1
|
Song BS, Kim JS, Kim YH, Sim BW, Yoon SB, Cha JJ, Choi SA, Yang HJ, Mun SE, Park YH, Jeong KJ, Huh JW, Lee SR, Kim SH, Kim SU, Chang KT. Induction of autophagy during in vitro maturation improves the nuclear and cytoplasmic maturation of porcine oocytes. Reprod Fertil Dev 2015; 26:974-81. [PMID: 23902659 DOI: 10.1071/rd13106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/25/2013] [Indexed: 12/16/2022] Open
Abstract
While a critical role of autophagy in mammalian early embryogenesis has been demonstrated, few studies have been conducted regarding the role of autophagy in in vitro maturation (IVM) of immature oocytes. In the present study we investigated the effect of rapamycin, a chemical autophagy inducer, on the nuclear and cytoplasmic maturation of porcine oocytes. Rapamycin treatment led to increased expression of LC3-II, an autophagy marker. Compared with the control group, as well as the 5 and 10nM rapamycin treatment groups, the rate of MII oocyte production was higher in the 1nM rapamycin treatment group, indicating improvement in nuclear maturation. In the analyses of cytoplasmic maturation, we found that the level of p34(cdc2), a cytoplasmic maturation marker, and the monospermic fertilisation rate were higher in the 1nM rapamycin treatment group than in the other groups. Moreover, the beneficial effect of 1nM rapamycin on cytoplasmic maturation of MII oocytes was further evidenced by increases in blastocyst formation rate, total cell number and cell survival. In the blastocyst embryos, anti-apoptotic Bcl-xL transcript levels were elevated in the 1nM rapamycin-treated group, whereas pro-apoptotic Bax transcript levels were decreased. Collectively, these results suggest that induction of autophagy during IVM contributes to enhancement of the nuclear and cytoplasmic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Jin Cha
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Hae-Jun Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seong-Eun Mun
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| |
Collapse
|
2
|
Lee J, Park JI, Yun JI, Lee Y, Yong H, Lee ST, Park CK, Hyun SH, Lee GS, Lee E. Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs. J Vet Sci 2015; 16:373-80. [PMID: 25797293 PMCID: PMC4588024 DOI: 10.4142/jvs.2015.16.3.373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/07/2015] [Indexed: 11/27/2022] Open
Abstract
This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blastocyst formation after PA was significantly increased by rapamycin treatment during 22-42 h and 0-42 h (46.6% and 46.5%, respectively) relative to the control (33.3%) and 0-22 h groups (38.6%) in MPCOCs. In SCNT, blastocyst formation tended to increase in MPCOCs treated with rapamycin during 0-42 h of IVM relative to untreated oocytes (20.3% vs. 14.3%, 0.05 < p < 0.1), while no improvement was observed in MGCOCs. Gene expression analysis revealed that transcript abundance of Beclin 1 and microtubule-associated protein 1 light chain 3 mRNAs was significantly increased in MPCOCs by rapamycin relative to the control. Our results demonstrated that autophagy induction by rapamycin during IVM improved developmental competence of oocytes derived from MPCOCs.
Collapse
Affiliation(s)
- Joohyeong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Saadeldin IM, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Oh HJ, Jang G, Lee BC. Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture. Reprod Fertil Dev 2012; 24:656-68. [PMID: 22697116 DOI: 10.1071/rd11118] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/30/2011] [Indexed: 12/20/2022] Open
Abstract
Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus-oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10(-6)M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4×10(-6)M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine-paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Han D, Liu XY, Jiao GZ, Liang B, He N, Gao WQ, Tan JH. Cyclin B1 turnover and the mechanism causing insensitivity of fully grown mouse oocytes to cycloheximide inhibition of meiotic resumption. Theriogenology 2012; 77:1900-10. [PMID: 22444557 DOI: 10.1016/j.theriogenology.2012.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/16/2011] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
Cyclin B1 turnover and the insensitivity of fully-grown mouse oocytes to cycloheximide (CHX) inhibition of germinal vesicle breakdown (GVBD) were examined by assaying GVBD and cyclin B1 levels after treatment of oocytes with various combinations of eCG and CHX. Whereas over 95% of oocytes underwent GVBD after culture for 24 h with CHX alone, only 10% did so after culture with CHX + eCG (P < 0.05). In addition, preculture with eCG alone had no effect, but preculture with eCG + CHX prevented GVBD during a second culture with CHX alone. Therefore, we inferred that eCG delayed GVBD long enough for CHX inhibition of protein synthesis to allow cyclin B1 to decrease below a threshold where GVBD became dependent upon its de novo synthesis. However, western blot revealed no cyclin B1 synthesis, but cyclin B1 degradation, as long as GVs were maintained intact with eCG. Regarding the function of CHX in preculture without protein synthesis to block subsequent GVBD, whereas eCG delayed GVBD for only 3 h, CHX had an ongoing effect that further postponed GVBD, thus allowing cyclin B1 to decrease below the threshold. When oocytes precultured with eCG + CHX were further cultured without eCG and CHX, cyclin B1 first decreased but then, because of the ongoing effects of CHX, increased to a level sufficient to induce GVBD. The content of P34Cdc2 was not altered under any of the culture conditions (P > 0.05). We concluded that insensitivity of mouse germinal vesicle (GV) oocytes to CHX was due to the presence of sufficient cyclin B1, and that cyclin B1 level in such oocytes was maintained by an equilibrium between synthesis and degradation.
Collapse
Affiliation(s)
- Dong Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
When removed from the follicles, during the 44 h process of in vitro maturation (IVM) fully grown porcine oocytes resume meiosis spontaneously from the late diplotene stage of the first meiotic prophase and proceed to the metaphase-II (MII) stage at which they remain arrested until fertilization. However, the resumption may start at various times causing heterogeneity in the nuclear stage and also in cytoplasmic characteristics (i.e., the activity of certain protein kinases) within a population. Those oocytes that reach the MII stage earlier than others undergo an ageing process which is detrimental for further embryo development. The synchronization of nuclear progression is possible by a transient inhibition of meiotic resumption during the first 20-22 h of IVM either by (1) the elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) or (2) suppressing the activity of the metaphase promoting factor (MPF). A protocol for each approach is described.
Collapse
Affiliation(s)
- Tamas Somfai
- National Agriculture and Food Research Organization, National Institute of Livestock and Grassland Science, 305-0901, Ibaraki, Japan.
| | | |
Collapse
|
6
|
ITO J, YOSHIDA T, KASAI Y, WAKAI T, PARYS JB, FISSORE RA, KASHIWAZAKI N. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 duringin vitromaturation of porcine oocytes. Anim Sci J 2010; 81:34-41. [DOI: 10.1111/j.1740-0929.2009.00699.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Pelech S, Jelinkova L, Susor A, Zhang H, Shi X, Pavlok A, Kubelka M, Kovarova H. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. J Proteome Res 2008; 7:2860-71. [DOI: 10.1021/pr800082a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven Pelech
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Lucie Jelinkova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Andrej Susor
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hong Zhang
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Xiaoqing Shi
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Antonin Pavlok
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Michal Kubelka
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hana Kovarova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| |
Collapse
|
8
|
Jelínková L, Kubelka M. Neither Aurora B Activity nor Histone H3 Phosphorylation Is Essential for Chromosome Condensation During Meiotic Maturation of Porcine Oocytes1. Biol Reprod 2006; 74:905-12. [PMID: 16452462 DOI: 10.1095/biolreprod.105.047886] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 microM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 microg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.
Collapse
Affiliation(s)
- Lucie Jelínková
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
9
|
Schoevers EJ, Bevers MM, Roelen BAJ, Colenbrander B. Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 2005; 63:1111-30. [PMID: 15710197 DOI: 10.1016/j.theriogenology.2004.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/04/2004] [Accepted: 06/06/2004] [Indexed: 11/19/2022]
Abstract
The effect of roscovitine exposure prior to IVM was studied on cumulus expansion, on changes of cumulus-oocyte contacts and on nuclear and cytoplasmic maturation of sow oocytes. It was hypothesized that delayed nuclear maturation and prolonged contact with cumulus cells allows prolonged cytoplasmic differentiation and therefore improves oocyte developmental potential. Cumulus-oocyte complexes (COCs) were exposed for 22 h or 44 h to 0, 25 or 50 microM of roscovitine and subsequently cultured for 22, 29 or 44 h without roscovitine. COCs were examined for cumulus expansion and oocytes for nuclear status and dynamics of transzonal microfilaments. Oocyte developmental potential was assessed by blastocyst formation after IVF. Fifty muM of roscovitine inhibited cumulus expansion for the first 22 h of culture, and maintained oocytes in meiotic arrest for 44 h. Roscovitine treatment during 22 h prior to culture for 44 h without roscovitine did not increase embryo development, but oocytes cultured for 66 h without roscovitine had reduced blastocyst formation. Oocytes cultured for 29 h after roscovitine exposure showed reduced blastocyst rates compared with their counterparts cultured for 44 h. Roscovitine treatment during 44 h prior to culture for 22 h or 44 h without roscovitine reduced embryo development. Transzonal microfilaments were reduced after culture with roscovitine, and disappeared during culture without roscovitine. It is concluded that prolonged contact with cumulus cells does not improve oocyte developmental potential. Furthermore, it is suggested that nuclear and cytoplasmic maturation in vitro cannot be seen as two independent processes.
Collapse
Affiliation(s)
- E J Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Fan HY, Li MY, Tong C, Chen DY, Xia GL, Song XF, Schatten H, Sun QY. Inhibitory effects of cAMP and protein kinase C on meiotic maturation and MAP kinase phosphorylation in porcine oocytes. Mol Reprod Dev 2002; 63:480-7. [PMID: 12412051 DOI: 10.1002/mrd.10194] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kubelka M, Anger M, Kalous J, Schultz RM, Motlík J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev 2002; 63:110-8. [PMID: 12211068 DOI: 10.1002/mrd.10176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases (cdk), is shown to inhibit germinal vesicle breakdown (GVBD) in pig oocytes. Oocytes treated with 100 microM BL I were arrested in the germinal vesicle (GV)-stage and displayed low activity of cdc2 kinase and MAP kinase. Nevertheless, chromosome condensation occurred and highly condensed bivalents were seen within an intact GV after a 24-hr culture in the presence of BL I. The inhibitory effect of BL I on MAP kinase activation during culture was likely mediated through a cdk-dependent pathway, since MAP kinase activity present in extracts derived from metaphase II eggs was not inhibited by BL I. The block of GVBD could be released by treating oocytes with okadaic acid (OA), an inhibitor of type 1 and 2A phosphatases; 82% of the oocytes treated with the combination of OA/BL I underwent GVBD, and MAP kinase became activated, while cdc2 kinase remained inhibited. These results suggest that both chromosome condensation and GVBD could occur without activation of cdc2 kinase, whereas an increase in MAP kinase activity may be a requisite for GVBD in pig oocytes in conditions when cdc2 kinase activation is blocked by BL I.
Collapse
Affiliation(s)
- Michal Kubelka
- Department of Physiology of Reproduction, Institute of Animal Physiology and Genetics, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
12
|
Wu GM, Sun QY, Mao J, Lai L, McCauley TC, Park KW, Prather RS, Didion BA, Day BN. High developmental competence of pig oocytes after meiotic inhibition with a specific M-phase promoting factor kinase inhibitor, butyrolactone I. Biol Reprod 2002; 67:170-7. [PMID: 12080014 DOI: 10.1095/biolreprod67.1.170] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Butyrolactone I specifically inhibits M-phase promoting factor activation and prevents the resumption of meiosis. These experiments were conducted to examine effects of butyrolactone I on pig oocytes in a serum-free maturation system. The first experiment was conducted to determine the effect of butyrolactone I (0-100 microM) on nuclear maturation. At concentrations of > or =12.5 microM, germinal vesicle breakdown was prevented in >90% of the oocytes after 24 h of culture. In the second experiment, the kinetics of in vitro maturation of butyrolactone I-treated oocytes was investigated. Oocytes were treated with 0 or 12.5 microM butyrolactone I and FSH for 20 h and then cultured with LH in the absence of butyrolactone I for another 24 h. Fewer butyrolactone I-treated oocytes reached MII stage at 36 h compared with controls (5.8% vs. 62.4%, P < 0.01). However, by 44 h, 83.4% of butyrolactone I-treated oocytes reached MII compared with 88.6% of controls. In the third experiment, butyrolactone I-treated oocytes were fertilized and cultured in vitro. No differences (P > 0.05) were found between controls and treated groups in cleavage rate, blastocyst rate, or mean number of cells per blastocyst. Effects of butyrolactone I on mitogen-activated protein kinase activation and localization of microfilaments and active mitochondria were examined by Western blot analysis and laser scanning confocal microscopy, respectively. The results suggested that although butyrolactone I reversibly inhibited germinal vesicle breakdown and mitogen-activated protein kinase activation, it did not affect mitochondrial and microfilament dynamics. Butyrolactone I is a potent inhibitor of nuclear maturation of porcine oocytes, and the inhibition is fully reversible.
Collapse
Affiliation(s)
- Guang-Ming Wu
- Department of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tomek W, Melo Sterza FA, Kubelka M, Wollenhaupt K, Torner H, Anger M, Kanitz W. Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol Reprod 2002; 66:1274-82. [PMID: 11967187 DOI: 10.1095/biolreprod66.5.1274] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.
Collapse
Affiliation(s)
- W Tomek
- Research Institute for the Biology of Farm Animals, 18146 Dummerstorf-Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Faerge I, Mayes M, Hyttel P, Sirard MA. Nuclear ultrastructure in bovine oocytes after inhibition of meiosis by chemical and biological inhibitors. Mol Reprod Dev 2001; 59:459-67. [PMID: 11468783 DOI: 10.1002/mrd.1053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Various components of the ovarian follicle as well as different chemicals can suppress the resumption of meiosis in cumulus-oocyte complexes (COCs). In this study the nuclear ultrastructure of bovine COCs was assessed after 8 h of meiotic inhibition with 50 microM roscovitine (ROSC), 50 microM butyrolactone (BL-I), 2 mM 6-DMAP, 2 microM cycloheximide (CX), or a theca cell monolayer (TC). COCs were recovered according to standard in vitro methods, cultured in a simple and defined medium, and processed for transmission electron microscopy. Control COCs were processed before onset of culture and multiple oocytes were evaluated for each treatment. In all groups, the oocyte nucleus presented a dense fibrillar nucleolus consisting of a fibrillar sphere with a fibrillar center. In TC and 6-DMAP inhibited COCs condensed chromatin adhered to the nucleolus while in all other groups the perinuclear chromatin was separated from the nucleolus. In ROSC inhibited COCs, the nuclear envelope presented only slight small amplitude undulation. The BL-I-inhibited COCs presented an intermediate level of low amplitude undulation of the NE. In CX, 6-DMAP, and TC inhibited COCs the nuclear envelope presented extensively low amplitude undulations. In ROSC inhibited COCs, electron-dense granules formed ring-shaped structures. In some of the BL-I inhibited COCs multiple stellate crystal-like structures were found, and in these COCs the nuclear envelope and the perinuclear cisternae appeared less distinct than in the other BL-I inhibited COCs. In 6-DMAP inhibited COCs interchromatin-like granule clusters were present. In conclusion, the oocyte nuclei in all COCs presented a dense fibrillar nucleolus resembling that in control COCs. However, variations were observed in 1) the nuclear envelope morphology; 2) the chromatin location in relation to the nucleolus; and 3) the presence of different populations of intranuclear granules. Although all treatments inhibited oocyte nucleus breakdown, the mechanisms underlying these effects are different and require further characterization. Mol. Reprod. Dev. 59: 459-467, 2001.
Collapse
Affiliation(s)
- I Faerge
- Department of Anatomy, Royal Veterinary and Agricultural University, Groennegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
15
|
Sun QY, Lai L, Bonk A, Prather RS, Schatten H. Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes: effects of gonadotropins, cumulus cells, follicular size, and protein synthesis inhibition. Mol Reprod Dev 2001; 59:192-8. [PMID: 11389554 DOI: 10.1002/mrd.1022] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Morphological and biochemical changes indicative of cytoplasmic maturation in relation to nuclear maturation progression and early embryo developmental potential was studied. Fluorescently labeled microfilaments and cortical granules were visualized by using laser scanning confocal microscopy. The mitogen-activated protein (MAP) kinase phosphorylation and cyclin B1 levels were revealed by Western blot. With the maturation of oocytes, cortical granules and microfilaments were localized at the cell cortex. A cortical granule-free domain (CGFD) and an actin-thickening area were observed over both the MII spindle of a mature oocyte and chromosomes of a nocodazole-treated oocyte, suggesting that chromosomes, but not the spindle, determined the localization of CGFD and actin-thickening area. In oocytes that are incompetent to resume meiosis, as indicated by the failure of germinal vesicle breakdown (GVBD), peripheral localization of cortical granules and microfilaments, phosphorylation of MAP kinase and synthesis of cyclin B1 did not occur after 44 hr in vitro. These cytoplasmic changes were also blocked when GVBD of meiotically competent oocytes was inhibited by cycloheximide. Culture of oocytes in a chemically defined medium showed that biological factors such as gonadotropins, cumulus cells and follicle size affected both nuclear and cytoplasmic maturation as well as embryo developmental potential. Absence of gonadotropins or removal of cumulus cells alone did not significantly influence GVBD or cyclin B1 levels, but decreased the final maturation and developmental ability of oocytes. A combination of gonadotropin absence and cumulus removal decreased GVBD, MAP kinase phosphorylation and embryo development. A high proportion of oocytes derived from small follicles were able to resume meiosis, synthesize cyclin B(1), phosphorylate MAP kinase and translocate CGs, but their maturation and embryo developmental ability were limited. Removal of cumulus cells from small follicle-derived oocytes severely affected their ability to undergo cytoplasmic and nuclear maturation.
Collapse
Affiliation(s)
- Q Y Sun
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
16
|
Torner H, Kubelka M, Heleil B, Tomek W, Aim H, Kuzmina T, Guiard V. Dynamics of meiosis and protein kinase activities in bovine oocytes correlated to prolactin treatment and follicle size. Theriogenology 2001; 55:885-99. [PMID: 11291912 DOI: 10.1016/s0093-691x(01)00451-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oocyte developmental competence depends on the size of the original follicle and is affected by compounds like prolactin. We wished to investigate nuclear and cytoplasmic maturation of bovine oocytes correlated to their origin and response to prolactin treatment, by monitoring at frequent intervals meiotic configuration of chromosomes and activity of histone H1 and MAP-kinase. Bovine ovaries were obtained from a slaughterhouse and oocytes were recovered by follicle isolation. Oocytes (n = 1,397) with a compact cumulus were selected from small (2 to 3 mm) and large (4 to 5 mm in diameter) follicles and cultured up to 28 h in TCM 199+20% bull serum with or without 50 ng/mL bovine prolactin. Four groups of oocytes were formed: originating from small or large follicles, and treated or not treated with prolactin. At the scheduled time intervals for in vitro maturation, cumulus oocyte complexes from the 4 groups were randomly selected and the oocytes were analyzed for histone H1 and MAP-kinase, and for chromatin configuration. The first meiotic division took longer to complete in oocytes from large follicles (P < 0.01). Under the influence of prolactin the meiosis was prolonged in oocytes both from small and large follicles (P < 0.05). Histone H1 and MAP-kinases started to be activated at approximately the same time, around 6 h after beginning maturation. But after this time, significantly lower levels of both kinase activities were found in oocytes treated with prolactin, especially those treated during Meiosis I (P < 0.05). Our results indicate a correlation of chromatin configuration and histone H1/MAP-kinase activities.
Collapse
Affiliation(s)
- H Torner
- Department of Reproductive Biology, Research Institute for the Biology of Farm Animals, Dummerstorf-Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yamashita M, Mita K, Yoshida N, Kondo T. Molecular mechanisms of the initiation of oocyte maturation: general and species-specific aspects. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:115-29. [PMID: 10740820 DOI: 10.1007/978-1-4615-4253-7_11] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stimulated by maturation-inducing hormone secreted from follicle cells surrounding the oocytes, fully-grown oocytes mature and become fertilisable. During maturation, immature oocytes resume meiosis arrested at the first prophase and proceed to the first or second metaphase at which they are naturally inseminated. Paying special attention to general and species-specific aspects, we summarise the mechanisms regulating the initial phase of oocyte maturation, from the reception of hormonal signals on the oocyte surface to activation of the maturation-promoting factor in the cytoplasm, in amphibians, fishes, mammals and marine invertebrates.
Collapse
Affiliation(s)
- M Yamashita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
The meiotic division in oocytes is arrested in the G2 phase of the cell cycle. Resumption of meiosis, also known as oocyte maturation, entails a G2 to M transition. At the G2-M boundary, maturation promoting factor (MPF) activation is usually induced via several ways, including tyrosine dephosphorylation of p34(cdc2) and synthesis of cyclin B according to cell type and species. Previous studies in our laboratory demonstrated that glucocorticoids directly inhibit the meiotic maturation of pig oocytes in vitro. The aim of this study was therefore to investigate the influence of glucocorticoids on the expression of p34(cdc2) and cyclin B1 in resumption of meiosis of pig oocytes. We detected the relative levels and association of p34(cdc2) and cyclin B1. Isolated cumulus-enclosed oocytes were cultured in Waymouth MB752/1 medium supplemented with sodium pyruvate (50 microgram/ml), LH (0.5 microgram/ml), FSH (0.5 microgram/ml), and estradiol-17beta (1 microgram/ml) in the presence or absence of dexamethasone (DEX) for 24 hr; they then were cultured without hormonal supplements in the presence or absence of DEX for an additional 24 hr. We found that cyclin B1, as well as p34(cdc2), was already present in fully grown G2-arrested pig oocytes when removed from the follicle. In these oocytes, cyclin B1 and p34(cdc2) were already associated in complex. Treatment with DEX at concentrations of 1 microgram/ml or above decreased the level of cyclin B1, but had no effect on the level of p34(cdc2). The exposure of oocytes to DEX also decreased the amount of complexed p34(cdc2)-cyclin B1. These findings suggest that the inhibitory action of DEX on meiotic maturation could be due, at least in part, to the reduced amount of p34(cdc2)-cyclin B1 complex.
Collapse
Affiliation(s)
- W Y Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Taiwan, Republic of China
| | | | | |
Collapse
|
19
|
|
20
|
Tatemoto H, Terada T. Involvement of cumulus cells stimulated by FSH in chromatin condensation and the activation of maturation-promoting factor in bovine oocytes. Theriogenology 1998; 49:1007-20. [PMID: 10732108 DOI: 10.1016/s0093-691x(98)00049-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The effects of FSH-stimulated cumulus cells on the regulatory mechanisms of chromatin condensation and maturation-promoting factor (MPF) activation around the time of germinal vesicle breakdown (GVBD) in bovine oocytes were examined. Chromatin condensation occurred in oocytes arrested at the germinal vesicle (GV) stage by protein synthesis inhibitor, cycloheximide, but this condensation was blocked by FSH-stimulated cumulus cells. However, treatment with cyclic AMP (cAMP)-dependent protein kinase inhibitor, H-8, dramatically increased the proportion of oocytes possessing GVs with condensed bivalents. Under the condition of inhibited protein synthesis, the phosphorylation form of p34cdc2 kinase was not changed due to chromatin condensation, although the activity of histone H1 kinase was significantly increased compared with that of oocytes possessing GVs with filamentous bivalents. The cycloheximide-dependent GVBD block was overcome by okadaic acid (OA) in 48 and 13% of the oocytes in the absence and presence of FSH, respectively. An initial 6-h culture period critical for protein synthesis was necessary for OA to counteract the inhibitory effect exerted by cycloheximide on the induction of GVBD and activation of histone H1 kinase in the absence of FSH, whereas this first culture period was prolonged for 2 h in the presence of FSH. Furthermore, even in FSH-stimulated oocytes, H-8 facilitated an OA-counteracted overcome of the cycloheximide-dependent GVBD block after 2 h of initial culture for protein synthesis. From these results, it is concluded that cAMP-dependent protein kinase activity regulated by cumulus cells following FSH-stimulation requests plays a role in the complex mechanism of chromatin condensation and MPF activation leading to meiotic resumption in bovine oocytes.
Collapse
Affiliation(s)
- H Tatemoto
- Department of Bioresources, Hiroshima Prefectural University, Shobara, Japan
| | | |
Collapse
|
21
|
Motlik J, Pavlok A, Kubelka M, Kalous J, Kalab P. Interplay between CDC2 kinase and MAP kinase pathway during maturation of mammalian oocytes. Theriogenology 1998; 49:461-9. [PMID: 10732027 DOI: 10.1016/s0093-691x(97)00418-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two principal kinases, p34cdc2 kinase and MAP kinase play a pivotal role in maturation of mammalian oocytes. In the porcine and bovine oocytes both kinases are activated around the time of germinal vesicle breakdown (GVBD). Butyrolactone I (BL I), a specific inhibitor of cdk kinases, prevents effectively and reversibly resumption of meiosis in the porcine and bovine oocytes. Neither p34cdc2 kinase nor MAP kinase are activated in oocytes inhibited in the GV stage. The bovine oocytes maintained for 48 h in the medium supplemented with BL I, progress subsequently to metaphase II in 91%, their cumuli expand optimally and after in vitro fertilization they possess two pronuclei. When the cdc2 kinase is blocked in the porcine oocytes by BL I, MAP kinase, activated by okadaic acid treatment, is able to substitute cdc2 kinase and induce GVBD. The histone H1 kinase activity sharply decreases in the metaphase II oocytes treated by BL I and one or two female pronuclei are formed. These data indicate that BL I is a useful tool either for the two step in vitro culture of mammalian oocytes or for their activation in nuclear transfer experiments.
Collapse
Affiliation(s)
- J Motlik
- Institute of Animal Physiology and Genetics, Academy of Sciences of Czech Republic, Libechov, Czech Republic
| | | | | | | | | |
Collapse
|
22
|
Wu B, Ignotz GG, Currie WB, Yang X. Temporal distinctions in the synthesis and accumulation of proteins by oocytes and cumulus cells during maturation in vitro of bovine oocytes. Mol Reprod Dev 1996; 45:560-5. [PMID: 8956294 DOI: 10.1002/(sici)1098-2795(199612)45:4<560::aid-mrd18>3.0.co;2-#] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Successful in vitro maturation (IVM) of bovine oocytes requires continual and/or episodic protein synthesis by cumulus-oocyte complexes. This study was designed to expose time-dependent changes in protein synthesis and accumulation by bovine oocytes and cumulus cells during routine IVM. Silver staining after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated little if any change in protein species present or their relative contents in oocytes during IVM; one notable exception, however, was the gradual accumulation of a 39-kDa polypeptide between 4-24 hr of maturation culture. Cumulus cells, on the other hand, exhibited no qualitative differences during the period examined, but total protein content did increase during IVM. Metabolic labeling with [35S]-methionine, however, demonstrated changes in protein synthesis, both quantitative and qualitative, by both cell types. Oocytes exhibited a steady or slightly increasing rate of synthesis during the first 12 hr of IVM; thereafter, protein synthesis declined to about 10% of the initial rate by 40 hr in culture. In contrast, protein synthesis in cumulus cells was relatively constant during the first 24 hr. Of greater interest is the demonstration that the synthesis of at least seven oocyte-specific and five cumulus-specific proteins was stage-dependent during maturation. These results indicate that maturation of bovine oocytes is associated with the synthesis of several distinct and temporally expressed proteins which may play roles in the highly ordered sequence of events that culminates in oocyte maturation.
Collapse
Affiliation(s)
- B Wu
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
23
|
Tatemoto H, Terada T. Involvement of cyclic AMP-dependent protein kinase in chromatin condensation before germinal vesicle breakdown in bovine oocytes. Anim Reprod Sci 1996. [DOI: 10.1016/0378-4320(96)01541-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Motlík J, Sutovský P, Kalous J, Kubelka M, Moos J, Schultz RM. Co-culture with pig membrana granulosa cells modulates the activity of cdc2 and MAP kinase in maturing cattle oocytes. ZYGOTE 1996; 4:247-56. [PMID: 9117285 DOI: 10.1017/s0967199400003166] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bovine cumulus-enclosed oocytes, initially cultured up to diakinesis (8 h of initial culture) or metaphase I (12 h of initial culture), were subsequently co-cultured for 6 h in contact with pig membrana granulosa (PMG) cells and then assayed for histone H1 and MAP kinase activities. In addition, the phosphorylation state of ERK 1,2 proteins was determined by Western blotting. The alterations in nuclear envelope breakdown, meiotic spindle formation and the patterns of chromosome condensation were analysed by immunofluorescence and transmission electron microscopy. The diakinesis-stage oocytes (initially cultured for 8 h) already possessed high histone H1 kinase and MAP kinase activities that were correlated with condensed and partially individualised chromosomes. The ERK 1 and most ERK 2 proteins were partly phosphorylated. Following the 6 h co-culture of these oocytes with PMG a rapid decrease in MAP kinase activity and a slower decrease in histone H1 kinase occurred, as well as ERK 1 and ERK 2 dephosphorylation. Both kinase activities and ERK 1,2 phosphorylation were fully restored following the release of the oocytes from co-culture and a subsequent culture in the absence of PMG. Moreover, the clumped bivalents were reindividualised and 56% of these oocytes reached metaphase II after 20 h of culture without PMG. The metaphase I oocytes, initially cultured for 12 h, displayed a fusiform meiotic spindle and a metaphase array of chromosomal bivalents, accompanied by high levels of both histone H1 and MAP kinase activity. Co-culture of MI oocytes with PMG abolished the activity of both kinases and caused the dephosphorylation of ERK 1 and ERK 2. Furthermore, the spindle microtubules were depolymerised and the chromosomal bivalents clumped into a single mass. Neither of the protein kinase activities nor the meiotic spindle were restored following subsequent culture in the absence of PMG for up to 20 h. These observations indicate that under in vitro conditions membrana granulosa cells can cause a prompt decrease in histone H1 and MAP kinase activities, and metaphase I oocytes. While these events are fully reversible in late diakinesis oocytes, metaphase I oocytes did not complete maturation after release from co-culture.
Collapse
Affiliation(s)
- J Motlík
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libĕchov, Czech Republic.
| | | | | | | | | | | |
Collapse
|
25
|
Inoue M, Naito K, Nakayama T, Sato E. Mitogen-activated protein kinase activity and microtubule organisation are altered by protein synthesis inhibition in maturing porcine oocytes. ZYGOTE 1996; 4:191-8. [PMID: 9117279 DOI: 10.1017/s0967199400003105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously we have shown that mitogen-activated protein (MAP) kinase activity abruptly increases at the first metaphase (M1) and remains significantly higher than that at the germinal vesicle (GV) stage until the second metaphase (M2) in porcine oocytes cultured in vitro. The present paper describes how the mechanism of the blockage of meiotic maturation by protein synthesis inhibition involves MAP kinase regulation. Cycloheximide arrested both germinal vesicle breakdown (GVBD) and the normal transition from M1 to M2. MAP kinase activation was also reduced in these maturation-inhibited oocytes. By using immunofluorescence microscopy with the monoclonal antibody raised against rat alpha-tubulin, we showed that cycloheximide caused morphological abnormality in a spindle at M1, but not at M2. All these results indicate that in porcine oocytes: (1) GV blockage by protein synthesis inhibition involves the suppression of both histone H1 kinase and MAP kinase activation, (2) during the transition from M1 to M2, maintenance of a normal metaphasic spindle and high MAP kinase activity require protein synthesis, and (3) once the M2 cytoskeletal structures have been completed, and/or after the 'critical period', cytostatic factor activity is independent of protein synthesis.
Collapse
Affiliation(s)
- M Inoue
- Department of Reproductive and Developmental Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|