1
|
Arshad J, Parrish JJ, Awan MA, Rakha BA, Waseem M, Ahmad MS, Iqbal S, Akhter S. Prediction of Nili-Ravi buffalo bull fertility through Fourier harmonic analysis of sperm. Theriogenology 2024; 225:162-171. [PMID: 38805998 DOI: 10.1016/j.theriogenology.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Fourier harmonic analysis (FHA) is a robust method for identification of minute changes in sperm nuclear shape that are indicative of reduced fertility. The current study was designed to develop a fertility prediction model for Nili-Ravi buffalo bulls through FHA of sperm. In experiment I, FHA technique was standardized, average sperm nuclear perimeter was measured and sperm nuclear shape plot of buffalo bull was constructed. Sperm of buffalo bulls (n = 10) were stained with YOYO-1 and Hoechst-33342 to differentiate live and dead, and digital images were captured using phase contrast and fluorescent microscopy. The images were analyzed by ImageJ software and 100 sperm/bull were evaluated. The results are described as mean ± SEM values of mean harmonic amplitude (mharm), skewness harmonic amplitude (skharm), kurtosis harmonic amplitude (kurharm) and variance harmonic amplitude (varharm) at Fourier frequencies 0-5 along with the cartesian and polar coordinate plots of buffalo bull sperm. In experiment II, a fertility prediction model was developed based on FHA of buffalo bull sperm. Semen samples of low (n = 6), medium (n = 3) and high (n = 8) fertility bulls were investigated for FHA of sperm and harmonic amplitudes (HA) were generated. Firstly, to determine if live and dead sperm population have unique nuclear shape distribution; the mean, skewness, kurtosis and variance HA 0-5 of 1700 live and 1294 dead spermatozoa of 17 bulls were evaluated. T-test signified a difference in the mharm0 (2.363 ± 0.01 vs. 2.439 ± 0.02), skharm0 (-0.0002 ± 0.07 vs. -0.266 ± 0.09), kurharm0 (-0.156 ± 0.07 vs. 0.260 ± 0.18), kurharm2 (0.142 ± 0.11 vs. 1.031 ± 0.32) and varharm4 (0.109 ± 0.00 vs. 0.082 ± 0.00) of live vs. dead sperm population (p < 0.05). Therefore, 100 live sperm/bull were further evaluated for mean, skewness, kurtosis and variance HA 0-5 values among high (n = 6) and low-fertility (n = 6) groups. Results of T-test showed higher values of mharm2 (0.739 ± 0.01 vs. 0.686 ± 0.00), mharm4 (0.105 ± 0.001 vs. 0.007 ± 0.001), and skharm0 (0.214 ± 0.109 vs. -0.244 ± 0.097) in high vs. low-fertility group (p < 0.05). In next step, five significantly different combinations of discriminant measures between high and low-fertility groups were obtained by discriminant analysis. In conclusion, mharm4, skharm0 and varharm2 correctly identified 91.7 % of bulls into their respective fertility groups, and upon cross validation the value of the canonical correlation was 0.928.
Collapse
Affiliation(s)
- Javeria Arshad
- Department of Zoology, Wildlife & Fisheries, Pir Mehr Ali Shah- Arid Agriculture University Rawalpindi, Pakistan
| | - John J Parrish
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, USA
| | - Muhammad Amjad Awan
- Department of Zoology, Wildlife & Fisheries, Pir Mehr Ali Shah- Arid Agriculture University Rawalpindi, Pakistan
| | - Bushra Allah Rakha
- Department of Zoology, Wildlife & Fisheries, Pir Mehr Ali Shah- Arid Agriculture University Rawalpindi, Pakistan
| | | | - Muhammad Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah- Arid Agriculture University Rawalpindi, Pakistan
| | - Sajid Iqbal
- Livestock Breeding Services Authority, Government of Punjab, Lahore, Pakistan
| | - Shamim Akhter
- Department of Zoology, Wildlife & Fisheries, Pir Mehr Ali Shah- Arid Agriculture University Rawalpindi, Pakistan.
| |
Collapse
|
2
|
Martín-Hidalgo D, Solar-Málaga S, González-Fernández L, Zamorano J, García-Marín LJ, Bragado MJ. The compound YK 3-237 promotes pig sperm capacitation-related events. Vet Res Commun 2024; 48:773-786. [PMID: 37906355 PMCID: PMC10998788 DOI: 10.1007/s11259-023-10243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.
Collapse
Affiliation(s)
- David Martín-Hidalgo
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España.
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España.
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain.
| | - Soraya Solar-Málaga
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - Lauro González-Fernández
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - José Zamorano
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain
| | - Luis Jesús García-Marín
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - María Julia Bragado
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| |
Collapse
|
3
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Lyon MD, Ferreira JJ, Li P, Bhagwat S, Butler A, Anderson K, Polo M, Santi CM. SLO3: A Conserved Regulator of Sperm Membrane Potential. Int J Mol Sci 2023; 24:11205. [PMID: 37446382 DOI: 10.3390/ijms241311205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sperm cells must undergo a complex maturation process after ejaculation to be able to fertilize an egg. One component of this maturation is hyperpolarization of the membrane potential to a more negative value. The ion channel responsible for this hyperpolarization, SLO3, was first cloned in 1998, and since then much progress has been made to determine how the channel is regulated and how its function intertwines with various signaling pathways involved in sperm maturation. Although Slo3 was originally thought to be present only in the sperm of mammals, recent evidence suggests that a primordial form of the gene is more widely expressed in some fish species. Slo3, like many reproductive genes, is rapidly evolving with low conservation between closely related species and different regulatory and pharmacological profiles. Despite these differences, SLO3 appears to have a conserved role in regulating sperm membrane potential and driving large changes in response to stimuli. The effect of this hyperpolarization of the membrane potential may vary among mammalian species just as the regulation of the channel does. Recent discoveries have elucidated the role of SLO3 in these processes in human sperm and provided tools to target the channel to affect human fertility.
Collapse
Affiliation(s)
- Maximilian D Lyon
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ping Li
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shweta Bhagwat
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kelsey Anderson
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria Polo
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Kern C, Wu W, Lu C, Zhang J, Zhao Y, Ocon-Grove OM, Sutovsky P, Diaz F, Liu WS. Role of the bovine PRAMEY protein in sperm function during in vitro fertilization (IVF). Cell Tissue Res 2023; 391:577-594. [PMID: 36527485 DOI: 10.1007/s00441-022-03717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal male gonad tissues and a variety of tumors. PRAME proteins are present in the acrosome and sperm tail, but their role in sperm function is unknown. The objective of this study was to examine the function of the bovine Y-linked PRAME (PRAMEY) during spermatozoal capacitation, the acrosome reaction (AR), and fertilization. Freshly ejaculated spermatozoa were induced to capacitate and undergo AR in vitro. Western blotting results revealed a decrease in the PRAMEY protein in capacitated spermatozoa, and the release of the PRAMEY protein from the acrosome during the AR, suggesting its involvement in sperm capacitation and AR. IVF was performed using in vitro matured bovine oocytes and cauda epididymal spermatozoa either treated with PRAMEY antibody, rabbit IgG, or DPBS. Sperm-egg binding and early embryos were examined at 6 and 45 h post IVF, respectively. The number of spermatozoa that bound per oocyte was nearly two-fold greater in the PRAMEY antibody treatment group (34.4) when compared to both the rabbit IgG (17.6) and DPBS (18.1) controls (P < 0.01). Polyspermy rate in the antibody-treated group (18.9%) was three-fold greater than the rabbit IgG control (6.0%) (P < 0.01). The results indicate that PRAMEY may play a role in anti-polyspermy defense. This study thus provides the initial evidence for the involvement of the PRAME protein family in sperm function and fertilization.
Collapse
Affiliation(s)
- Chandlar Kern
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Weiwei Wu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Animal Science Institute, Xinjiang Academy of Agriculture Science, Xinjiang, China
| | - Chen Lu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Fudan University, Shanghai, People's Republic of China
| | - Jianbin Zhang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Department of Animal Science, Tianjin Agriculture University, Tianjin, China
| | - Yaqi Zhao
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Olga Maria Ocon-Grove
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Actuated Medical, Inc., PA, Bellefonte, USA
| | - Peter Sutovsky
- Division of Animal Sciences, and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Francisco Diaz
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Huang M, Cao X, He Q, Yang H, Chen Y, Zhao J, Ma H, Kang J, Liu J, Quang F. Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm. J Dairy Sci 2022; 105:10020-10032. [DOI: 10.3168/jds.2022-22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
|
7
|
Morcillo i Soler P, Hidalgo C, Fekete Z, Zalanyi L, Khalil ISM, Yeste M, Magdanz V. Bundle formation of sperm: Influence of environmental factors. Front Endocrinol (Lausanne) 2022; 13:957684. [PMID: 36299459 PMCID: PMC9591104 DOI: 10.3389/fendo.2022.957684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times.
Collapse
Affiliation(s)
| | - Carlos Hidalgo
- Centro de Biotecnológia Animal SERIDA-DEVA-GIJON, Gijón, Spain
| | - Zoltán Fekete
- ONGO Vettech Ltd., Martonvásár, Hungary
- Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Laszlo Zalanyi
- ONGO Vettech Ltd., Martonvásár, Hungary
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Marc Yeste
- University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Veronika Magdanz
- Smart Nanobiodevices Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Veronika Magdanz,
| |
Collapse
|
8
|
Sperm preparedness and adaptation to osmotic and pH stressors relate to functional competence of sperm in Bos taurus. Sci Rep 2021; 11:22563. [PMID: 34799600 PMCID: PMC8604908 DOI: 10.1038/s41598-021-01928-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
The adaptive ability of sperm in the female reproductive tract micromilieu signifies the successful fertilization process. The study aimed to analyze the preparedness of sperm to the prevailing osmotic and pH stressors in the female reproductive tract. Fresh bovine sperm were incubated in 290 (isosmotic-control), 355 (hyperosmotic-uterus and oviduct), and 420 (hyperosmotic-control) mOsm/kg and each with pH of 6.8 (uterus) and 7.4 (oviduct). During incubation, the changes in sperm functional attributes were studied. Sperm kinematics and head area decreased significantly (p < 0.05) immediately upon exposure to hyperosmotic stress at both pH. Proportion of sperm capacitated (%) in 355 mOsm/kg at 1 and 2 h of incubation were significantly (p < 0.05) higher than those in 290 mOsm media. The magnitude and duration of recovery of sperm progressive motility in 355 mOsm with pH 7.4 was correlated with the ejaculate rejection rate (R2 = 0.7). Using this information, the bulls were divided into good (n = 5) and poor (n = 5) osmo-adapters. The osmo-responsive genes such as NFAT5, HSP90AB1, SLC9C1, ADAM1B and GAPDH were upregulated (p < 0.05) in the sperm of good osmo-adapters. The study suggests that sperm are prepared for the osmotic and pH challenges in the female reproductive tract and the osmoadaptive ability is associated with ejaculate quality in bulls.
Collapse
|
9
|
Lavanya M, Selvaraju S, Krishnappa B, Krishnaswamy N, Nagarajan G, Kumar H. Microenvironment of the male and female reproductive tracts regulate sperm fertility: Impact of viscosity, pH, and osmolality. Andrology 2021; 10:92-104. [PMID: 34420258 DOI: 10.1111/andr.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Terminally differentiated mammalian sperm are exposed to gradients of viscosity, pH, and osmolality both in the male and female reproductive tract during their perilous journey to quest the ovum. The complex physicochemical factors play an integral role in preparing sperm for the fertilization process. OBJECTIVES To elucidate the influence of the reproductive tract microenvironment especially viscosity, pH, and osmolality in regulating sperm functional and fertilization competence. MATERIALS AND METHODS The data used in this review were collected from the research papers and online databases focusing on the influence of viscosity, pH, and osmolality on sperm function. DISCUSSION The gradients of viscosity, pH, and osmolality exist across various segments of the male and female reproductive tract. The changes in the viscosity create a physical barrier, pH aid in capacitation and hyperactivation, and the osmotic stress selects a progressive sperm subpopulation for accomplishing fertilization. The sperm function tests are developed based on the concept that the male genotype is the major contributor to the reproductive outcome. However, recent studies demonstrate the significance of sperm genotype-environment interactions that are essentially contributing to reproductive success. Hence, it is imperative to assess the impact of physicochemical stresses and the adaptive ability of the terminally differentiated sperm, which in turn would improve the outcome of the assisted reproductive technologies and male fertility assessment. CONCLUSION Elucidating the influence of the reproductive tract microenvironment on sperm function provides newer insights into the procedures that need to be adopted for selecting fertile males for breeding, and ejaculates for the assisted reproductive technologies.
Collapse
Affiliation(s)
- Maharajan Lavanya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Govindasamy Nagarajan
- Southern Regional Research Centre under ICAR-Central Sheep and Wool Research Institute (ICAR-CSWRI), Kodaikanal, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
10
|
Chávez JC, Darszon A, Treviño CL, Nishigaki T. Quantitative Intracellular pH Determinations in Single Live Mammalian Spermatozoa Using the Ratiometric Dye SNARF-5F. Front Cell Dev Biol 2020; 7:366. [PMID: 32010689 PMCID: PMC6978660 DOI: 10.3389/fcell.2019.00366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Intracellular pH (pH i ) plays a crucial role in mammalian sperm physiology. However, it is a challenging task to acquire quantitative single sperm pH i images due to their small size and beating flagella. In this study, we established a robust pH i imaging system using the dual-emission ratiometric pH indicator, SNARF-5F. Simultaneous good signal/noise ratio fluorescence signals were obtained exciting with a green high-power LED (532 nm) and acquiring with an EM-CCD camera through an image splitter with two band-pass filters (550-600 nm, channel 1; 630-650 nm, channel 2). After in vivo calibration, we established an imaging system that allows determination of absolute pH i values in spermatozoa, minimizing cell movement artifacts. Using this system, we determined that bicarbonate increases non-capacitated human pH i with slower kinetics than in mouse spermatozoa. This difference suggests that distinct ionic transporters might be involved in the bicarbonate influx into human and mouse spermatozoa. Alternatively, pH i regulation downstream bicarbonate influx into spermatozoa could be different between the two species.
Collapse
Affiliation(s)
| | | | | | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
11
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|
13
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2018; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
14
|
Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region. Genetics 2017; 205:1089-1100. [PMID: 28100589 PMCID: PMC5340325 DOI: 10.1534/genetics.116.189092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus. Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus.
Collapse
|
15
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes. Cell Tissue Res 2016; 368:187-200. [PMID: 27807702 DOI: 10.1007/s00441-016-2514-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Abstract
Capacitation comprises a series of structural and functional modifications of sperm that confer fertilizing ability. We previously reported that the testis-specific isoform of Na/K-ATPase (ATP1A4) regulated bovine sperm capacitation through signaling mechanisms involving kinases. During subsequent investigations to elucidate mechanisms by which ATP1A4 regulates sperm capacitation, we observed that ATP1A4 was localised in both raft and non-raft fractions of the sperm plasma membrane and that its total content was increased in both membrane fractions during capacitation. The objective of the present study was to investigate mechanism(s) of capacitation-associated increase in the content of ATP1A4. Despite the widely accepted dogma of transcriptional/translational quiescence, incubation of sperm with either ouabain (specific ligand for ATP1A4) or heparin increased ATP1A4 content in raft and non-raft sperm membrane fractions, total sperm protein extracts (immunoblotting) and fixed sperm (flow cytometry), with a concurrent increase in Na/K-ATPase enzyme activity. This capacitation-associated increase in ATP1A4 content was partially decreased by chloramphenicol (mitochondrial translation inhibitor) but not affected by actinomycin D (transcription inhibitor). To demonstrate de novo ATP1A4 synthesis, we evaluated incorporation of bodipy conjugated lysine in this protein during capacitation. A partial decrease in bodipy-lysine incorporation occurred in ATP1A4 from sperm capacitated in the presence of chloramphenicol. Therefore, increased ATP1A4 content during capacitation was attributed to mitochondrial translation of ATP1A4 mRNA present in ejaculated sperm, rather than gene transcription. To our knowledge, this is the first report demonstrating ATP1A4 synthesis during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
16
|
Bolzenius JK, Cushman RA, Perry GA. Expression of Na(+)/H(+) exchanger isoforms 1, 2, 3, and 4 in bovine endometrium and the influence of uterine pH at time of fixed-time AI of pregnancy success. Anim Reprod Sci 2016; 171:98-107. [PMID: 27338797 DOI: 10.1016/j.anireprosci.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED Cows that exhibit estrus prior to fixed-time AI had increased sperm transport to the site of fertilization, and improved embryo quality on d 6 after insemination. Sperm transport is influenced by uterine pH, and research has reported that uterine pH decreased at onset of estrus, but must return to normal prior to ovulation. Therefore, the objectives of these studies were to investigate a possible mechanism for the regulation of uterine pH around the onset of estrus, and to determine if uterine pH at time of fixed-time AI influenced pregnancy success. In experiment 1, Angus-cross beef cows (n=40 and 28 in rep. 1 and 2, respectively) were synchronized with the PG 6-day CIDR protocol (PGF2α on d -9, GnRH and insertion of a CIDR on d -6, and PGF2α and CIDR removal on d 0). Cows were blocked by follicle size at time of CIDR removal, and uterine biopsies were collected at 0, 12, 24, 36, 48, 60 (Rep. 1), 72, 84, or 96h (Rep2) after CIDR removal, and total cellular RNA was extracted from all biopsies. Estrus was monitored by the HeatWatch Estrous Detection System. In experiment 2, 223 postpartum beef cows in 2 herds were synchronized with a fixed-time AI protocol (herd 1: n=97; CO-Synch plus CIDR protocol; herd 2: n=126; Co-synch protocol). Uterine pH was determined at time of AI (n=80 and 63 for herd 1 and 2, respectively), and estrus was monitored by visual estrus detection with the aid of an ESTROTECT estrous detection patches, and pregnancy was determined by transrectal ultrasonography. In experiment 1, there was a significant (P<0.01), quadratic relationship in expression of Na(+)/H(+) exchanger isoforms 1, 2, and 3 among animals that exhibited estrus, with expression greatest at time of CIDR removal, decreasing to the onset of estrus, and then increasing again following the onset of estrus. Among cows that did not exhibit estrus, the preceding relationship did not exist (P>0.46). In experiment 2, cows that had initiated estrus prior to fixed-time AI had decreased (P=0.01) uterine pH compared to cows that did not initiate estrus (6.78±0.03 and 6.89±0.03, respectively), and uterine pH at AI had an approximately linear effect on pregnancy success within the observed pH range. Furthermore, cows that initiated estrus prior to AI had increased (P=0.05) pregnancy success (52% vs. 38%) compared to cows that had not initiated estrus. In summary, expression of Na(+)/H(+) exchanger isoforms 1, 2, and 3 decreased after CIDR removal among cows that exhibited estrus, but did not change among cows that did not exhibit estrus. Additionally, as uterine pH decreased pregnancy success tended to increase (P=0.076, logistics regression). Thus, Na(+)/H(+) exchanger isoforms 1, 2, and 3 appear to be key regulators of uterine pH around the onset of estrus, and this change in uterine pH is critical for pregnancy success. SUMMARY SENTENCE Expression of Na(+)/H(+) exchanger isoforms 1, 2, and 3 decreased after CIDR removal among cows that exhibited estrus, but did not change among cows that did not exhibit estrus, and as uterine pH decreased, pregnancy success tended to increase.
Collapse
Affiliation(s)
| | - Robert A Cushman
- USDA(1), ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - George A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
17
|
Tanphaichitr N, Kongmanas K, Kruevaisayawan H, Saewu A, Sugeng C, Fernandes J, Souda P, Angel JB, Faull KF, Aitken RJ, Whitelegge J, Hardy D, Berger T, Baker M. Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins. Asian J Androl 2016; 17:574-82. [PMID: 25994642 PMCID: PMC4492047 DOI: 10.4103/1008-682x.152817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction of sperm with the egg's extracellular matrix, the zona pellucida (ZP) is the first step of the union between male and female gametes. The molecular mechanisms of this process have been studied for the past six decades with the results obtained being both interesting and confusing. In this article, we describe our recent work, which attempts to address two lines of questions from previous studies. First, because there are numerous ZP binding proteins reported by various researchers, how do these proteins act together in sperm–ZP interaction? Second, why do a number of acrosomal proteins have ZP affinity? Are they involved mainly in the initial sperm–ZP binding or rather in anchoring acrosome reacting/reacted spermatozoa to the ZP? Our studies reveal that a number of ZP binding proteins and chaperones, extracted from the anterior sperm head plasma membrane, coexist as high molecular weight (HMW) complexes, and that these complexes in capacitated spermatozoa have preferential ability to bind to the ZP. Zonadhesin (ZAN), known as an acrosomal protein with ZP affinity, is one of these proteins in the HMW complexes. Immunoprecipitation indicates that ZAN interacts with other acrosomal proteins, proacrosin/acrosin and sp32 (ACRBP), also present in the HMW complexes. Immunodetection of ZAN and proacrosin/acrosin on spermatozoa further indicates that both proteins traffic to the sperm head surface during capacitation where the sperm acrosomal matrix is still intact, and therefore they are likely involved in the initial sperm–ZP binding step.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa; Department of Obstetrics and Gynaecology, University of Ottawa; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boitseva EN, Denisenko VY, Kuz’mina TI. Evaluation of indicators of postejaculation maturation of spermatozoa of Bos taurus using a chlortetracycline test. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415060028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kongmanas K, Kruevaisayawan H, Saewu A, Sugeng C, Fernandes J, Souda P, Angel JB, Faull KF, Aitken RJ, Whitelegge J, Hardy D, Berger T, Baker MA, Tanphaichitr N. Proteomic Characterization of Pig Sperm Anterior Head Plasma Membrane Reveals Roles of Acrosomal Proteins in ZP3 Binding. J Cell Physiol 2015; 230:449-63. [PMID: 25078272 DOI: 10.1002/jcp.24728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/25/2014] [Indexed: 11/12/2022]
Abstract
The sperm anterior head plasma membrane (APM) is the site where sperm first bind to the zona pellucida (ZP). This binding reaches the maximum following the sperm capacitation process. To gain a better understanding of the sperm-ZP binding mechanisms, we compared protein profiles obtained from mass spectrometry of APM vesicles isolated from non-capacitated and capacitated sperm. The results revealed that ZP-binding proteins were the most abundant group of proteins, with a number of them showing increased levels in capacitated sperm. Blue native gel electrophoresis and far-western blotting revealed presence of high molecular weight (HMW) protein complexes in APM vesicles of both non-capacitated and capacitated sperm, but the complexes (∼750-1300 kDa) from capacitated sperm possessed much higher binding capacity to pig ZP3 glycoprotein. Proteomic analyses indicated that a number of proteins known for their acrosome localization, including zonadhesin, proacrosin/acrosin and ACRBP, were components of capacitated APM HMW complexes, with zonadhesin being the most enriched protein. Our immunofluorescence results further demonstrated that a fraction of these acrosomal proteins was transported to the surface of live acrosome-intact sperm during capacitation. Co-immunoprecipitation indicated that zonadhesin, proacrosin/acrosin and ACRBP interacted with each other and they may traffic as a complex from the acrosome to the sperm surface. Finally, the significance of zonadhesin in the binding of APM HMW complexes to pig ZP3 was demonstrated; the binding ability was decreased following treatment of the complexes with anti-zonadhesin antibody. Our results suggested that acrosomal proteins, especially zonadhesin, played roles in the initial sperm-ZP binding during capacitation.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Hathairat Kruevaisayawan
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anatomy, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Clarissa Sugeng
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Jason Fernandes
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada
| | - Puneet Souda
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada.,Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, Ontario, Canada
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - R John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - Daniel Hardy
- Department of Cell Biology and Biochemistry, Health Sciences Center, Texas Tech University, Texas
| | - Trish Berger
- Department of Animal Science, University of California, Davis, California
| | - Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry/Microbiology/Immunology, University of Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Bromfield EG, Aitken RJ, Anderson AL, McLaughlin EA, Nixon B. The impact of oxidative stress on chaperone-mediated human sperm-egg interaction. Hum Reprod 2015; 30:2597-613. [PMID: 26345691 DOI: 10.1093/humrep/dev214] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION How does oxidative stress impact upon human sperm-egg interaction and in particular the formation of zona pellucida-receptor complexes on the sperm surface? SUMMARY ANSWER Oxidative stress during human sperm capacitation resulted in the chemical alkylation of the molecular chaperone heat shock protein A2 (HSPA2), a concomitant reduction in surface expression of the zona pellucida-receptor arylsulphatase A (ARSA) and a severe loss of zona pellucida binding ability. WHAT IS KNOWN ALREADY An inability to bind to the zona pellucida is commonly encountered in the defective spermatozoa generated by male infertility patients; however, the underlying mechanisms remain unresolved. Recent studies have revealed that zona pellucida binding is mediated by molecular chaperones, particularly HSPA2, that facilitate the formation of multimeric zona pellucida-receptor complexes on the surface of mammalian spermatozoa during capacitation. STUDY DESIGN, SIZE, DURATION Spermatozoa were collected from healthy normozoospermic donors (n = 15). Low levels of oxidative stress were induced in populations of non-capacitated spermatozoa by a 1 h treatment with 4-hydroxynonenal (4HNE) or hydrogen peroxide (H2O2) and then these insults were removed and cells were capacitated for 3 h. PARTICIPANTS/MATERIALS, SETTING, METHODS Motility, membrane fluidity, protein tyrosine phosphorylation and lipid raft distribution were evaluated after sperm capacitation to determine the impact of oxidative stress on this process. The surface expression of ARSA and sperm adhesion molecule 1 (SPAM1) was observed using fluorescence microscopy, and the ability of treated cells to interact with homologous human zonae pellucidae was assessed through gamete co-incubation. Proximity ligation was used to evaluate the state of the HSPA2-laden zona pellucida-receptor complex and an immunoprecipitation approach was taken to establish the chemical alkylation of HSPA2 by the cytotoxic lipid aldehyde 4HNE. The validity of these findings was then tested through treatment of oxidatively stressed cells with the nucleophile penicillamine in order to scavenge lipid aldehydes and limit their ability to interact with HSPA2. All experiments were performed on samples pooled from two or more donors per replicate, with a minimum of three replicates. MAIN RESULTS AND THE ROLE OF CHANCE The oxidative treatments employed in this study did not influence sperm motility or capacitation-associated changes in membrane fluidity, tyrosine phosphorylation and lipid raft redistribution. However, they did significantly impair zona pellucida binding compared with the capacitated control (P < 0.01). The reduction in zona pellucida binding was associated with the impaired surface expression (P < 0.02) of a zona pellucida-receptor complex comprising HSPA2, SPAM1 and ARSA. Proximity ligation and immunoprecipitation assays demonstrated that impaired zona pellucida binding was, in turn, associated with the chemical alkylation of HSPA2 with 4HNE and the concomitant disruption of this zona pellucida-receptor complex. The use of penicillamine enabled a partial recovery of ARSA surface expression and zona pellucida adherence in H2O2-treated cells. These data suggest that the ability of low levels of oxidative stress to disrupt sperm function is mediated by the production of lipid aldehydes as a consequence of lipid peroxidation and their adduction to the molecular chaperone HSPA2 that is responsible for co-ordinating the assembly of functional zona pellucida-receptor complexes during sperm capacitation. LIMITATIONS, REASONS FOR CAUTION While these results extend only to one particular zona pellucida-receptor complex, we postulate that oxidative stress may more broadly impact upon sperm surface architecture. In this light, further study is required to assess the impact of oxidative stress on additional HSPA2-laden protein complexes. WIDER IMPLICATIONS OF THE FINDINGS These findings link low levels of oxidative stress to a severe loss of sperm function. In doing so, this work suggests a potential cause of male infertility pertaining to a loss of zona pellucida recognition ability and will contribute to the more accurate diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre for Reproductive Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
21
|
Vizel R, Hillman P, Ickowicz D, Breitbart H. AKAP3 degradation in sperm capacitation is regulated by its tyrosine phosphorylation. Biochim Biophys Acta Gen Subj 2015; 1850:1912-20. [PMID: 26093290 DOI: 10.1016/j.bbagen.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The A-kinase anchoring protein (AKAP) family is essential for sperm motility, capacitation and the acrosome reaction. PKA-dependent protein tyrosine phosphorylation occurs in mammalian sperm capacitation including AKAP3. In a recent study, we showed that AKAP3 undergoes degradation under capacitation conditions. Thus, we tested here whether AKAP3 degradation might be regulated by its tyrosine phosphorylation. METHODS The intracellular levels of AKAP3 were determined by western blot (WB) analysis using specific anti-AKAP3 antibodies. Tyrosine phosphorylation of AKAP3 was tested by immunoprecipitation and WB analysis. Acrosome reaction was examined using FITC-pisum sativum agglutinin. RESULTS AKAP3 is degraded and undergoes tyrosine-dephosphorylation during sperm capacitation and the degradation was reduced by inhibition of tyrosine phosphatase and enhanced by inhibition of tyrosine kinase. Sperm starvation or inhibition of mitochondrial respiration, which reduce cellular ATP levels, significantly accelerated AKAP3 degradation. Treatment with vanadate, or Na(+) or bicarbonate depletion, reduced AKAP3-degradation and the AR rate, while antimycin A or NH4Cl elevated both AKAP3-degradation and the AR degree. Treatment of sperm with NH4Cl enhanced PKA-dependent phosphorylation of four proteins, further supporting the involvement of AKAP3-degradation in capacitation. To demonstrate more specifically that sperm capacitation requires AKAP3-degradation, we inhibited AKAP3-degradation using anti-AKAP3 antibody in permeabilized cells. The anti-AKAP3-antibody induced significant inhibition of AKAP3-degradation and of the AR rate. CONCLUSION Sperm capacitation process requires AKAP3-degradation, and the degradation degree is regulated by the level of AKAP3 tyrosine phosphorylation. GENERAL SIGNIFICANCE Better understanding of the molecular mechanisms that mediate sperm capacitation can be used for infertility diagnosis, treatment and the developing of male contraceptives.
Collapse
Affiliation(s)
- Ruth Vizel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pnina Hillman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Debby Ickowicz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
22
|
Niksirat H, James P, Andersson L, Kouba A, Kozák P. Label-free protein quantification in freshly ejaculated versus post-mating spermatophores of the noble crayfish Astacus astacus. J Proteomics 2015; 123:70-7. [DOI: 10.1016/j.jprot.2015.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
|
23
|
Ferré LB, Bogliotti Y, Chitwood JL, Fresno C, Ortega HH, Kjelland ME, Ross PJ. Comparison of different fertilisation media for an in vitro maturation?fertilisation?culture system using flow-cytometrically sorted X chromosome-bearing spermatozoa for bovine embryo production. Reprod Fertil Dev 2015; 28:RD15019. [PMID: 25966894 DOI: 10.1071/rd15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/29/2015] [Indexed: 11/23/2022] Open
Abstract
High demand exists among commercial cattle producers for in vitro-derived bovine embryos fertilised with female sex-sorted spermatozoa from high-value breeding stock. The aim of this study was to evaluate three fertilisation media, namely M199, synthetic oviductal fluid (SOF) and Tyrode's albumin-lactate-pyruvate (TALP), on IVF performance using female sex-sorted spermatozoa. In all, 1143, 1220 and 1041 cumulus-oocyte complexes were fertilised in M199, SOF and TALP, respectively. There were significant differences among fertilisation media (P < 0.05) in cleavage rate (M199 = 57%, SOF = 71% and TALP = 72%), blastocyst formation (M199 = 9%, SOF = 20% and TALP = 19%), proportion of Grade 1 blastocysts (M199 = 15%, SOF = 52% and TALP = 51%), proportion of Grade 3 blastocysts (M199 = 58%, SOF = 21% and TALP = 20%) and hatching rates (M199 = 29%, SOF = 60% and TALP = 65%). The inner cell mass (ICM) and trophectoderm (TE) cells of Day 7 blastocysts were also affected by the fertilisation medium. Embryos derived from SOF and TALP fertilisation media had higher numbers of ICM, TE and total cells than those fertilised in M199. In conclusion, fertilisation media affected cleavage rate, as well as subsequent embryo development, quality and hatching ability. SOF and TALP fertilisation media produced significantly more embryos of higher quality than M199.
Collapse
|
24
|
Loux SC, Macías-Garcia B, González-Fernández L, Canesin HD, Varner DD, Hinrichs K. Regulation of axonemal motility in demembranated equine sperm. Biol Reprod 2014; 91:152. [PMID: 25339104 DOI: 10.1095/biolreprod.114.122804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Equine in vitro fertilization is not yet successful because equine sperm do not effectively capacitate in vitro. Results of previous studies suggest that this may be due to failure of induction of hyperactivated motility in equine sperm under standard capacitating conditions. To evaluate factors directly affecting axonemal motility in equine sperm, we developed a demembranated sperm model and analyzed motility parameters in this model under different conditions using computer-assisted sperm analysis. Treatment of ejaculated equine sperm with 0.02% Triton X-100 for 30 sec maximized both permeabilization and total motility after reactivation. The presence of ATP was required for motility of demembranated sperm after reactivation, but cAMP was not. The calculated intracellular pH of intact equine sperm was 7.14 ± 0.07. Demembranated sperm showed maximal total motility at pH 7. Neither increasing pH nor increasing calcium levels, nor any interaction of the two, induced hyperactivated motility in demembranated equine sperm. Motility of demembranated sperm was maintained at free calcium concentrations as low as 27 pM, and calcium arrested sperm motility at much lower concentrations than those reported in other species. Calcium arrest of sperm motility was not accompanied by flagellar curvature, suggesting a failure of calcium to induce the tonic bend seen in other species and thought to support hyperactivated motility. This indicated an absence, or difference in calcium sensitivity, of the related asymmetric doublet-sliding proteins. These studies show a difference in response to calcium of the equine sperm axoneme to that reported in other species that may be related to the failure of equine sperm to penetrate oocytes in vitro under standard capacitating conditions. Further work is needed to determine the factors that stimulate hyperactivated motility at the axonemal level in equine sperm.
Collapse
Affiliation(s)
- Shavahn C Loux
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Beatríz Macías-Garcia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Lauro González-Fernández
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Heloisa DeSiqueira Canesin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
25
|
Chávez JC, Ferreira JJ, Butler A, De La Vega Beltrán JL, Treviño CL, Darszon A, Salkoff L, Santi CM. SLO3 K+ channels control calcium entry through CATSPER channels in sperm. J Biol Chem 2014; 289:32266-32275. [PMID: 25271166 DOI: 10.1074/jbc.m114.607556] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we show how a sperm-specific potassium channel (SLO3) controls Ca(2+) entry into sperm through a sperm-specific Ca(2+) channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarizes the sperm, whereas CATSPER allows Ca(2+) entry. These two channels may be functionally connected, but it had not been demonstrated that SLO3-dependent hyperpolarization is required for Ca(2+) entry through CATSPER channels, nor has a functional mechanism linking the two channels been shown. In this study we show that Ca(2+) entry through CATSPER channels is deficient in Slo3 mutant sperm lacking hyperpolarization; we also present evidence supporting the hypothesis that SLO3 channels activate CATSPER channels indirectly by promoting a rise in intracellular pH through a voltage-dependent mechanism. This mechanism may work through a Na(+)/H(+) exchanger (sNHE) and/or a bicarbonate transporter, which utilizes the inward driving force of the Na(+) gradient, rendering it intrinsically voltage-dependent. In addition, the sperm-specific Na(+)/H(+) exchanger (sNHE) possess a putative voltage sensor that might be activated by membrane hyperpolarization, thus increasing the voltage sensitivity of internal alkalization.
Collapse
Affiliation(s)
- Julio César Chávez
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and; Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, México
| | - Juan José Ferreira
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Alice Butler
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | | | - Claudia L Treviño
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, México
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, México
| | - Lawrence Salkoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Celia M Santi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
26
|
Siva AB, Panneerdoss S, Sailasree P, Singh DK, Kameshwari DB, Shivaji S. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters. PLoS One 2014; 9:e97916. [PMID: 24852961 PMCID: PMC4031208 DOI: 10.1371/journal.pone.0097916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 04/26/2014] [Indexed: 12/20/2022] Open
Abstract
Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization.
Collapse
Affiliation(s)
- Archana B Siva
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Subbarayalu Panneerdoss
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Purnima Sailasree
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Durgesh K Singh
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Duvurri B Kameshwari
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Sisinthy Shivaji
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| |
Collapse
|
27
|
Parrish JJ. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 2014; 81:67-73. [PMID: 24274411 PMCID: PMC3886814 DOI: 10.1016/j.theriogenology.2013.08.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 01/20/2023]
Abstract
As a result of research in the 1980s on in vitro maturation, sperm capacitation, and in vitro fertilization, the bovine is now one of the important models for development. Further, the current production of bovine embryos in vitro rivals that of in vivo embryo production for commercial applications. Researchers of today may be unaware of why decisions were made in the procedures. This review addresses the state of the art at the time of the work by Parrish et al. (Bovine in vitro fertilization with frozen thawed semen. Theriogenology 1986;25:591-600), and how later work would explain success or failure of competing procedures. Important was the use of frozen semen and heparin capacitation, because this allowed future researchers/practitioners to change sperm numbers and capacitation conditions to adjust for variations among bulls. The large numbers of citation of the original work stand the testament of time in the repeatability and success of the procedures. The work was done within the environment of the N.L. First laboratory and the unique interactions with a large number of talented graduate students, postdoctoral researchers, and technicians.
Collapse
Affiliation(s)
- John J Parrish
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Chatiza FP, Bartels P, Nedambale TL, Wagenaar GM. Sperm-egg interaction and functional assessment of springbok, impala and blesbok cauda epididymal spermatozoa using a domestic cattle in vitro fertilization system. Anim Reprod Sci 2013; 143:8-18. [PMID: 24284137 DOI: 10.1016/j.anireprosci.2013.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/23/2013] [Accepted: 11/01/2013] [Indexed: 11/26/2022]
Abstract
The study assesses the possibility to estimate the potential fertility of post-thawed antelope (Antidorcas marsupialis), impala (Aepyceros melampus) and blesbok (Damaliscus dorcus phillipsi) epididymal sperm using homologous and heterologous IVF and the functioning of cattle IVF system to produce antelope embryos. Cauda epididymal sperm were collected from the antelope and cryopreserved under field conditions. In vitro matured domestic cow, blesbok and springbok oocytes were co-incubated in modified-Tyrode Lactate (m-TL) IVF media with springbok, impala and blesbok sperm for heterologous IVF and springbok and blesbok sperm for homologous IVF. A group of presumptive zygotes from each treatment were examined for sperm penetration and male pronuclear formation after 18h and the remainder were cultured and evaluated for embryo cleavage 22h later. The study shows that Modified Tyrode Lactate in vitro fertilization media supports survivability, capacitation and hyperactivation of springbok, impala and blesbok sperm. Springbok, impala and blesbok post-thawed epididymal spermatozoa are capable of fertilizing domestic cow oocytes under conditions that support domestic cattle IVF. Penetration, male pronuclear formation and embryo cleavage did not differ (p>0.05) between cow oocytes inseminated with sperm from springbok, impala or blesbok however these parameters were higher (p<0.05) for oocytes inseminated with bull sperm. Modified Tyrode Lactate IVF media supported homologous fertilization and embryo development in springbok and blesbok however did not support blastocyst development. These findings suggest that cattle provide a useful model for evaluating springbok, impala and blesbok post-thawed cauda epididymal sperm functionality. Domestic cattle embryo culture conditions need to be modified to promote blastosyst development in these antelope species. Such research provides an important tool in assisted reproductive technology development when high biological value material is utilized for wild species recovery plans.
Collapse
Affiliation(s)
- F P Chatiza
- University of Johannesburg, Department of Zoology, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.
| | | | | | | |
Collapse
|
29
|
González-Fernández L, Macías-García B, Velez IC, Varner DD, Hinrichs K. Calcium–calmodulin and pH regulate protein tyrosine phosphorylation in stallion sperm. Reproduction 2012; 144:411-22. [DOI: 10.1530/rep-12-0067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mechanisms leading to capacitation in stallion sperm are poorly understood. The objective of our study was to define factors associated with regulation of protein tyrosine phosphorylation in stallion sperm. Stallion sperm were incubated for 4 h in modified Whitten's media with or without bicarbonate, calcium, or BSA. When sperm were incubated in air at 30×106/ml at initial pH 7.25, protein tyrosine phosphorylation was detected only in medium containing 25 mM bicarbonate alone; calcium and BSA inhibited phosphorylation. Surprisingly, this inhibition did not occur when sperm were incubated at 10×106/ml. The final pH values after incubation at 30×106 and 10×106 sperm/ml were 7.43±0.04 and 7.83±0.07 (mean±s.e.m.) respectively. Sperm were then incubated at initial pH values of 7.25, 7.90, or 8.50 in either air or 5% CO2. Protein tyrosine phosphorylation increased with increasing final medium pH, regardless of the addition of bicarbonate or BSA. An increase in environmental pH was observed when raw semen was instilled into the uteri of estrous mares and retrieved after 30 min (from 7.47±0.10 to 7.85±0.08), demonstrating a potential physiological role for pH regulation of capacitation. Sperm incubated in the presence of the calmodulin (CaM) inhibitor W-7 exhibited a dose-dependent increase in protein tyrosine phosphorylation, suggesting that the inhibitory effect of calcium was CaM mediated. These results show for the first time a major regulatory role of external pH, calcium, and CaM in stallion sperm protein tyrosine phosphorylation.
Collapse
|
30
|
Goodson SG, Qiu Y, Sutton KA, Xie G, Jia W, O'Brien DA. Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biol Reprod 2012; 87:75. [PMID: 22837480 PMCID: PMC3464911 DOI: 10.1095/biolreprod.112.102673] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although substantial evidence exists that sperm ATP production via glycolysis is required for mammalian sperm function and male fertility, conflicting reports involving multiple species have appeared regarding the ability of individual glycolytic or mitochondrial substrates to support the physiological changes that occur during capacitation. Several mouse models with defects in the signaling pathways required for capacitation exhibit reductions in sperm ATP levels, suggesting regulatory interactions between sperm metabolism and signal transduction cascades. To better understand these interactions, we conducted quantitative studies of mouse sperm throughout a 2-h in vitro capacitation period and compared the effects of single substrates assayed under identical conditions. Multiple glycolytic and nonglycolytic substrates maintained sperm ATP levels and comparable percentages of motility, but only glucose and mannose supported hyperactivation. These monosaccharides and fructose supported the full pattern of tyrosine phosphorylation, whereas nonglycolytic substrates supported at least partial tyrosine phosphorylation. Inhibition of glycolysis impaired motility in the presence of glucose, fructose, or pyruvate but not in the presence of hydroxybutyrate. Addition of an uncoupler of oxidative phosphorylation reduced motility with pyruvate or hydroxybutyrate as substrates but unexpectedly stimulated hyperactivation with fructose. Investigating differences between glucose and fructose in more detail, we demonstrated that hyperactivation results from the active metabolism of glucose. Differences between glucose and fructose appeared to be downstream of changes in intracellular pH, which rose to comparable levels during incubation with either substrate. Sperm redox pathways were differentially affected, with higher levels of associated metabolites and reactive oxygen species generated during incubations with fructose than during incubations with glucose.
Collapse
Affiliation(s)
- Summer G Goodson
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | | | | | | | |
Collapse
|
31
|
Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 2012; 58:211-7. [DOI: 10.3109/19396368.2011.639844] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Abstract
During maturation, the surface of mammalian spermatozoa undergoes dramatic changes leading to the acquisition of properties vital for survival and performance in the female reproductive tract. A prominent change is the addition to the sperm surface of an atypical β-defensin polypeptide. In primates, the β-defensin DEFB126 becomes adsorbed to the entire sperm surface as spermatozoa move through the epididymal duct. DEFB126 has a conserved β-defensin core and a unique long glycosylated peptide tail. The carbohydrates of this domain contribute substantially to the sperm glycocalyx. DEFB126 is critical for efficient transport of sperm in the female reproductive tract, preventing their recognition by the female immune system, and might facilitate the delivery of capacitated sperm to the site of fertilization. A newly discovered dinucleotide deletion in the human DEFB126 gene is unusually common in diverse populations and results in a null allele. Predictably, men who are homozygous for the deletion produce sperm with an altered glycocalyx and impaired function, and have reduced fertility. Insights into the biology of DEFB126 are contributing to a better understanding of reproductive fitness in humans, as well as the development of diagnostics and therapeutics for male infertility.
Collapse
|
33
|
Liu Y, Wang DK, Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 2012; 86:99. [PMID: 22262691 DOI: 10.1095/biolreprod.111.096826] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCO(3)(-) plays critically important roles during virtually the entire process of reproduction in mammals, including spermatogenesis, sperm capacitation, fertilization, and development of early stage embryos. Therefore, the acid-base balance in the male and female reproductive tracts must be finely modulated. The fluid milieu in the epididymis is acidic, containing very low concentration of HCO(3)(-). In this acidic low HCO(3)(-) environment, mature sperm are rendered quiescent in the epididymis. In contrast, the luminal fluid in the female uterus and oviduct is alkaline, with very high concentration of HCO(3)(-) that is essential for sperm to fulfill fertilization. HCO(3)(-) transporter of solute carrier 4 (SLC4) and SLC26 families represent the major carriers for HCO(3)(-) transport across the plasma membrane. These transporters play critical roles in intracellular pH regulation and transepithelial HCO(3)(-) transport. The physiological roles of these transporters in mammalian reproduction are of fundamental interest to investigators. Here we review recent progress in understanding the expression of HCO(3)(-) transporters in reproductive tract tissues as well as the physiological roles of these transporters in mammalian reproduction.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology School of Life Science and Technology, Wuhan, China
| | | | | |
Collapse
|
34
|
Rodriguez P, Satorre M, Beconi M. Effect of two intracellular calcium modulators on sperm motility and heparin-induced capacitation in cryopreserved bovine spermatozoa. Anim Reprod Sci 2012; 131:135-42. [DOI: 10.1016/j.anireprosci.2012.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 11/26/2022]
|
35
|
Genetic dissection of a key reproductive barrier between nascent species of house mice. Genetics 2011; 189:289-304. [PMID: 21750261 DOI: 10.1534/genetics.111.129171] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.
Collapse
|
36
|
Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod 2011; 17:478-99. [PMID: 21642646 DOI: 10.1093/molehr/gar044] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca(2+) in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca(2+) and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (H(v)1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible.
Collapse
Affiliation(s)
- Yuriy Kirichok
- Department of Physiology, University of California San Francisco UCSF Mail Code 2140, Genentech Hall Room N272F 600 16th Street, San Francisco, CA 94158, USA.
| | | |
Collapse
|
37
|
Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A, Salkoff L. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 2010; 584:1041-6. [PMID: 20138882 PMCID: PMC2875124 DOI: 10.1016/j.febslet.2010.02.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 02/01/2023]
Abstract
Here we show a unique example of male infertility conferred by a gene knockout of the sperm-specific, pH-dependent SLO3 potassium channel. In striking contrast to wild-type sperm which undergo membrane hyperpolarization during capacitation, we found that SLO3 mutant sperm undergo membrane depolarization. Several defects in SLO3 mutant sperm are evident under capacitating conditions, including impaired motility, a bent "hairpin" shape, and failure to undergo the acrosome reaction (AR). The failure of AR is rescued by valinomycin which hyperpolarizes mutant sperm. Thus SLO3 is the principal potassium channel responsible for capacitation-induced hyperpolarization, and membrane hyperpolarization is crucial to the AR.
Collapse
Affiliation(s)
- Celia M Santi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
NEWTON LARISSAD, KRISHNAKUMAR SULOCHANA, MENON AJITKUMARGOPINADHA, KASTELIC JOHNP, VAN DER HOORN FRANSA, THUNDATHIL JACOBC. Na+/K+ATPase regulates sperm capacitation through a mechanism involving kinases and redistribution of its testis-specific isoform. Mol Reprod Dev 2010; 77:136-48. [PMID: 19834983 PMCID: PMC5059152 DOI: 10.1002/mrd.21114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Incubation of bovine sperm with ouabain, an endogenous cardiac glycoside that inhibits both the ubiquitous (ATP1A1) and testis-specific alpha4 (ATP1A4) isoforms of Na(+)/K(+)ATPase, induces tyrosine phosphorylation and capacitation. The objectives of this study were to investigate: (1) fertilizing ability of bovine sperm capacitated by incubating with ouabain; (2) involvement of ATP1A4 in this process; and (3) signaling mechanisms involved in the regulation of sperm capacitation induced by inhibition of Na(+)/K(+)ATPase activity. Fresh sperm capacitated by incubating with ouabain (inhibits both ATP1A1 and ATP1A4) or with anti-ATP1A4 immunoserum fertilized bovine oocytes in vitro. Capacitation was associated with relocalization of ATP1A4 from the entire sperm head to the post-acrosomal region. To investigate signaling mechanisms involved in oubain-induced regulation of sperm capacitation, sperm preparations were pre-incubated with inhibitors of specific signaling molecules, followed by incubation with ouabain. The phosphotyrosine content of sperm preparations was determined by immunoblotting, and capacitation status of these sperm preparations were evaluated through an acrosome reaction assay. We inferred that Na(+)/K(+)ATPase was involved in the regulation of tyrosine phosphorylation in sperm proteins through receptor tyrosine kinase, nonreceptor type protein kinase, and protein kinases A and C. In conclusion, inhibition of Na(+)/K(+)ATPase induced tyrosine phosphorylation and capacitation through multiple signal transduction pathways, imparting fertilizing ability in bovine sperm. To our knowledge, this is the first report documenting both the involvement of ATP1A4 in the regulation of bovine sperm capacitation and that fresh bovine sperm capacitated by the inhibition of Na(+)/K(+)ATPase can fertilize oocytes in vitro.
Collapse
Affiliation(s)
- LARISSA D. NEWTON
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - SULOCHANA KRISHNAKUMAR
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - AJITKUMAR GOPINADHA MENON
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - JOHN P. KASTELIC
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - FRANS A. VAN DER HOORN
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - JACOB C. THUNDATHIL
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Tollner TL, Vandevoort CA, Yudin AI, Treece CA, Overstreet JW, Cherr GN. Release of DEFB126 from macaque sperm and completion of capacitation are triggered by conditions that simulate periovulatory oviductal fluid. Mol Reprod Dev 2009; 76:431-43. [PMID: 18937315 DOI: 10.1002/mrd.20964] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Capacitation of macaque sperm in vitro has been achieved efficiently only with the addition of both cyclic nucleotides and methylxanthines. The use of these exogenous sperm activators clouds an understanding of the normal mechanisms underlying capacitation and may slow early embryo development following in vitro fertilization (IVF). We demonstrate that culture medium which simulates periovulatory oviductal fluid with respect to bicarbonate (HCO(3)(-)) and glucose concentration induces capacitation in a high percentage of macaque sperm as determined by the ability of sperm to undergo both the release of coating protein DEFB126 and the zona pellucida-induced acrosome reaction (AR). Few sperm were able to undergo the AR following 6 hr incubation in medium containing either 35 mM HCO(3)(-) (approximately 7.2 pH) or 90 mM HCO(3)(-) (approximately pH 7.8) with 5 mM glucose. When glucose concentration was lowered to 0.5 mM to match levels reported for women at midcycle, the AR rate increased significantly in sperm incubated in both levels of HCO(3)(-), indicating that glucose interferes with sperm responsiveness to increasing HCO(3)(-) concentration observed in the primate oviduct during ovulation. Even greater synchronization of capacitation could be achieved with nonphysiologic extremes of alkalinity or energy substrate deprivation. In the latter case, sperm achieved high rates of IVF. A shift in pH from 7.2 to 7.8 in a HEPES-buffered medium was sufficient to remove DEFB126 from the surface of most sperm after only 3 hr. The loss of DEFB126 from sperm under periovulaory fluid conditions has implications for the timing of release of sperm from the oviductal reservoir.
Collapse
Affiliation(s)
- Theodore L Tollner
- Center for Health and the Environment, Bodega Marine Laboratory, University of California, Davis, California 94923, USA
| | | | | | | | | | | |
Collapse
|
40
|
Pons-Rejraji H, Bailey JL, Leclerc P. Cryopreservation affects bovine sperm intracellular parameters associated with capacitation and acrosome exocytosis. Reprod Fertil Dev 2009; 21:525-37. [PMID: 19383259 DOI: 10.1071/rd07170] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/24/2008] [Indexed: 12/28/2022] Open
Abstract
Although semen cryopreservation is widely and commonly used in the bovine breeding industry, half the spermatozoa do not survive and most of those that do survive undergo numerous physiological changes that affect their fertilising ability. The aim of the present study was to determine how cryopreservation affects the intracellular events involved in sperm capacitation and acrosome reaction. Immediately after thawing and washing, almost 50% of spermatozoa were capacitated and more than 20% had lost their acrosome. The sperm cAMP concentration was lower than that in freshly ejaculated spermatozoa, but the cytosolic pH (pHcyt) was in the expected range. The free cytosolic Ca2+ concentration ([Ca2+]cyt) was higher than in fresh spermatozoa and cryopreserved spermatozoa had internally stored Ca2+. Phenylarsine oxide increased pHcyt and both cytosolic and stored Ca2+ concentrations, whereas orthovanadate enhanced acrosome loss and protein tyrosine phosphorylation (P-Tyr). Heparin increased the percentage of spermatozoa expressing the B (capacitated) chlortetracycline binding pattern, pHcyt, P-Tyr and Ca2+ storage. Moreover, positive correlations exist between capacitation, cAMP, P-Tyr and stored Ca2+, whereas the acrosome reaction is positively correlated with pHcyt and [Ca2+]cyt. These results demonstrate that sperm regulatory mechanisms may be affected by the cryopreservation procedure, but frozen-thawed sperm can still regulate their capacitation and acrosome reaction signalling pathways.
Collapse
Affiliation(s)
- Hanae Pons-Rejraji
- Département d'Obstétrique-Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval, Quebec, QC G1V 4G2, Canada
| | | | | |
Collapse
|
41
|
Pons-Rejraji H, Bailey JL, Leclerc P. Modulation of bovine sperm signalling pathways: correlation between intracellular parameters and sperm capacitation and acrosome exocytosis. Reprod Fertil Dev 2009; 21:511-24. [PMID: 19383258 DOI: 10.1071/rd07169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/24/2008] [Indexed: 12/23/2022] Open
Abstract
In the present study, the viability, intracellular pH (pHi), cAMP ([cAMP]i), calcium concentration and protein phosphotyrosine content were evaluated in relation to the acrosomal and capacitation status of freshly ejaculated bull spermatozoa. These parameters were evaluated before and after incubation with the capacitation inducer heparin, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), the phosphotyrosyl-protein phosphatase inhibitors phenylarsine oxide (PAO) and sodium orthovanadate, and hydrogen peroxide. The results obtained were integrated to address the physiological interactions between the different signalling events affecting sperm capacitation and acrosome reaction. As expected, heparin promoted the expression of the 'B' pattern of chlortetracycline binding, increased pHi, [cAMP]i and the phosphotyrosine content of sperm proteins. The effects of heparin were enhanced by IBMX. Both PAO and sodium orthovanadate stimulated protein phosphotyrosine content and acrosomal exocytosis, although only PAO affected pH, Ca2+ and cAMP levels. Intracellular pH was increased while both Ca2+ and [cAMP]i were decreased. Physiological concentrations of H2O2 increased [cAMP]i and promoted acrosomal exocytosis. A significant positive correlation was found between sperm capacitation, protein phosphotyrosine content and stored Ca2+ concentration, whereas the acrosome reaction was correlated with pHi and Ca2+ concentration. This study presents the first global analysis of the major elements individually described during sperm capacitation and acrosome reaction signalling pathways, supported by statistical correlations.
Collapse
Affiliation(s)
- Hanae Pons-Rejraji
- Département d'Obstétrique-Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC G1V 4G2, Canada
| | | | | |
Collapse
|
42
|
Vadnais ML, Galantino-Homer HL, Althouse GC. Current concepts of molecular events during bovine and porcine spermatozoa capacitation. ACTA ACUST UNITED AC 2007; 53:109-23. [PMID: 17612869 DOI: 10.1080/01485010701329386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spermatozoa are required to undergo the processes of capacitation before they obtain fertilizing ability. The molecular changes of capacitation are still not fully understood. However, it is accepted that capacitation is a sequential process involving numerous physiological changes including destabilization of the plasma membrane, alterations of intracellular ion concentrations and membrane potential, and protein phosphorylation. There are no known morphological changes that occur to the spermatozoon during capacitation. The purpose of this review is to summarize current evidence on the molecular aspects of capacitation both in vivo and in vitro in bovine and porcine spermatozoa. For the purpose of this review, the process of sperm capacitation will encompass maturational events that occur following ejaculation up to binding to the zona pellucida, that triggers acrosomal exocytosis and initiates fertilization.
Collapse
Affiliation(s)
- Melissa L Vadnais
- Department of Urologic Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
43
|
Navarro B, Kirichok Y, Clapham DE. KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci U S A 2007; 104:7688-92. [PMID: 17460039 PMCID: PMC1855916 DOI: 10.1073/pnas.0702018104] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mature mammalian spermatozoa are quiescent in the male reproductive tract. Upon ejaculation and during their transit through the female reproductive tract, they undergo changes that enable them to fertilize the egg. During this process of capacitation, they acquire progressive motility, develop hyperactivated motility, and are readied for the acrosome reaction. All of these processes are regulated by intracellular pH. In the female reproductive tract, the spermatozoan cytoplasm alkalinizes, which in turn activates a Ca2+-selective current (I(CatSper)) required for hyperactivated motility. Here, we show that alkalinization also has a dramatic effect on membrane potential, producing a rapid hyperpolarization. This hyperpolarization is primarily mediated by a weakly outwardly rectifying K+ current (I(KSper)) originating from the principal piece of the sperm flagellum. Alkalinization activates the pH(i)-sensitive I(KSper), setting the membrane potential to negative potentials where Ca2+ entry via I(CatSper) is maximized. I(KSper) is one of two dominant ion currents of capacitated sperm cells.
Collapse
Affiliation(s)
- Betsy Navarro
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital, and Department of Neurobiology, Harvard Medical School, Enders 1309, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115
| | - Yuriy Kirichok
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital, and Department of Neurobiology, Harvard Medical School, Enders 1309, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115
| | - David E. Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital, and Department of Neurobiology, Harvard Medical School, Enders 1309, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Acevedo JJ, Mendoza-Lujambio I, de la Vega-Beltrán JL, Treviño CL, Felix R, Darszon A. KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation. Dev Biol 2005; 289:395-405. [PMID: 16343479 DOI: 10.1016/j.ydbio.2005.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 11/01/2005] [Accepted: 11/04/2005] [Indexed: 11/21/2022]
Abstract
Mammalian sperm must undergo a series of physiological changes after leaving the testis to become competent for fertilization. These changes, collectively known as capacitation, occur in the female reproductive tract where the sperm plasma membrane is modified in terms of its components and ionic permeability. Among other events, mouse sperm capacitation leads to an increase in the intracellular Ca(2+) and pH as well as to a hyperpolarization of the membrane potential. It is well known that ion channels play a crucial role in these events, though the molecular identity of the particular channels involved in capacitation is poorly defined. In the present work, we report the identification and potential functional role of K(ATP) channels in mouse spermatogenic cells and sperm. By using whole-cell patch clamp recordings in mouse spermatogenic cells, we found K(+) inwardly rectifying (K(ir)) currents that are sensitive to Ba(2+), glucose and the sulfonylureas (tolbutamide and glibenclamide) that block K(ATP) channels. The presence of these channels was confirmed using inhibitors of the ATP synthesis and K(ATP) channel activators. Furthermore, RT-PCR assays allowed us to detect transcripts for the K(ATP) subunits SUR1, SUR2, K(ir)6.1 and K(ir)6.2 in total RNA from elongated spermatids. In addition, immunoconfocal microscopy revealed the presence of these K(ATP) subunits in mouse spermatogenic cells and sperm. Notably, incubation of sperm with tolbutamide during capacitation abolished hyperpolarization and significantly decreased the percentage of AR in a dose-dependent fashion. Together, our results provide evidence for the presence of K(ATP) channels in mouse spermatogenic cells and sperm and disclose the contribution of these channels to the capacitation-associated hyperpolarization.
Collapse
Affiliation(s)
- Juan José Acevedo
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Bailey JL, Tardif S, Dubé C, Beaulieu M, Reyes-Moreno C, Lefièvre L, Leclerc P. Use of phosphoproteomics to study tyrosine kinase activity in capacitating boar sperm. Theriogenology 2005; 63:599-614. [PMID: 15626419 DOI: 10.1016/j.theriogenology.2004.09.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is generally accepted that sperm capacitation is associated with the protein kinase A-mediated appearance of tyrosine phosphoproteins, although the substrates and kinase(s) involved have not been identified. We described a Mr 32,000 tyrosine phosphoprotein, "p32", appearing in porcine sperm coincident with capacitation. We also discovered a tyrosine kinase-like enzyme in boar sperm of Mr 32,000 ("TK-32") with enhanced activity during capacitation. The present work was conducted to further characterize and to identify these capacitation-related protein(s). Fresh porcine sperm were incubated to induce capacitation then immunoprecipitation, immunoblotting and proteomic analysis revealed seven tyrosine-phosphorylated proteins aligned in the range of Mr 30,000 with different isoelectric pH values (pI). Therefore, p32 may be composed of several tyrosine phosphoproteins. Three were identified as acrosin-binding sp32 (pI 6.5), and two triosephosphate isomerase isoforms (pI 7.1 and 7.9). At present, however, proteonomic analysis has not revealed any kinase at Mr 32,000. Immunoprecipitation experiments show that p32 and TK-32 are different molecules, as TK-32 activity remains in the supernatant of the antiphosphotyrosine precipitates. Finally, in-gel renaturation and immunoblotting suggest that TK-32 is a mitogen-activated protein kinase (MAPK). The discovery of p32 and the MAPK-like TK-32 provides new insight regarding the mechanisms underlying capacitation in the pig.
Collapse
Affiliation(s)
- Janice L Bailey
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Pavillon Paul-Comtois, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4.
| | | | | | | | | | | | | |
Collapse
|
47
|
Galantino-Homer HL, Florman HM, Storey BT, Dobrinski I, Kopf GS. Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. Mol Reprod Dev 2004; 67:487-500. [PMID: 14991741 DOI: 10.1002/mrd.20034] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.
Collapse
Affiliation(s)
- Hannah L Galantino-Homer
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
48
|
Naz RK, Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation / acrosome reaction. Reprod Biol Endocrinol 2004; 2:75. [PMID: 15535886 PMCID: PMC533862 DOI: 10.1186/1477-7827-2-75] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 11/09/2004] [Indexed: 11/10/2022] Open
Abstract
Capacitation is an important physiological pre-requisite before the sperm cell can acrosome react and fertilize the oocyte. Recent reports from several laboratories have amply documented that the protein phosphorylation especially at tyrosine residues is one of the most important events that occur during capacitation. In this article, we have reviewed the data from our and other laboratories, and have constructed a heuristic model for the mechanisms and molecules involved in capacitation/acrosome reaction.
Collapse
Affiliation(s)
- Rajesh K Naz
- Division of Research, Department of Obstetrics and Gynecology, Medical College of Ohio, Toledo, Ohio, USA
| | - Preeti B Rajesh
- Division of Research, Department of Obstetrics and Gynecology, Medical College of Ohio, Toledo, Ohio, USA
| |
Collapse
|
49
|
Dubé C, Beaulieu M, Reyes-Moreno C, Guillemette C, Bailey JL. Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation. Theriogenology 2004; 62:874-86. [PMID: 15251239 DOI: 10.1016/j.theriogenology.2003.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 12/10/2003] [Indexed: 11/18/2022]
Abstract
Androhep Plus, a long-term extender (up to 7 days) and Beltsville Thawing Solution (BTS), a short-term extender (up to 3 days), are commonly used for liquid storage of porcine semen. To test the hypothesis that modifications in sperm viability, motility, chlortetracycline (CTC) fluorescence patterns, and protein tyrosine phosphorylation occur during semen storage in extenders, we compared these end points at different periods of storage in either Androhep Plus or BTS. Sperm from five boars were assessed daily over 12 days of storage (n = 5 ejaculates from different boars). Viability was not different (P < 0.05 between extenders, except on Day 2, when Androhep Plus maintained better viability. Differences in the percentage of motile (total) sperm due to extender were evident on Days 2, 4, 5, and 6, when Androhep Plus was superior to BTS (P < 0.05). The percentages of progressively motile sperm also differed, with Androhep Plus supporting higher rates on Days 2, 4, 5, 7, 8, 9, 10, and 11 (P < 0.05). The CTC fluorescence pattern distribution differed due to extender as early as Day 2; storage in Androhep Plus induced higher levels of pattern B sperm (P < 0.05) than storage in BTS. A tyrosine-phosphorylated protein of Mr 21,000 appeared after 10 days in sperm incubated in BTS, and was identified as a phospholipid hydroperoxide glutathione peroxidase. Therefore, modifications in viability, motility, CTC fluorescence patterns, and sperm protein tyrosine phosphorylation were apparent during sperm storage in extenders; these may affect the fertilizing capacity of the semen.
Collapse
Affiliation(s)
- Charlotte Dubé
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Pavillon Paul-Comtois, Université Laval, Sainte-Foy, Que., Canada G1K 7P4
| | | | | | | | | |
Collapse
|
50
|
Baker MA, Hetherington L, Ecroyd H, Roman SD, Aitken RJ. Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. J Cell Sci 2004; 117:211-22. [PMID: 14676274 DOI: 10.1242/jcs.00842] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacitation of mammalian spermatozoa involves the activation of a cAMP-mediated signal transduction pathway that drives tyrosine phosphorylation via mechanisms that are unique to this cell type. Controversy surrounds the impact of extracellular calcium on this process, with positive and negative effects being recorded in independent publications. We clearly demonstrate that the presence of calcium in the external medium decreases tyrosine phosphorylation in both human and mouse spermatozoa. Under these conditions, a rise in intracellular pH was recorded, however, this event was not responsible for the observed changes in phosphotyrosine expression. Rather, the impact of calcium on tyrosine phosphorylation in these cells was associated with an unexpected change in the intracellular availability of ATP. Thus, the ATP content of both human and mouse spermatozoa fell significantly when these cells were incubated in the presence of external calcium. Furthermore, the removal of glucose, or addition of 2-deoxyglucose, decreased ATP levels within human spermatozoon populations and induced a corresponding decline in phosphotyrosine expression. In contrast, the mitochondrial inhibitor rotenone had no effect on either ATP levels or tyrosine phosphorylation. Addition of the affinity-labeling probe 8-N3 ATP confirmed our prediction that spermatozoa have many calcium-dependent ATPases. Moreover, addition of the ATPase inhibitor thapsigargin, increased intracellular calcium levels, decreased ATP and suppressed tyrosine phosphorylation. Based on these findings, the present study indicates that extracellular calcium suppresses tyrosine phosphorylation by decreasing the availability of intracellular ATP, and not by activating tyrosine phosphatases or inhibiting tyrosine kinases as has been previously suggested.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Science, and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | | | | | | | | |
Collapse
|