1
|
Yin L, Wang W, Pang W, Yang G, Gao L, Chu G. Insulin regulates gap junction intercellular communication in porcine granulosa cells through modulation of connexin43 protein expression. Theriogenology 2023; 212:172-180. [PMID: 37738821 DOI: 10.1016/j.theriogenology.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Gap junction intercellular communication (GJIC) among granulosa cells plays an important role in folliculogenesis, and it is temporal-spatially regulated during follicular development. Connexin (Cx) proteins predominantly form the basal structure of gap junctions in granulosa cells. In our study, immunohistochemical analysis revealed that Cx43 is the most widely expressed connexin in porcine follicles, especially among the large antral follicles. With application of insulin on porcine granulosa cells, we found that insulin significantly facilitated the protein level of Cx43, not mRNA level. This process is dependent on the phosphorylated activities of AKT and Erk since selective AKT and Erk inhibitors, LY294002 and U0126, respectively, hampered the potential of insulin to up-regulate Cx43 protein expression. As a consequence, the insulin-enhanced Cx43-couple GJIC activity in porcine granulosa cells was corresponding attenuated by the administration of LY294002 and U0126. Our findings provide a new insight into the molecular mechanisms by which insulin mediates cell-cell communication in porcine granulosa cells and sheds light on nutrition-reproduction interactions.
Collapse
Affiliation(s)
- Lin Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wusu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Liu W, Cui Y, Wei J, Sun J, Zheng L, Xie J. Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. Int J Oral Sci 2020; 12:17. [PMID: 32532966 PMCID: PMC7293327 DOI: 10.1038/s41368-020-0086-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Greer K, Chen J, Brickler T, Gourdie R, Theus MH. Modulation of gap junction-associated Cx43 in neural stem/progenitor cells following traumatic brain injury. Brain Res Bull 2017; 134:38-46. [PMID: 28648814 PMCID: PMC5597487 DOI: 10.1016/j.brainresbull.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
Abstract
Restoration of learning and memory deficits following traumatic brain injury (TBI) is attributed, in part, to enhanced neural stem/progenitor cell (NSPCs) function. Recent findings suggest gap junction (GJ)-associated connexin 43 (Cx43) plays a key role in the cell cycle regulation and function of NSPCs and is modulated following TBI. Here, we demonstrate that Cx43 is up-regulated in the dentate gyrus following TBI and is expressed on vimentin-positive cells in the subgranular zone. To test the role of Cx43 on NSPCs, we exposed primary cultures to the α-connexin Carboxyl Terminal (αCT1) peptide which selectively modulates GJ-associated Cx43. Treatment with αCT1 substantially reduced proliferation and increased caspase 3/7 expression on NSPCs in a dose-dependent manner. αCT1 exposure also reduced overall expression of Cx43 and phospho (p)-Serine368. These findings demonstrate that Cx43 positively regulates adult NPSCs; the modulation of which may influence changes in the dentate gyrus following TBI.
Collapse
Affiliation(s)
- Kisha Greer
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - Jiang Chen
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - Thomas Brickler
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - Robert Gourdie
- Virgnia Tech Carillion Research Institute, College of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA
| | - Michelle H Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
4
|
Qiu X, Cheng JC, Klausen C, Chang HM, Fan Q, Leung PCK. EGF-Induced Connexin43 Negatively Regulates Cell Proliferation in Human Ovarian Cancer. J Cell Physiol 2015; 231:111-9. [DOI: 10.1002/jcp.25058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Qiu
- Department of Obstetrics and Gynaecology; Child & Family Research Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology; Child & Family Research Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology; Child & Family Research Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology; Child & Family Research Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Qianlan Fan
- Department of Obstetrics and Gynaecology; Child & Family Research Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology; Child & Family Research Institute; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
5
|
Lemcke H, Kuznetsov SA. Involvement of connexin43 in the EGF/EGFR signalling during self-renewal and differentiation of neural progenitor cells. Cell Signal 2013; 25:2676-84. [DOI: 10.1016/j.cellsig.2013.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
6
|
Schalper KA, Riquelme MA, Brañes MC, Martínez AD, Vega JL, Berthoud VM, Bennett MVL, Sáez JC. Modulation of gap junction channels and hemichannels by growth factors. MOLECULAR BIOSYSTEMS 2012; 8:685-98. [PMID: 22218428 DOI: 10.1039/c1mb05294b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gap junction hemichannels and cell-cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca(2+) and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell-cell communication via these membrane channels is implicated in disease as well as normal cellular responses.
Collapse
Affiliation(s)
- Kurt A Schalper
- Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Celestino J, Bruno J, Lima-Verde I, Matos M, Saraiva M, Chaves R, Martins F, Lima L, Name K, Campello C, Silva J, Bao S, Figueiredo J. Recombinant Epidermal Growth Factor Maintains Follicular Ultrastructure and Promotes the Transition to Primary Follicles in Caprine Ovarian Tissue Cultured In Vitro. Reprod Sci 2009; 16:239-46. [DOI: 10.1177/1933719108325756] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J.J.H. Celestino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil,
| | - J.B. Bruno
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - I.B. Lima-Verde
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - M.H.T. Matos
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - M.V.A. Saraiva
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - R.N. Chaves
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - F.S. Martins
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - L.F. Lima
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - K.P.O. Name
- Department of Cell Biology, Laboratory of Electron Microscopy, University of Brasilia, Brasilia-DF, Brazil
| | - C.C. Campello
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| | - J.R.V. Silva
- Biotechnology Nucleus of Sobral (NUBIS), Federal University of Ceara, Sobral-CE Brazil
| | - S.N. Bao
- Department of Cell Biology, Laboratory of Electron Microscopy, University of Brasilia, Brasilia-DF, Brazil
| | - J.R. Figueiredo
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE Brazil
| |
Collapse
|
8
|
Silva JRV, van den Hurk R, Figueiredo JR. Expression of mRNA and protein localization of epidermal growth factor and its receptor in goat ovaries. ZYGOTE 2006; 14:107-17. [PMID: 16719946 DOI: 10.1017/s0967199406003650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 10/01/2005] [Indexed: 11/07/2022]
Abstract
SummaryTo examine the possibility that epidermal growth factor (EGF) and its receptor (EGF-R) are expressed throughout folliculogenesis, we studied the presence and distribution of EGF and EGF-R in goat ovaries. Ovaries of goats were collected and either fixed in paraformaldehyde for immunohistochemical localization of proteins, or used for the isolation of follicles, luteal cells and ovarian surface epithelium to study mRNA expression for EGF and EGF-R, using the reverse transcriptase polymerase chain reaction. EGF protein and mRNA were found in primordial, primary and secondary follicles as well as in small and large antral follicles and in surface epithelium, but in corpora lutea only the protein could be detected. Antral follicles expressed EGF mRNA in oocyte, cumulus, mural granulosa and theca cells. For EGF-R, both protein and mRNA were present at all stages of follicular development and in all antral follicular compartments. EGF-R protein and mRNA were also found in corpora lutea and surface epithelium. It is concluded that EGF and its receptor are expressed in goat ovarian follicles at all stages of follicle development, in corpora lutea, and in ovarian surface epithelium.
Collapse
Affiliation(s)
- José R V Silva
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Rahul J Anand
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|