1
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
2
|
Ebert B, Kisiela M, Maser E. Human DCXR - another ‘moonlighting protein’ involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility? Biol Rev Camb Philos Soc 2014; 90:254-78. [DOI: 10.1111/brv.12108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 02/21/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein; Brunswiker Str. 10 24105 Kiel Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein; Brunswiker Str. 10 24105 Kiel Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein; Brunswiker Str. 10 24105 Kiel Germany
| |
Collapse
|
3
|
Brandenburger T, Strehler EE, Filoteo AG, Caride AJ, Aumüller G, Post H, Schwarz A, Wilhelm B. Switch of PMCA4 splice variants in bovine epididymis results in altered isoform expression during functional sperm maturation. J Biol Chem 2011; 286:7938-7946. [PMID: 21187283 PMCID: PMC3048680 DOI: 10.1074/jbc.m110.142836] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/02/2010] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) and Ca(2+)-dependent signals are essential for sperm maturation and fertilization. In mouse sperm the plasma membrane Ca(2+)-ATPase (PMCA) isoform 4 plays a crucial role in Ca(2+) transport. The two major splice variants of PMCA4 are PMCA4a and PMCA4b. PMCA4a differs from PMCA4b in the mechanism of calmodulin binding and activation. PMCA4a shows a much higher basal activity and is more effective than PMCA4b in returning Ca(2+) to resting levels. Knock-out mice carrying a PMCA4-null mutation are infertile because their sperm cannot achieve a hyperactivated state of motility. As sperm reach functional maturity during their transit through the epididymis, the expression of PMCA4a and 4b was assessed in bull testis and epididymis. Quantitative PCR revealed that PMCA4b is the major splice variant in testis, caput, and corpus epididymidis. In contrast, PMCA4a is the major splice variant in cauda epididymidis, whereas sperm are transcriptionally silent. Immunohistochemical staining using a new antibody against bovine PMCA4a located the PMCA4a to the apical membrane of the epithelium of cauda epididymidis, whereas testis, caput, and corpus epididymidis were negative. Western blotting of testis, epididymis, and sperm isolated from caput and cauda epididymidis showed a much higher level of PMCA4a in cauda epididymidis and sperm from cauda epididymidis compared with testis membranes and sperm from caput epididymidis. These findings suggest that PMCA4a is transferred to bovine sperm membranes in cauda epididymidis. This isoform switch may facilitate a higher calcium turnover in sperm necessary to traverse the female genital tract.
Collapse
Affiliation(s)
- Timo Brandenburger
- From the Department of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany,; the Department of Anesthesiology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany, and.
| | - Emanuel E Strehler
- the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Adelaida G Filoteo
- the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Ariel J Caride
- the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Gerhard Aumüller
- From the Department of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany
| | - Heidi Post
- From the Department of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany
| | - Anja Schwarz
- From the Department of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany
| | - Beate Wilhelm
- From the Department of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
4
|
Caballero J, Frenette G, Sullivan R. Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int 2010; 2011:757194. [PMID: 20981306 PMCID: PMC2958493 DOI: 10.4061/2011/757194] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/03/2010] [Indexed: 12/17/2022] Open
Abstract
After spermatogenesis, testicular spermatozoa are not able to fertilize an oocyte, they must undergo sequential maturational processes. Part of these essential processes occurs during the transit of the spermatozoa through the male reproductive tract. Since the sperm become silent in terms of translation and transcription at the testicular level, all the maturational changes that take place on them are dependent on the interaction of spermatozoa with epididymal and accessory gland fluids. During the last decades, reproductive biotechnologies applied to bovine species have advanced significantly. The knowledge of the bull reproductive physiology is really important for the improvement of these techniques and the development of new ones. This paper focuses on the importance of the sperm interaction with the male reproductive fluids to acquire the fertilizing ability, with special attention to the role of the membranous vesicles present in those fluids and the recent mechanisms of protein acquisition during sperm maturation.
Collapse
Affiliation(s)
- Julieta Caballero
- Département d'Obstétrique-Gynéologie, Faculté de Médecine, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ), Université Laval, 2705 Boulevard Laurier, T1-49, Quebec City, QC, Canada G1V 4G2
| | | | | |
Collapse
|
5
|
Frenette G, Girouard J, D'Amours O, Allard N, Tessier L, Sullivan R. Characterization of Two Distinct Populations of Epididymosomes Collected in the Intraluminal Compartment of the Bovine Cauda Epididymis1. Biol Reprod 2010; 83:473-80. [DOI: 10.1095/biolreprod.109.082438] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
6
|
Girouard J, Frenette G, Sullivan R. Seminal Plasma Proteins Regulate the Association of Lipids and Proteins Within Detergent-Resistant Membrane Domains of Bovine Spermatozoa1. Biol Reprod 2008; 78:921-31. [DOI: 10.1095/biolreprod.107.066514] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
7
|
Frenette G, Lessard C, Sullivan R. Selected proteins of "prostasome-like particles" from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod 2002; 67:308-13. [PMID: 12080033 DOI: 10.1095/biolreprod67.1.308] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During epididymal transit, spermatozoa acquire selected proteins secreted by epithelial cells. We recently showed that P25b, a protein with predictive properties for bull fertility, is transferred from prostasome-like particles present in the cauda epididymal fluid (PLPCd) to the sperm surface. To further characterize the interactions between PLPCd and epididymal spermatozoa, PLPCd were prepared by ultracentrifugation of bull epididymal fluid, then surface-exposed proteins were biotinylated and coincubated in different conditions with caput epididymal spermatozoa. Western blot analysis revealed that only selected proteins are transferred from PLPCd to spermatozoa. MALDI-TOF analysis revealed that these transferred proteins are closely related. The pattern of distribution of the PLPCd transferred varied from one sperm cell to the other, with a bias toward the acrosomal cap. This transfer appeared to be temperature sensitive, being more efficient at 32-37 degrees C than at 22 degrees C. Transfer of PLPCd proteins to spermatozoa was also pH dependant, the optimal pH for transfer being 6.0-6.5. The effect of divalent cations on PLPCd protein transfer to caput spermatozoa was investigated. Whereas Mg(2+) and Ca(2+) have no effect on the amount of proteins remaining associated with spermatozoa following coincubation, Zn(2+) had a beneficial effect. These results are discussed with regard to the function of PLPCd in epididymal sperm maturation.
Collapse
Affiliation(s)
- Gilles Frenette
- Centre de Recherche en Biologie de la Reproduction and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Ste-Foy, Quebec, PQ, Canada G1V 4G2
| | | | | |
Collapse
|
8
|
Gaudreault C, Lé garé C, Bérubé B, Sullivan R. Hamster sperm protein, p26h: a member of the short-chain dehydrogenase/reductase superfamily. Biol Reprod 1999; 61:264-73. [PMID: 10377058 DOI: 10.1095/biolreprod61.1.264] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
For successful fertilization to occur, mammalian spermatozoa must undergo a series of modifications in order to reach and penetrate the oocyte. Some of these modifications occur during passage through the epididymis, the site where spermatozoa acquire their fertilizing ability. We have previously described hamster sperm protein, P26h, which is acquired by spermatozoa during epididymal transit, and have proposed that this protein is involved in sperm-egg binding. In the present study, we report the cloning and characterization of the full-length cDNA encoding hamster P26h. A database search using the predicted hamster P26h amino acid sequence revealed 85% identity with mouse AP27 protein and porcine carbonyl reductase, members of the short-chain dehydrogenase/reductase (SDR) family of proteins. Northern blot analysis revealed a major P26h 1-kilobase transcript in the testis. No signal was detected in other somatic tissues of the hamster. In situ hybridization experiments revealed that the P26h gene was predominantly transcribed in seminiferous tubules of the testis and at a lower level in the corpus epididymidis. The identity of the cloned P26h was confirmed by immunoprecipitating in vitro-translated P26h using polyclonal antiserum raised against purified hamster sperm P26h. Taken together, these results identify P26h as a new member of the SDR family of proteins involved in the processes of mammalian gamete interactions.
Collapse
Affiliation(s)
- C Gaudreault
- Centre de Recherche en Biologie de la Reproduction and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Ste-Foy, Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
9
|
|
10
|
Coutu L, Des Rosiers P, Sullivan R. Purification of P26h: a hamster sperm protein. Biochem Cell Biol 1996; 74:227-31. [PMID: 9213431 DOI: 10.1139/o96-023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
P26h is a 26 kDa glycoprotein, located on the acrosome cap of hamster spermatozoa, involved in the species specificity of gamete interaction. We have purified this protein from hamster spermatozoa collected from the distal cauda region of the epididymis. Its purification was realized following a three-step procedure: detergent extraction, ion-exchange chromatography, and chromatofocusing. Protein partitioning using Triton X-114 (the first step) showed a ratio of 5:1 between the resulting aqueous and detergent phase. P26h was found almost exclusively in the aqueous phase where it represented about 10-12% of the total protein content. When the desalted aqueous phase was loaded on a carboxymethyl column for cation-exchange chromatography, about 80% of the proteins did not bind to the matrix and were eliminated. P26h was eluted from the column with a linear gradient of salt. At this point, P26h had a rate of purification estimated at 45-55%; three other major proteins of <21, 45, and 63 kDa remained in the sample. These undesired proteins were eliminated by submitting these samples to chromatofocusing using a PBE 94 polybuffer exchanger column. Indeed, P26h was collected almost in the dead volume of the column while the other proteins were eluted much later. Two-dimensional gel electrophoresis and Western blotting were performed to determine the purity of P26h. Only one major spot was detected, confirming the purity of P26h. Usefulness of this purified sperm antigen in the understanding of the physiology of mammalian fertilization is discussed.
Collapse
Affiliation(s)
- L Coutu
- Department of Obstetrics and Gynecology, University Laval, Ste-Foy, Quebec, Canada
| | | | | |
Collapse
|