee, Belgium
- NMRCoRe, KU Leuven, Celestijnenlaan 200F-box 2461, B-3001 Heverlee, Belgium
| | - Niels De Brier
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
| | - Johan A Martens
- COK-KAT, KU Leuven, Celestijnenlaan 200F-box 2461, B-3001 Heverlee, Belgium
- NMRCoRe, KU Leuven, Celestijnenlaan 200F-box 2461, B-3001 Heverlee, Belgium
| | - Eric Breynaert
- COK-KAT, KU Leuven, Celestijnenlaan 200F-box 2461, B-3001 Heverlee, Belgium
- NMRCoRe, KU Leuven, Celestijnenlaan 200F-box 2461, B-3001 Heverlee, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee, Belgium
| |
Collapse
|
38
|
Floresta G, Keeling GP, Memdouh S, Meszaros LK, de Rosales RTM, Abbate V. NHS-Functionalized THP Derivative for Efficient Synthesis of Kit-Based Precursors for 68Ga Labeled PET Probes. Biomedicines 2021; 9:367. [PMID: 33915871 PMCID: PMC8066796 DOI: 10.3390/biomedicines9040367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/06/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the radiometal gallium-68 (68Ga). THP-peptide bioconjugates rapidly and quantitatively complex 68Ga at room temperature, neutral pH, and micromolar ligand concentrations, making them amenable to kit-based radiosynthesis of 68Ga PET radiopharmaceuticals. With the aim to produce an N-hydroxysuccinimide-(NHS)-THP reagent for kit-based 68Ga-labeling and PET imaging, THP-derivatives were designed and synthesized to exploit the advantages of NHS chemistry for coupling with peptides, proteins, and antibodies. The more stable five-carbon atoms linker product was selected for a proof-of-concept conjugation and radiolabeling study with an anti-programmed death ligand 1 (PD-L1) camelid single domain antibody (sdAb) under mild conditions and further evaluated for site-specific amide bond formation with a synthesized glucagon-like peptide-1 (GLP-1) targeting peptide using solid-phase synthesis. The obtained THP-GLP-1 conjugate was tested for its 68Ga chelating ability, demonstrating to be a promising candidate for the detection and monitoring of GLP-1 aberrant malignancies. The obtained sdAb-THP conjugate was radiolabeled with 68Ga under mild conditions, providing sufficient labeling yields after 5 min, demonstrating that the novel NHS-THP bifunctional chelator can be widely used to easily conjugate the THP moiety to different targeting molecules (e.g., antibodies, anticalins, or peptides) under mild conditions, paving the way to the synthesis of different imaging probes with all the advantages of THP radiochemistry.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London SE1 9NH, UK; (G.F.); (S.M.)
| | - George P. Keeling
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, UK; (G.P.K.); (L.K.M.); (R.T.M.d.R.)
| | - Siham Memdouh
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London SE1 9NH, UK; (G.F.); (S.M.)
| | - Levente K. Meszaros
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, UK; (G.P.K.); (L.K.M.); (R.T.M.d.R.)
- NanoMab Technology (UK) Ltd., 720 Centennial Court, Centennial Park, Elstree, Hertfordshire WD6 3SY, UK
| | - Rafael T. M. de Rosales
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, UK; (G.P.K.); (L.K.M.); (R.T.M.d.R.)
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London SE1 9NH, UK; (G.F.); (S.M.)
| |
Collapse
|
39
|
Mishra R, Marchand A, Jacquemmoz C, Dumez JN. Ultrafast diffusion-based unmixing of 1H NMR spectra. Chem Commun (Camb) 2021; 57:2384-2387. [PMID: 33538725 DOI: 10.1039/d0cc07757g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We show that the NMR spectra of components in a mixture can be separated using 2D data acquired in less than one second, and an algorithm that is executed in just a few seconds. This NMR unmixing method is based on spatial encoding of the translational diffusion coefficients of the mixture's components, with multivariate processing of the data. This requires a new frequency swept pulse, which is designed and implemented to obtain quadratic spacing of the spatially parallelised gradient dimension. Ultrafast NMR unmixing may help in the analysis of mixtures that evolve in time.
Collapse
Affiliation(s)
- Rituraj Mishra
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | | | | |
Collapse
|
40
|
Zhan H, Hao M, Feng Y, Cao S, Ni Z, Huang Y, Chen Z. Diffusion Analysis on Complex Mixtures under Adverse Magnetic Field Conditions by Spatially-Selective Pure Shift-Based DOSY. J Phys Chem Lett 2021; 12:1073-1080. [PMID: 33471531 DOI: 10.1021/acs.jpclett.0c03549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) serves as a noninvasive spectroscopic method for studying intact mixtures and identifying individual components present in mixtures according to their diffusion behaviors. However, DOSY techniques generally fail to discriminate complex compositions which exhibit crowded or overlapped NMR signals, particularly under adverse magnetic field conditions. Herein, we exploit the spatially selective pure shift-based DOSY strategy to address this challenge by eliminating inhomogeneous line broadenings and extracting pure shift singlets, thereby expediting diffusion analyses on complex mixtures. More importantly, this strategy is further applied to observing and analyzing electro-oxidation processes of blended alcohols, suggesting its potential to monitoring in situ electrochemical reactions. This study demonstrates a meaningful NMR trial for diffusion analysis on complex mixtures under adverse experimental circumstances, and particularly, it provides a proof-of-concept technique for electrochemical studies and shows promising prospects for applications in chemistry, biology, energy, etc.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Mengyou Hao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Ye Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Shuohui Cao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhikai Ni
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Szalontai G. Exchange-modified DOSY experiments. the use of chiral solvating agents and lanthanide shift reagents as matrices. NEW J CHEM 2021. [DOI: 10.1039/d1nj01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(S)-BINOL and Eu(fod)3 were tried as matrices to improve DOSY performance and Dt and MW prediction power on small organic molecules.
Collapse
|
42
|
Gouilleux B, Farjon J, Giraudeau P. Gradient-based pulse sequences for benchtop NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106810. [PMID: 33036709 DOI: 10.1016/j.jmr.2020.106810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benchtop NMR spectroscopy has been on the rise for the last decade, by bringing high-resolution NMR in environments that are not easily compatible with high-field NMR. Benchtop spectrometers are accessible, low cost and show an impressive performance in terms of sensitivity with respect to the relatively low associated magnetic field (40-100 MHz). However, their application is limited by the strong and ubiquitous peak overlaps arising from the complex mixtures which are often targeted, often characterized by a great diversity of concentrations and by strong signals from non-deuterated solvents. Such limitations can be addressed by pulse sequences making clever use of magnetic field gradient pulses, capable of performing efficient coherence selection or encoding chemical shift or diffusion information. Gradients pulses are well-known ingredients of high-field pulse sequence recipes, but were only recently made available on benchtop spectrometers, thanks to the introduction of gradient coils in 2015. This article reviews the recent methodological advances making use of gradient pulses on benchtop spectrometers and the applications stemming from these developments. Particular focus is made on solvent suppression schemes, diffusion-encoded, and spatially-encoded experiments, while discussing both methodological advances and subsequent applications. We eventually discuss the exciting development and application perspectives that result from such advances.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
43
|
Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. Protein–Peptide Binding Energetics under Crowded Conditions. J Phys Chem B 2020; 124:9297-9309. [DOI: 10.1021/acs.jpcb.0c05578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jhoan S. Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stuart Parnham
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Ito K, Tsuboi Y, Kikuchi J. Spatial molecular-dynamically ordered NMR spectroscopy of intact bodies and heterogeneous systems. Commun Chem 2020; 3:80. [PMID: 36703472 PMCID: PMC9814264 DOI: 10.1038/s42004-020-0330-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/29/2020] [Indexed: 01/29/2023] Open
Abstract
Noninvasive evaluation of the spatial distribution of chemical composition and diffusion behavior of materials is becoming possible by advanced nuclear magnetic resonance (NMR) pulse sequence editing. However, there is room for improvement in the spectral resolution and analytical method for application to heterogeneous samples. Here, we develop applications for comprehensively evaluating compounds and their dynamics in intact bodies and heterogeneous systems from NMR data, including spatial z-position, chemical shift, and diffusion or relaxation. This experiment is collectively named spatial molecular-dynamically ordered spectroscopy (SMOOSY). Pseudo-three-dimensional (3D) SMOOSY spectra of an intact shrimp and two heterogeneous systems are recorded to evaluate this methodology. Information about dynamics is mapped onto two-dimensional (2D) chemical shift imaging spectra using a pseudo-spectral imaging method with a processing tool named SMOOSY processor. Pseudo-2D SMOOSY spectral images can non-invasively assess the different dynamics of the compounds at each spatial z-position of the shrimp's body and two heterogeneous systems.
Collapse
Affiliation(s)
- Kengo Ito
- grid.7597.c0000000094465255RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yuuri Tsuboi
- grid.7597.c0000000094465255RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Jun Kikuchi
- grid.7597.c0000000094465255RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.27476.300000 0001 0943 978XGraduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810 Japan
| |
Collapse
|
45
|
Weber EMM, Kress T, Abergel D, Sewsurn S, Azaïs T, Kurzbach D. Assessing the Onset of Calcium Phosphate Nucleation by Hyperpolarized Real-Time NMR. Anal Chem 2020; 92:7666-7673. [PMID: 32378878 PMCID: PMC7271075 DOI: 10.1021/acs.analchem.0c00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We
report an experimental approach for high-resolution real-time
monitoring of transiently formed species occurring during the onset
of precipitation of ionic solids from solution. This is made possible
by real-time nuclear magnetic resonance (NMR) monitoring using dissolution
dynamic nuclear polarization (D-DNP) to amplify signals of functional
intermediates and is supported by turbidimetry, cryogenic electron
microscopy, and solid-state NMR measurements. D-DNP can provide drastic
signal improvements in NMR signal amplitudes, permitting dramatic
reductions in acquisition times and thereby enabling us to probe fast
interaction kinetics such as those underlying formation of prenucleation
species (PNS) that precede solid–liquid phase separation. This
experimental strategy allows for investigation of the formation of
calcium phosphate (CaP)-based minerals by 31P NMR—a
process of substantial industrial, geological, and biological interest.
Thus far, many aspects of the mechanisms of CaP nucleation remain
unclear due to the absence of experimental methods capable of accessing
such processes on sufficiently short time scales. The approach reported
here aims to address this by an improved characterization of the initial
steps of CaP precipitation, permitting detection of PNS by NMR and
determination of their formation rates, exchange dynamics, and sizes.
Using D-DNP monitoring, we find that under our conditions (i) in the
first 2 s after preparation of oversaturated calcium phosphate solutions,
PNS with a hydrodynamic radius of Rh ≈
1 nm is formed and (ii) following this rapid initial formation, the
entire crystallization processes proceed on considerably longer time
scales, requiring >20 s to form the final crystal phase.
Collapse
Affiliation(s)
- Emmanuelle M M Weber
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Richard M. Lucas Center for Imaging, 201 Welch Road, Stanford, California 94305, United States
| | - Thomas Kress
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Abergel
- Laboratoire des biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Steffi Sewsurn
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensèe de Paris (LCMCP), 4, place Jussieu, F-75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensèe de Paris (LCMCP), 4, place Jussieu, F-75005 Paris, France
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
46
|
Yamada S, Kurotani A, Chikayama E, Kikuchi J. Signal Deconvolution and Noise Factor Analysis Based on a Combination of Time-Frequency Analysis and Probabilistic Sparse Matrix Factorization. Int J Mol Sci 2020; 21:ijms21082978. [PMID: 32340198 PMCID: PMC7215856 DOI: 10.3390/ijms21082978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/08/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is commonly used to characterize molecular complexity because it produces informative atomic-resolution data on the chemical structure and molecular mobility of samples non-invasively by means of various acquisition parameters and pulse programs. However, analyzing the accumulated NMR data of mixtures is challenging due to noise and signal overlap. Therefore, data-cleansing steps, such as quality checking, noise reduction, and signal deconvolution, are important processes before spectrum analysis. Here, we have developed an NMR measurement informatics tool for data cleansing that combines short-time Fourier transform (STFT; a time-frequency analytical method) and probabilistic sparse matrix factorization (PSMF) for signal deconvolution and noise factor analysis. Our tool can be applied to the original free induction decay (FID) signals of a one-dimensional NMR spectrum. We show that the signal deconvolution method reduces the noise of FID signals, increasing the signal-to-noise ratio (SNR) about tenfold, and its application to diffusion-edited spectra allows signals of macromolecules and unsuppressed small molecules to be separated by the length of the T2* relaxation time. Noise factor analysis of NMR datasets identified correlations between SNR and acquisition parameters, identifying major experimental factors that can lower SNR.
Collapse
Affiliation(s)
- Shunji Yamada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Chikusa-ku, Japan;
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 230-0045, Tsurumi-ku, Japan; (A.K.); (E.C.)
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 230-0045, Tsurumi-ku, Japan; (A.K.); (E.C.)
| | - Eisuke Chikayama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 230-0045, Tsurumi-ku, Japan; (A.K.); (E.C.)
- Department of Information Systems, Niigata University of International and Information Studies, 3-1-1 Mizukino, Niigata 950-2292, Nishi-ku, Japan
| | - Jun Kikuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Chikusa-ku, Japan;
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 230-0045, Tsurumi-ku, Japan; (A.K.); (E.C.)
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Yokohama 230-0045, Tsurumi-ku, Japan
- Correspondence: ; +81-45-508-9439
| |
Collapse
|
47
|
Evans R. The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:33-69. [PMID: 32471534 DOI: 10.1016/j.pnmrs.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance (NMR) techniques has become routine as hardware, software and experimental methodologies have all improved. However, the quantitative interpretation of such data remains difficult, particularly for small molecules. This review article first provides a description of, and explanation for, the failure of the Stokes-Einstein equation to accurately predict small molecule diffusion coefficients, before moving on to three broadly complementary methods for their quantitative interpretation. Two are based on power laws, but differ in the nature of the reference molecules used. The third addresses the uncertainties in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are used to show the range of chemistry to which diffusion NMR can be applied, and how best to implement the different methods to obtain quantitative information from the chemical systems studied.
Collapse
Affiliation(s)
- Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
48
|
Vaneeckhaute E, De Man WL, Duerinckx K, Delcour JA, Martens JA, Taulelle F, Breynaert E. 13C-DOSY-TOSY NMR Correlation for In Situ Analysis of Structure, Size Distribution, and Dynamics of Prebiotic Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3250-3259. [PMID: 32045528 DOI: 10.1021/acs.jafc.9b06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arabinoxylan oligosaccharides (AXOS) are a complex mixture of cereal derived, water-soluble prebiotics, obtained by enzymatic hydrolysis of arabinoxylan, a group of dietary fibers exerting numerous nutritional and health-beneficial effects. Such complex biomolecular mixtures are notoriously difficult to characterize without initial physical fractionation. Here we present the in situ analysis of AXOS using a variety of state-of-the-art sensitivity-enhanced 13C-DOSY methods, enabling virtual separation and identification of the components. Three dimensional correlation plots displaying 13C diffusivity (DOSY: Diffusion Ordered SpectroscopY), relaxation parameters (TOSY: raTe of relaxation Ordered SpectrscopY), and chemical shift offer a unique way to elucidate the composition of mixtures. We have demonstrated this multifaceted 13C probed correlation strategy in standard mixtures of aliphatic and aromatic compounds, before implementing it on AXOS. These 3D-DOSY-TOSY plots in combination with 2D-NMR correlation experiments offer unprecedented clarity for assigning chemical functions, molecular size distribution, and dynamics of oligosaccharide mixtures.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK-KAT, KU Leuven, Celestijnenlaan 200F - box 2461, B-3001 Heverlee, Belgium
| | - Wannes L De Man
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Karel Duerinckx
- COK-KAT, KU Leuven, Celestijnenlaan 200F - box 2461, B-3001 Heverlee, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Johan A Martens
- COK-KAT, KU Leuven, Celestijnenlaan 200F - box 2461, B-3001 Heverlee, Belgium
| | - Francis Taulelle
- COK-KAT, KU Leuven, Celestijnenlaan 200F - box 2461, B-3001 Heverlee, Belgium
| | - Eric Breynaert
- COK-KAT, KU Leuven, Celestijnenlaan 200F - box 2461, B-3001 Heverlee, Belgium
| |
Collapse
|
49
|
Musio B, Ragone R, Todisco S, Rizzuti A, Latronico M, Mastrorilli P, Pontrelli S, Intini N, Scapicchio P, Triggiani M, Di Noia T, Acquotti D, Airoldi C, Assfalg M, Barge A, Bateman L, Benevelli F, Bertelli D, Bertocchi F, Bieliauskas A, Borioni A, Caligiani A, Callone E, Čamra A, Cesare Marincola F, Chalasani D, Consonni R, Dambruoso P, Davalli S, David T, Diehl B, Donarski J, Gil AM, Gobetto R, Goldoni L, Hamon E, Harwood JS, Kobrlová A, Longobardi F, Luisi R, Mallamace D, Mammi S, Martin-Biran M, Mazzei P, Mele A, Milone S, Molero Vilchez D, Mulder RJ, Napoli C, Ragno D, Randazzo A, Rossi MC, Rotondo A, Šačkus A, Sáez Barajas E, Schievano E, Sitaram B, Stevanato L, Takis PG, Teipel J, Thomas F, Torregiani E, Valensin D, Veronesi M, Warren J, Wist J, Zailer-Hafer E, Zuccaccia C, Gallo V. A community-built calibration system: The case study of quantification of metabolites in grape juice by qNMR spectroscopy. Talanta 2020; 214:120855. [PMID: 32278434 DOI: 10.1016/j.talanta.2020.120855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear Magnetic Resonance (NMR) is an analytical technique extensively used in almost every chemical laboratory for structural identification. This technique provides statistically equivalent signals in spite of using spectrometer with different hardware features and is successfully used for the traceability and quantification of analytes in food samples. Nevertheless, to date only a few internationally agreed guidelines have been reported on the use of NMR for quantitative analysis. The main goal of the present study is to provide a methodological pipeline to assess the reproducibility of NMR data produced for a given matrix by spectrometers from different manufacturers, with different magnetic field strengths, age and hardware configurations. The results have been analyzed through a sequence of chemometric tests to generate a community-built calibration system which was used to verify the performance of the spectrometers and the reproducibility of the predicted sample concentrations.
Collapse
Affiliation(s)
- Biagia Musio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy.
| | - Rosa Ragone
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy; Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy
| | - Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy; Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy
| | - Antonino Rizzuti
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy; Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy
| | - Mario Latronico
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy; Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy; Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy
| | - Stefania Pontrelli
- Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy
| | - Nicola Intini
- Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy; Agenzia Regionale per la Prevenzione e la Protezione dell'Ambiente, ARPA Puglia, Corso Trieste 127, I-70126, Bari, Italy
| | - Pasquale Scapicchio
- SAMER (Special Agency of the Chamber of Commerce of Bari), Via E. Mola 19, I-70121, Bari, Italy; RETELAB (Italian Network of the laboratories of the Chambers of Commerce) and LACHIMER (Special Agency of the Chamber of Commerce of Foggia), Via Manfredonia Km 2,200, I-71121, Foggia, Italy
| | - Maurizio Triggiani
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy
| | - Tommaso Di Noia
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy
| | - Domenico Acquotti
- Centro Inter-dipartimentale Misure (CIM), Università degli Studi di Parma, Parco Area delle Scienze 23/A, I-43124, Parma, Italy
| | - Cristina Airoldi
- Dipartimento di Biotecnologie e Bioscienze, Università of Milano-Bicocca, P.zza della Scienza 2, I-20126, Milano, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Cà Vignal 1, Strada le Grazie 15, I-37134, Verona, Italy
| | - Alessandro Barge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Verdi 8, 10124, Torino, Italy
| | - Lorraine Bateman
- School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, T12 K8AF, Ireland
| | - Francesca Benevelli
- Bruker Italia S.r.l., Viale V. Lancetti 43, I-20158, Milano, Italy; 7C-Consortium for NMR Research in Biotechnology and Material Science, Via Colombo 81, I-20133, Milano, Italy
| | - Davide Bertelli
- Dipartimento Scienze della Vita, Università di Modena e Reggio Emilia, Via campi 103, 41125, Modena, Italy
| | - Fabio Bertocchi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko Str. 59, LT-51423, Kaunas, Lithuania
| | - Anna Borioni
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, I-00161, Roma, Italy
| | - Augusta Caligiani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy
| | - Emanuela Callone
- "K. Müller" Magnetic Resonance Lab., Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, 38123, Trento (TN), Italy
| | - Ales Čamra
- General Directorate of Customs, Budějovická 7, 140 00, Prague, Czech Republic
| | - Flaminia Cesare Marincola
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria di Monserrato SS 554, I-09012 Monserrato (CA), Italy
| | - Dinesh Chalasani
- The United States Pharmacopeial Convention (USP), 12601 Twinbrook Parkway, Rockville, MD, 20852-1790, USA
| | - Roberto Consonni
- Istituto per lo Studio delle Macromolecole del Consiglio Nazionale delle Ricerche, (ISMAC-CNR), Laboratorio NMR, Via Bassini 15, I-20133, Milano, Italy
| | - Paolo Dambruoso
- Istituto per la Sintesi Organica e la Fotoreattività del Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Silvia Davalli
- Aptuit (Verona) S.r.l., Via Fleming 4, I-37135, Verona, Italy
| | - Taylor David
- The United States Pharmacopeial Convention (USP), 12601 Twinbrook Parkway, Rockville, MD, 20852-1790, USA
| | - Bernd Diehl
- Spectral Service AG, Emil-Hoffmann-Straße 33, 50996, Köln, Germany
| | - James Donarski
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Ana M Gil
- CICECO - Aveiro Institute of Materials, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-093, Aveiro, Portugal
| | - Roberto Gobetto
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Luca Goldoni
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy
| | - Erwann Hamon
- Aérial, 250 Rue Laurent Fries - CS40443, 67412, Illkirch Cedex, France
| | - John S Harwood
- Purdue Interdepartmental NMR Facility, Weatherill Laboratory Room 365B 560, Oval Drive, West Lafayette, IN 47907-2084, Indiana, USA
| | - Andrea Kobrlová
- General Directorate of Customs, Budějovická 7, 140 00, Prague, Czech Republic
| | - Francesco Longobardi
- Dipartimento di Chimica, Università degli Studi di Bari "A. Moro", Via Orabona 4, I-70125, Bari, Italy
| | - Renzo Luisi
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", FLAME-Lab - Flow Chemistry and Microreactor Technology Laboratory, Via E. Orabona 4, 70125, Bari, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Stefano Mammi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, I-35100, Padova, Italy
| | - Magali Martin-Biran
- Ctre Recherche Valorisation Application (CEREVAA), 12 Allée ISAAC NEWTON, 33650, Martillac, France
| | - Pierluigi Mazzei
- Università di Napoli Federico II, Centro Interdipartimentale di Risonanza Magnetica Nucleare (CERMANU), Via Università 100, 80055, Portici, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Salvatore Milone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, I-64100, Teramo, Italy
| | - Dolores Molero Vilchez
- Universidad Complutense de Madrid, Avda. Complutense s/n Aulario Facultad de Quimicas, 28040, Madrid, Spain
| | | | - Claudia Napoli
- Bruker Italia S.r.l., Viale V. Lancetti 43, I-20158, Milano, Italy
| | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Antonio Randazzo
- Dipartimento di Farmacia, Università di Napoli, Via D. Montesano, 80131, Napoli, Italy
| | - Maria Cecilia Rossi
- Centro Interdipartimentale Grandi Strumenti (CIGS), Università di Modena e Reggio Emilia, Via G. Campi 213/A, 41125, Modena, Italy
| | - Archimede Rotondo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Piazza Pugliatti 1, 98122, Messina, Italy; Science4life s.r.l., Via Leonardo Sciascia Coop. Fede Pal.B, 98168, Messina, Italy
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko Str. 59, LT-51423, Kaunas, Lithuania
| | - Elena Sáez Barajas
- Universidad Complutense de Madrid, Avda. Complutense s/n Aulario Facultad de Quimicas, 28040, Madrid, Spain
| | - Elisabetta Schievano
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, I-35100, Padova, Italy
| | - Bhavaraju Sitaram
- The United States Pharmacopeial Convention (USP), 12601 Twinbrook Parkway, Rockville, MD, 20852-1790, USA
| | - Livio Stevanato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Verdi 8, 10124, Torino, Italy
| | - Panteleimon G Takis
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - CERM/CIRMMP, Via Luigi Sacconi 6, I-50019, Sesto Fiorentino (FI), Italy
| | - Jan Teipel
- Chemical and Veterinary Investigation Agency of East-Westphalia-Lippe, Westerfeldstraße 1, 32758, Detmold, Germany
| | - Freddy Thomas
- Eurofins Analytics France, 9 Rue P. A. Bobierre, BP42301, 44323, Nantes, France
| | - Elisabetta Torregiani
- Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Daniela Valensin
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy
| | - John Warren
- LGC Limited, Queen's Road, TW11 0LY, Teddington, United Kingdom
| | - Julien Wist
- Departamento de Quimica, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia
| | | | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia and CIRCC, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, I-70125, Bari, Italy; Innovative Solutions S.r.l, Spin Off del Politecnico di Bari, Zona H 150/B, I-70015, Noci (BA), Italy; SAMER (Special Agency of the Chamber of Commerce of Bari), Via E. Mola 19, I-70121, Bari, Italy.
| |
Collapse
|
50
|
Gentile D, Floresta G, Patamia V, Nicosia A, Mineo PG, Rescifina A. Cucurbit[7]uril as a catalytic nanoreactor for one-pot synthesis of isoxazolidines in water. Org Biomol Chem 2020; 18:1194-1203. [PMID: 31995083 DOI: 10.1039/c9ob02352f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The main objective of supramolecular chemistry is to mimic the macrosystems present in nature, a goal that fits perfectly with the green chemistry guidelines. The aim of our work is to use the hydrophobic cavity of cucurbit[7]uril (CB[7]) to mimic nature for performing different dehydration and cycloaddition reactions in water. The hydrophobic cavity of CB[7] made it possible to synthesize nitrones and isoxazolidines in a one-pot fashion using water as a reaction solvent. Substituted isoxazolidines were obtained from the cycloaddition of nitrones with various styrenes and cinnamates, under microwave irradiation, with a catalytic amount of CB[7], and a moderate increase in the formation of the trans adduct was observed, compared to the reaction being carried out in toluene. The mechanism of the reaction and the inclusion of reagents and products in the CB[7] cavity have been studied and rationalized by NMR spectroscopy, ESI-MS experiments, and molecular modeling calculations.
Collapse
Affiliation(s)
- Davide Gentile
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy. and Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Vincenzo Patamia
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy. and Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angelo Nicosia
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Placido G Mineo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy and CNR-IPCB Istituto per i Polimeri, Compositi e Biomateriali, Via P. Gaifami 18, 95126 Catania, Italy and CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy. and Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|