1
|
Wang Y, Qin Y, Wang F, Zhang H, Huangfu C, Shi Y, Chen X, Wang Z, Tian W, Feng L. The Synthesis of Functionalized Carbonized Polymer Dots via Reversible Assembly of Oligomers for Anti-Counterfeiting, Catalysis, and Gas storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405043. [PMID: 39120542 PMCID: PMC11481174 DOI: 10.1002/advs.202405043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Carbonized polymer dots (CPDs) have shown exceptional potential across a wide range of applications. However, their practical utilization is significantly greatly impeded by the lack of precise control over their structures and functionalities. Consequently, the development of controlled synthesis strategies for CPDs with well-defined structures and tailored functionalities remains a critical challenge in the field. Here, the controlled synthesis of functional CPDs with reversible assembly properties via airflow-assisted melt polymerization, followed by a one-step post-synthetic doping strategy, is reported. This synthetic approach achieves high product yield, uniform and tunable structures, as well as customized functionalities including solid-state emission, enhanced catalytic performance (3.5-45 times higher than conventional methods), and selective gas storage in the resulting CPDs. The ability to tailor the properties of CPDs through controlled synthesis opens up new opportunities for their practical application in photocatalysis and gas storage.
Collapse
Affiliation(s)
- Yu Wang
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Yingxi Qin
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Hongyu Zhang
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Changxin Huangfu
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Yushu Shi
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Xize Chen
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Zhenming Wang
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental MaterialsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical ChemistryCAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023P. R. China
| |
Collapse
|
2
|
Barman BK, Yamada H, Watanabe K, Deguchi K, Ohki S, Hashi K, Goto A, Nagao T. Rare-Earth-Metal-Free Solid-State Fluorescent Carbonized-Polymer Microspheres for Unclonable Anti-Counterfeit Whispering-Gallery Emissions from Red to Near-Infrared Wavelengths. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400693. [PMID: 38867440 PMCID: PMC11321640 DOI: 10.1002/advs.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Indexed: 06/14/2024]
Abstract
Colloidal carbon dots (CDs) have garnered much attention as metal-free photoluminescent nanomaterials, yet creation of solid-state fluorescent (SSF) materials emitting in the deep red (DR) to near-infrared (NIR) range poses a significant challenge with practical implications. To address this challenge and to engineer photonic functionalities, a micro-resonator architecture is developed using carbonized polymer microspheres (CPMs), evolved from conventional colloidal nanodots. Gram-scale production of CPMs utilizes controlled microscopic phase separation facilitated by natural peptide cross-linking during hydrothermal processing. The resulting microstructure effectively suppresses aggregation-induced quenching (AIQ), enabling strong solid-state light emission. Both experimental and theoretical analysis support a role for extended π-conjugated polycyclic aromatic hydrocarbons (PAHs) trapped within these microstructures, which exhibit a progressive red shift in light absorption/emission toward the NIR range. Moreover, the highly spherical shape of CPMs endows them with innate photonic functionalities in combination with their intrinsic CD-based attributes. Harnessing their excitation wavelength-dependent photoluminescent (PL) property, a single CPM exhibits whispering-gallery modes (WGMs) that are emission-tunable from the DR to the NIR. This type of newly developed microresonator can serve as, for example, unclonable anti-counterfeiting labels. This innovative cross-cutting approach, combining photonics and chemistry, offers robust, bottom-up, built-in photonic functionality with diverse NIR applications.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Hiroyuki Yamada
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Keisuke Watanabe
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Kenzo Deguchi
- Research Network and Facility Services DivisionNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Shinobu Ohki
- Research Network and Facility Services DivisionNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Kenjiro Hashi
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Atsushi Goto
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Tadaaki Nagao
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
- Department of Condensed Matter Physics Graduate School of ScienceHokkaido UniversitySapporoHokkaido060‐0810Japan
| |
Collapse
|
3
|
Barman BK, Hernández-Pinilla D, Dao TD, Deguchi K, Ohki S, Hashi K, Goto A, Miyazaki T, Nanda KK, Nagao T. Bioinspired Carbonized Polymer Microspheres for Full-Color Whispering Gallery Mode Emission for White Light Emission, Unclonable Anticounterfeiting, and Chemical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22312-22325. [PMID: 38651800 DOI: 10.1021/acsami.3c18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Light-element-based fluorescent materials, colloidal graphene quantum dots, and carbon dots (CDs) have sparked an immense amount of scientific interest in the past decade. However, a significant challenge in practical applications has emerged concerning the development of solid-state fluorescence (SSF) materials. This study addresses this knowledge gap by exploring the unexplored photonic facets of C-based solid-state microphotonic emitters. The proposed synthesis approach focuses on carbonized polymer microspheres (CPMs) instead of conventional nanodots. These microspheres exhibit remarkable SSF spanning the entire visible spectrum from blue to red. The highly spherical shape of CPMs imparts built-in photonic properties in addition to its intrinsic CD-based attributes. Leveraging their excitation-dependent photoluminescence property, these microspheres exhibit amplified spontaneous emission, assisted by the whispering gallery mode resonance across the visible spectral region. Remarkably, unlike conventional semiconductor quantum dots or dye-doped microresonators, this single microstructure showcases adaptable resonant emission without structural/chemical modifications. This distinctive attribute enables a plethora of applications, including microcavity-assisted energy transfer for white light emission, highly sensitive chemical sensing, and secure encrypted anticounterfeiting measures. This interdisciplinary approach, integrating photonics and chemistry, provides a robust solution for light-element-based SSF with inherent photonic functionality and wide-ranging applications.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - David Hernández-Pinilla
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Thang Duy Dao
- Integrated Photonics Technologies Unit, Microsystems Division, Silicon Austria Laboratories (SAL), Europastraße 12, 9524 Villach, Austria
| | - Kenzo Deguchi
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinobu Ohki
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Kenjiro Hashi
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Atsushi Goto
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tsuyoshi Miyazaki
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Karuna Kar Nanda
- Institute of Physics, P. O. Sainik School, Bhubaneswar 751005, India
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Tadaaki Nagao
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
4
|
Ullal N, Mehta R, Sunil D. Separation and purification of fluorescent carbon dots - an unmet challenge. Analyst 2024; 149:1680-1700. [PMID: 38407365 DOI: 10.1039/d3an02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Literature reports demonstrate versatile optical applications of fluorescent carbon dots (CDs) in biological imaging, full-color solid-state lighting, optoelectronics, sensing, anticounterfeiting and so on. The fluorescence associated with CDs may originate significantly from byproducts generated during their synthesis, which need to be eliminated to achieve error-free results. The significance of purification, specifically for luminescence-based characterizations, is highly critical and imperative. Thus, there is a pressing demand to implement consistent and adequate purification strategies to reduce sample complexity and thereby realize reliable results that can provide a tactical steppingstone towards the advancement of CDs as next-generation optical materials. The article focuses on the mechanism of origin of fluorescence from CDs and further demonstrates the different purification approaches including dialysis, centrifugation, filtration, solvent extraction, chromatography, and electrophoresis that have been adopted by various researchers. Furthermore, the fundamental separation mechanism, as well as the advantages and limitations of each of these purification techniques are discussed. The article finally provides the critical challenges of these purification techniques that need to be overcome to obtain homogeneous CD fractions that demonstrate coherent and reliable optical features for suitable applications.
Collapse
Affiliation(s)
- Namratha Ullal
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Riya Mehta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
5
|
Strickland S, Jorns M, Fourroux L, Heyd L, Pappas D. Cancer Cell Targeting Via Selective Transferrin Receptor Labeling Using Protein-Derived Carbon Dots. ACS OMEGA 2024; 9:2707-2718. [PMID: 38250381 PMCID: PMC10795060 DOI: 10.1021/acsomega.3c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Carbon dot (CD) nanoparticles offer tremendous advantages as fluorescent probes in bioimaging and biosensing; however, they lack specific affinity for biomolecules, limiting their practical applications in selective targeting. Nanoparticles with intrinsic affinity for a target have applications in imaging, cytometry, therapeutics, etc. Toward that end, we report the transferrin receptor (CD71) targeting CDs, synthesized for the first time. The formation of these particles is truly groundbreaking, as direct tuning of nanoparticle affinity was achieved by simple and careful precursor selection of a protein, which has the targeting characteristic of interest. We hypothesized that the retention of the original protein's peptides on the nanoparticle surface provides the CDs with some of the function of the precursor protein, enabling selective binding to the protein's receptor. This was confirmed with FTIR (Fourier transform infrared) data and subsequent affinity-based cell assays. These transferrin (Tf)-derived CDs have been shown to possess an affinity for CD71, a cancer biomarker that is ubiquitously expressed in nearly every cancer cell line due to its central role mediating the uptake of cellular iron. The CDs were tested using the human leukemia cell line HL60 and demonstrated the selective targeting of CD71 and specific triggering of transferrin-mediated endocytosis via clathrin-coated pits. The particle characterization results reflect a carbon-based nanoparticle with bright violet fluorescence and 7.9% quantum yield in aqueous solution. These unpresented CDs proved to retain the functional properties of the precursor protein. Indicating that this process can be repeated for other disease biomarkers for applications ranging from biosensing and diagnostic bioimaging to targeted therapeutics.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mychele Jorns
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Luke Fourroux
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Lindsey Heyd
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dimitri Pappas
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Song RW, Shen CL, Zheng GS, Ni QC, Liu KK, Zang JH, Dong L, Lou Q, Shan CX. Supramolecular Aggregation of Carbon Nanodots. NANO LETTERS 2023; 23:11669-11677. [PMID: 38060996 DOI: 10.1021/acs.nanolett.3c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.
Collapse
Affiliation(s)
- Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing-Chao Ni
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Bian Z, Wallum A, Mehmood A, Gomez E, Wang Z, Pandit S, Nie S, Link S, Levine BG, Gruebele M. Properties of Carbon Dots versus Small Molecules from "Bottom-up" Synthesis. ACS NANO 2023; 17:22788-22799. [PMID: 37970787 DOI: 10.1021/acsnano.3c07486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A major challenge in the "bottom-up" solvothermal synthesis of carbon dots (CDs) is the removal of small-molecule byproducts, noncarbonized polyamides, or other impurities that confound the optical properties. In previously reported benzene diamine-based CDs, the observed fluorescence signal already has been shown to arise from free small molecules, not from nanosized carbonized dots. Here we have unambiguously identified the small-molecule species in the synthesis of CDs starting with several isomers of benzene diamine by directly matching their NMR, mass spectrometry, and optical data with commercially available small organic molecules. By combining dialysis and chromatography, we have sufficiently purified the CD reaction mixtures to measure the CD size by TEM and STM, elemental composition, optical absorption and emission, and single-particle blinking dynamics. The results can be rationalized by electronic structure calculations on small model CDs. Our results conclusively show that the purified benzene diamine-based CDs do not emit red fluorescence, so the quest for full-spectrum fluorescence from isomers of a single precursor molecule remains open.
Collapse
Affiliation(s)
- Zhengyi Bian
- Department of Materials Science and Engineering, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alison Wallum
- Department of Chemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arshad Mehmood
- Department of Chemistry and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Eric Gomez
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ziwen Wang
- Department of Bioengineering, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Subhendu Pandit
- Department of Bioengineering, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shuming Nie
- Department of Chemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Benjamin G Levine
- Department of Chemistry and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Martin Gruebele
- Department of Chemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, Center for Biophysics and Quantitative Biology, and Carle-Illinois, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Olla C, Cappai A, Porcu S, Stagi L, Fantauzzi M, Casula MF, Mocci F, Corpino R, Chiriu D, Ricci PC, Carbonaro CM. Exploring the Impact of Nitrogen Doping on the Optical Properties of Carbon Dots Synthesized from Citric Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1344. [PMID: 37110929 PMCID: PMC10141696 DOI: 10.3390/nano13081344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The differences between bare carbon dots (CDs) and nitrogen-doped CDs synthesized from citric acid as a precursor are investigated, aiming at understanding the mechanisms of emission and the role of the doping atoms in shaping the optical properties. Despite their appealing emissive features, the origin of the peculiar excitation-dependent luminescence in doped CDs is still debated and intensively being examined. This study focuses on the identification of intrinsic and extrinsic emissive centers by using a multi-technique experimental approach and computational chemistry simulations. As compared to bare CDs, nitrogen doping causes the decrease in the relative content of O-containing functional groups and the formation of both N-related molecular and surface centers that enhance the quantum yield of the material. The optical analysis suggests that the main emission in undoped nanoparticles comes from low-efficient blue centers bonded to the carbogenic core, eventually with surface-attached carbonyl groups, the contribution in the green range being possibly related to larger aromatic domains. On the other hand, the emission features of N-doped CDs are mainly due to the presence of N-related molecules, with the computed absorption transitions calling for imidic rings fused to the carbogenic core as the potential structures for the emission in the green range.
Collapse
Affiliation(s)
- Chiara Olla
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Stefania Porcu
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Marzia Fantauzzi
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department of Mechanical, Chemical, and Materials Engineering, CINSA and INSTM, University of Cagliari, Via Marengo 2, I-09123 Cagliari, Italy
| | - Francesca Mocci
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Riccardo Corpino
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Daniele Chiriu
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| |
Collapse
|
9
|
Reva Y, Jana B, Langford D, Kinzelmann M, Bo Y, Schol PR, Scharl T, Zhao X, Crisp RW, Drewello T, Clark T, Cadranel A, Guldi DM. Understanding the Visible Absorption of Electron Accepting and Donating CNDs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207238. [PMID: 36748284 DOI: 10.1002/smll.202207238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Carbon nanodots (CNDs) synthesized from citric acid and formyl derivatives, that is, formamide, urea, or N-methylformamide, stand out through their broad-range visible-light absorbance and extraordinary photostability. Despite their potential, their use has thus far been limited to imaging research. This work has now investigated the link between CNDs' photochemical properties and their chemical structure. Electron-rich, yellow carbon nanodots (yCNDs) are obtained with in situ addition of NaOH during the synthesis, whereas otherwise electron-poor, red carbon nanodots (rCNDs) are obtained. These properties originate from the reduced and oxidized dimer of citrazinic acid within the matrix of yCNDs and rCNDs, respectively. Remarkably, yCNDs deposited on TiO2 give a 30% higher photocurrent density of 0.7 mA cm-2 at +0.3 V versus Ag/AgCl under Xe-lamp irradiation (450 nm long-pass filter, 100 mW cm-2 ) than rCNDs. The difference in overall photoelectric performance is due to fundamentally different charge-transfer mechanisms. These depend on either the electron-accepting or the electron-donating nature of the CNDs, as is evident from photoelectrochemical tests with TiO2 and NiO and time-resolved spectroscopic measurements.
Collapse
Affiliation(s)
- Yana Reva
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bikash Jana
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Technion, Haifa, 3200008, Israel
| | - Daniel Langford
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Marina Kinzelmann
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer-Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Peter R Schol
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Scharl
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Xinyi Zhao
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ryan W Crisp
- Department of Chemistry and Pharmacy, Chair of Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
10
|
Zhou Y, Zhang W, Leblanc RM. Structure-Property-Activity Relationships in Carbon Dots. J Phys Chem B 2022; 126:10777-10796. [PMID: 36395361 DOI: 10.1021/acs.jpcb.2c06856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbon dots (CDs) are one of the most versatile nanomaterials discovered in the 21st century. They possess many properties and thus hold potentials in diverse applications. While an increasing amount of attention has been given to these novel nanoparticles, the broad scientific community is actively engaged in exploring their limits. Recent studies on the fractionalization and assembly of CDs further push the limits beyond just CDs and demonstrate that CDs are both a mixture of heterogeneous fractions and promising building blocks for assembly of large carbon-based materials. With CDs moving forward toward both microscopic and macroscopic levels, a good understanding of the structure-property-activity relationships is essential to forecasting the future of CDs. Hence, in this Perspective, structure-property-activity relationships are highlighted based on the repeatedly verified findings in CDs. In addition, studies on CD fractionalization and assembly are briefly summarized in this Perspective. Eventually, these structure-property-activity relationships and controllability are essential for the development of CDs with desired properties for various applications especially in photochemistry, electrochemistry, nanomedicine, and surface chemistry. In summary, in our opinion, since 2004 until the present, history has witnessed a great development of CDs although there is still some room for more studies. Also, considering many attractive properties, structure-property-activity relationships, and the building block nature of CDs, a variety of carbon-based materials of interest can be constructed from CDs with control. They can help reduce blind trials in the development of carbon-based materials, which is of great significance in materials science, chemistry, and any fields related to the applications.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States.,C-Dots LLC, Miami, Florida 33136, United States.,Department of Biological Sciences, Florida International University, Miami, Florida 33199, United States
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
11
|
Podkolodnaya YA, Kokorina AA, Goryacheva IY. A Facile Approach to the Hydrothermal Synthesis of Silica Nanoparticle/Carbon Nanostructure Luminescent Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8469. [PMID: 36499966 PMCID: PMC9737401 DOI: 10.3390/ma15238469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Luminescent carbon nanostructures (CNSs) have been intensively researched, but there is still no consensus on a fundamental understanding of their structure and properties that limits their potential applications. In this study, we developed a facile approach to the synthesis of luminescent composite SiO2 nanoparticles/CNSs by the targeted formation of a molecular fluorophore, as the significant luminescent component of CNSs, on the surface of a silica matrix during a one-stage hydrothermal synthesis. Silica nanoparticles were synthesized by reverse microemulsion and used as a matrix for luminescent composites. The as-prepared silica nanoparticles had a functional surface, a spherical shape, and a narrow size distribution of about 29 nm. One-stage hydrothermal treatment of citric acid and modified silica nanoparticles made it possible to directly form the luminescent composite. The optical properties of composites could be easily controlled by changing the hydrothermal reaction time and temperature. Thus, we successfully synthesized luminescent composites with an emission maximum of 450 nm, a quantum yield (QY) of 65 ± 4%, and an average size of ~26 nm. The synthesis of fluorophore doped composite, in contrast to CNSs, makes it possible to control the shape, size, and surface functionality of particles and allows for avoiding difficult and time-consuming fractionation steps.
Collapse
|
12
|
Sousa DA, Ferreira LFV, Fedorov AA, do Rego AMB, Ferraria AM, Cruz AB, Berberan-Santos MN, Prata JV. Luminescent Carbon Dots from Wet Olive Pomace: Structural Insights, Photophysical Properties and Cytotoxicity. Molecules 2022; 27:molecules27196768. [PMID: 36235306 PMCID: PMC9573145 DOI: 10.3390/molecules27196768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 02/05/2023] Open
Abstract
Carbon nanomaterials endowed with significant luminescence have been synthesized for the first time from an abundant, highly localized waste, the wet pomace (WP), a semi-solid by-product of industrial olive oil production. Synthetic efforts were undertaken to outshine the photoluminescence (PL) of carbon nanoparticles through a systematic search of the best reaction conditions to convert the waste biomass, mainly consisting in holocellulose, lignin and proteins, into carbon dots (CDs) by hydrothermal carbonization processes. Blue-emitting CDs with high fluorescence quantum yields were obtained. Using a comprehensive set of spectroscopic tools (FTIR, Raman, XPS, and 1H/13C NMR) in combination with steady-state and time-resolved fluorescence spectroscopy, a rational depiction of WP-CDs structures and their PL properties was reached. WP-CDs show the up-conversion of PL capabilities and negligible cytotoxicity against two mammalian cell lines (L929 and HeLa). Both properties are excellent indicators for their prospective application in biological imaging, biosensing, and dynamic therapies driven by light.
Collapse
Affiliation(s)
- Diogo A. Sousa
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal
- CQ-VR-Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís F. V. Ferreira
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Alexander A. Fedorov
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Ana M. B. do Rego
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Ana M. Ferraria
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Adriana B. Cruz
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Mário N. Berberan-Santos
- BSIRG-iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - José V. Prata
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal
- CQ-VR-Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
13
|
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022; 122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.
Collapse
Affiliation(s)
- Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department
of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, IT 09123 Cagliari, Italy
| | - Claudio Melis
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Aatto Laaksonen
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden,State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China,Centre
of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda 41A, 700487 Iasi, Romania,Division
of Energy Science, Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden,
| | | |
Collapse
|
14
|
Chatterjee N, Kumar P, Kumar K, Misra SK. What makes carbon nanoparticle a potent material for biological application? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1782. [PMID: 35194963 DOI: 10.1002/wnan.1782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
Carbon materials are generally utilized in the form of carbon allotropes and their characteristics are exploited as such or for improving the thermal, electrical, optical, and mechanical properties of other biomaterials. This has now found a broader share in conventional biomaterial space with the generation of nanodiamond, carbon dot, carbon nanoparticles (CNPs), and so forth. With properties of better biocompatibility, intrinsic optical emission, aqueous suspendability, and easier surface conjugation possibilities made CNPs as one of the fore most choice for biological applications especially for use in intracellular spaces. There are various reports available presenting methods of preparing, characterizing, and using CNPs for various biological applications but a collection of information on what makes CNP a suitable biomaterial to achieve those biological activities is yet to be provided in a significant way. Herein, a series of correlations among synthesis, characterization, and mode of utilization of CNP have been incorporated along with the variations in its use as agent for sensing, imaging, and therapy of different diseases or conditions. It is ensembled that how simplified and optimized methods of synthesis is correlated with specific characteristics of CNPs which were found to be suitable in the specific biological applications. These comparisons and correlations among various CNPs, will surely provide a platform to generate new edition of this nanomaterial with improvised applications and newer methods of evaluating structural, physical, and functional properties. This may ensure the eventual use of CNPs for human being for specific need in near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Piyush Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Krishan Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
15
|
Tao S, Zhou C, Kang C, Zhu S, Feng T, Zhang ST, Ding Z, Zheng C, Xia C, Yang B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. LIGHT, SCIENCE & APPLICATIONS 2022; 11:56. [PMID: 35273150 PMCID: PMC8913797 DOI: 10.1038/s41377-022-00745-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 05/03/2023]
Abstract
Revealing the photoluminescence (PL) origin and mechanism is a most vital but challenging topic of carbon dots. Herein, confined-domain crosslink-enhanced emission (CEE) effect was first studied by a well-designed model system of carbonized polymer dots (CPDs), serving as an important supplement to CEE in the aspect of spatial interactions. The "addition-condensation polymerization" strategy was adopted to construct CPDs with substituents exerting different degrees of steric hindrance. The effect of confined-domain CEE on the structure and luminescence properties of CPDs have been systematically investigated by combining characterizations and theoretical calculations. Such tunable spatial interactions dominated the coupling strength of the luminophores in one particle, and eventually resulted in the modulated PL properties of CPDs. These findings provide insights into the structural advantages and the PL mechanism of CPDs, which are of general significance to the further development of CPDs with tailored properties.
Collapse
Affiliation(s)
- Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chunyuan Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, 130061, China
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chengyu Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunlei Xia
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Domingo-Tafalla B, Martínez-Ferrero E, Franco F, Palomares-Gil E. Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO 2. Molecules 2022; 27:1081. [PMID: 35164346 PMCID: PMC8840083 DOI: 10.3390/molecules27031081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
The photocatalytic and electrocatalytic conversion of CO2 has the potential to provide valuable products, such as chemicals or fuels of interest, at low cost while maintaining a circular carbon cycle. In this context, carbon dots possess optical and electrochemical properties that make them suitable candidates to participate in the reaction, either as a single component or forming part of more elaborate catalytic systems. In this review, we describe several strategies where the carbon dots participate, both with amorphous and graphitic structures, in the photocatalysis or electrochemical catalysis of CO2 to provide different carbon-containing products of interest. The role of the carbon dots is analyzed as a function of their redox and light absorption characteristics and their complementarity with other known catalytic systems. Moreover, detailed information about synthetic procedures is also reviewed.
Collapse
Affiliation(s)
- Beatriu Domingo-Tafalla
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, E-43007 Tarragona, Spain
| | - Eugenia Martínez-Ferrero
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
| | - Federico Franco
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
| | - Emilio Palomares-Gil
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
- ICREA, Passeig Lluís Companys 23, E08010 Barcelona, Spain
| |
Collapse
|
17
|
Joseph X, Akhil V, Arathi A, Mohanan PV. Microfluidic synthesis of gelatin nanoparticles conjugated with nitrogen-doped carbon dots and associated cellular response on A549 cells. Chem Biol Interact 2021; 351:109710. [PMID: 34678297 DOI: 10.1016/j.cbi.2021.109710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Gelatin nanoparticles are a versatile class of nanoparticles with wide applications, especially in drug delivery and gene delivery. The inherent biocompatible nature of gelatin and various functional groups can improve the cellular interactions and enhance the efficacy of different drug formulations. Microfluidic hydrodynamic flow-focusing techniques can be used for the synthesis of gelatin nanoparticles. The present work syntheses nitrogen-doped carbon dots conjugated with gelatin nanoparticles (NQD-GNPs) using a microfluidic approach and associated cellular response through various assays. MTT, neutral red uptake, and Calcein AM/Propidium iodide (PI) assays independently proved the biocompatible nature of NQD-GNPs. The NQD-GNPs treatment demonstrated a slight increase in reactive nitrogen species generation and lactate dehydrogenase release. However, it does not alter the mitochondrial membrane potential or lysosomal stability. The cellular uptake of NQD-GNP depends on the concentration and does not affect the apoptotic pathway of the cells. Most of the cells remained viable even after treatment with high concentrations of NQD-GNPs.
Collapse
Affiliation(s)
- X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
18
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|