1
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
3
|
Jiang Y, Chen L, Taylor RN, Li C, Zhou X. Physiological and pathological implications of retinoid action in the endometrium. J Endocrinol 2018; 236:R169-R188. [PMID: 29298821 DOI: 10.1530/joe-17-0544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023]
Abstract
Retinol (vitamin A) and its derivatives, collectively known as retinoids, are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis and cell proliferation and differentiation. Despite the fact that most events in the endometrium are predominantly regulated by steroid hormones (estrogens and progesterone), accumulating evidence shows that retinoid signaling is also involved in the development and maintenance of the endometrium, stromal decidualization and blastocyst implantation. Moreover, aberrant retinoid metabolism seems to be a critical factor in the development of endometriosis, a common gynecological disease, which affects up to 10% of reproductive age women and is characterized by the ectopic localization of endometrial-like tissue in the pelvic cavity. This review summarizes recent advances in research on the mechanisms and molecular actions of retinoids in normal endometrial development and physiological function. The potential roles of abnormal retinoid signaling in endometriosis are also discussed. The objectives are to identify limitations in current knowledge regarding the molecular actions of retinoids in endometrial biology and to stimulate new investigations toward the development potential therapeutics to ameliorate or prevent endometriosis symptoms.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Robert N Taylor
- Departments of Obstetrics and Gynecology and Molecular Medicine and Translational SciencesWake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chunjin Li
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Xu Zhou
- College of Animal SciencesJilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Retinoic acid signaling determines the fate of uterine stroma in the mouse Müllerian duct. Proc Natl Acad Sci U S A 2016; 113:14354-14359. [PMID: 27911779 DOI: 10.1073/pnas.1608808113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Müllerian duct develops into the oviduct, uterus, and vagina, all of which are quite distinct in their morphology and function. The epithelial fate of these female reproductive organs in developing mice is determined by factors secreted from the stroma; however, how stromal differentiation occurs in the female reproductive organs derived from the Müllerian duct is still unclear. In the present study, roles of retinoic acid (RA) signaling in developing female reproductive tracts were investigated. Retinol dehydrogenase 10 (RDH10) and aldehyde dehydrogenase family 1 subfamily A2 (ALDH1A2) mRNAs and proteins and transactivation activity of endogenous RA were found in the stroma of proximal Müllerian ducts and gradually decreased from the proximal to caudal regions in fetal mice. In organ-cultured Müllerian ducts, retinaldehyde or RA treatment induced uterine epithelial differentiation, defined as a layer of columnar epithelial cells negative for oviductal and vaginal epithelial markers. In contrast, inhibition of RA receptor (RAR) signaling induced vaginal epithelial differentiation, characterized as vaginal epithelial marker genes-positive stratified epithelium. Grafting experiments of the organ-cultured Müllerian duct revealed irreversible epithelial fate determination. Although RAR did not directly bind to the homeobox A10 (Hoxa10) promoter region, RA-RAR signaling stimulated Hoxa10 expression. Thus, RA-RAR signaling in the Müllerian duct determines the fate of stroma to form the future uterus and vagina.
Collapse
|
5
|
Meng CY, Li ZY, Fang WN, Song ZH, Yang DD, Li DD, Yang Y, Peng JP. Cytochrome P450 26A1 modulates natural killer cells in mouse early pregnancy. J Cell Mol Med 2016; 21:697-710. [PMID: 27860312 PMCID: PMC5345621 DOI: 10.1111/jcmm.13013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/18/2016] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 26A1 (CYP26A1) has a spatiotemporal expression pattern in the uterus, with a significant increase in mRNA and protein levels during peri‐implantation. Inhibiting the function or expression of CYP26A1 can cause pregnancy failure, suggesting an important regulatory role of CYP26A1 in the maintenance of pregnancy. However, little is known about the exact mechanism involved. In this study, using a pCR3.1‐cyp26a1 plasmid immunization mouse model and a Cyp26a1‐MO (Cyp26a1‐specific antisense oligos) knockdown mouse model, we report that the number of Dolichos biflorus agglutinin (DBA) lectin‐positive uterine natural killer (uNK) cells was reduced in pCR3.1‐cyp26a1 plasmid immunized and Cyp26a1‐MO‐treated mice. In contrast, the percentage of CD3−CD49b+NK cells in the uteri from the treatment group was significantly higher than that of the control group in both models. Similarly, significantly up‐regulated expression of CD49b (a pan‐NK cell marker), interferon gamma, CCL2, CCR2 (CCL2 receptor) and CCL3 were detected in the uteri of pCR3.1‐cyp26a1‐ and Cyp26a1‐MO‐treated mice. Transcriptome analysis suggested that CYP26A1 might regulate NK cells through chemokines. In conclusion, the present data suggest that silencing CYP26A1 expression/function can decrease the number of uNK cells and significantly increase the percentage of CD3−CD49b+NK cells in the uteri of pregnant mice. These findings provide a new line of evidence correlating the deleterious effects of blocking CYP26A1 in pregnancy with the aberrant regulation of NK cells in the uterus.
Collapse
Affiliation(s)
- Chao-Yang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Yin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Ning Fang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing-Pian Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Liu HY, Chao H, Liu ZK, Xia HF, Song Z, Yang Y, Peng JP. Regulation of cyp26a1 on Th17 cells in mouse peri-implantation. J Cell Mol Med 2013; 18:455-67. [PMID: 24325348 PMCID: PMC3955152 DOI: 10.1111/jcmm.12196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/25/2013] [Indexed: 01/13/2023] Open
Abstract
Cytochrome P450 26A1 (cyp26a1) is expressed in the mouse uterus during peri-implantation. The repression of this protein is closely associated with a reduction in implantation sites, suggesting a specific role for cyp26a1 in pregnancy and prompting questions concerning how a metabolic enzyme can generate this distinct outcome. To explore the effective downstream targets of cyp26a1 and confirm if its role in peri-implantation depends on its metabolic substrate RA (retinoic acid), we characterized the changes in the peripheral blood, spleen and uterine implantation sites using the cyp26a1 gene vaccine constructed before. Flow cytometry results showed a significant increase in CD4+RORγt+ Th17 cells in both the peripheral blood and spleen in the experimental group. The expression of RORγt and IL-17 presented the Th17 cells reduction in uterus followed by the suppression of cyp26a1 expression. For greater certainty, cyp26a1 antibody blocking model and RNA interference model were constructed to determine the precise target immune cell group. High performance liquid chromatography results showed a significant increase in uterine at-RA followed by the immunization of cyp26a1 gene vaccine. Both the ascertain by measuring RARα protein levels in peri-implantation uterus after gene vaccine immunization and researches using the specific agonist and antagonist against RARα suggested that RARα may be the main RA receptor for signal transduction. These results provided more evidence for the signal messenger role of RA in cyp26a1 regulation from the other side. Here, we showed that the cyp26a1-regulated Th17 cells are dependent on at-RA signalling, which is delivered through RARα in mouse peri-implantation.
Collapse
Affiliation(s)
- Hai-Yan Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Bodoor K, Lontay B, Safi R, Weitzel DH, Loiselle D, Wei Z, Lengyel S, McDonnell DP, Haystead TA. Smoothelin-like 1 protein is a bifunctional regulator of the progesterone receptor during pregnancy. J Biol Chem 2011; 286:31839-51. [PMID: 21771785 DOI: 10.1074/jbc.m111.270397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During pregnancy, uterine smooth muscle (USM) coordinately adapts its contractile phenotype in order to accommodate the developing fetus and then prepare for delivery. Herein we show that SMTNL1 plays a major role in pregnancy to promote adaptive responses in USM and that this process is specifically mediated through interactions of SMTNL1 with the steroid hormone receptor PR-B. In vitro and in vivo SMTNL1 selectively binds PR and not other steroid hormone receptors. The physiological relationship between the two proteins was also established in global gene expression and transcriptional reporter studies in pregnant smtnl1(-/-) mice and by RNA interference in progesterone-sensitive cell lines. We show that the contraction-associated and progestin-sensitive genes (oxytocin receptor, connexin 43, and cyclooxygenase-2) and prolactins are down-regulated in pregnant smtnl1(-/-) mice. We suggest that SMTNL1 is a bifunctional co-regulator of PR-B signaling and thus provides a molecular mechanism whereby PR-B is targeted to alter gene expression patterns within USM cells to coordinately promote alterations in USM function during pregnancy.
Collapse
Affiliation(s)
- Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tapia A, Vilos C, Marín JC, Croxatto HB, Devoto L. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity. Reprod Biol Endocrinol 2011; 9:14. [PMID: 21272326 PMCID: PMC3040129 DOI: 10.1186/1477-7827-9-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. METHODS Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. RESULTS We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. CONCLUSIONS Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function.
Collapse
Affiliation(s)
- Alejandro Tapia
- Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian Vilos
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Horacio B Croxatto
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago, Chile
| | - Luigi Devoto
- Instituto de Investigaciones Materno Infantil (IDIMI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Estudios Moleculares de la Célula (CEMC), Santiago, Chile
| |
Collapse
|
9
|
Xia HF, Ma JJ, Sun J, Yang Y, Peng JP. Retinoic acid metabolizing enzyme CYP26A1 is implicated in rat embryo implantation. Hum Reprod 2010; 25:2985-98. [PMID: 20940140 DOI: 10.1093/humrep/deq268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The retinoic acid metabolizing enzyme Cyp26a1 plays a pivotal role in vertebrate embryo development. Cyp26a1 was characterized previously as a differentially expressed gene in peri-implantation rat uteri via suppressive subtracted hybridization analysis. However, the role of Cyp26a1 in rat embryo implantation remained elusive. METHODS The expression of Cyp26a1 in the uteri of early pregnancy, pseudopregnancy and artificial decidualization was detected by northern blotting, real time-PCR, in situ hybridization, western blotting and immunofluorescent staining. The effect of Cyp26a1 on apoptosis of endometrial stromal cells (ESCs) isolated from rat uteri was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Hoechst staining. Apoptosis-related proteins in ESCs were detected by western blotting. RESULTS Cyp26a1 showed distinctive expression patterns in embryos and uteri during the peri-implantation period, with a remarkable increase (P < 0.01 versus Days 4-5) in mRNA and protein in the implantation phase (Days 5.5-6.5 of pregnancy). CYP26A1 was specifically localized in glandular epithelium, luminal epithelium and decidua basalis. The level of CYP26A1 protein was significantly increased in uteri of artificial decidualization (P < 0.01 versus control). Forced Cyp26a1 overexpression significantly reduced the sensitivity of ESCs to etoposide-induced apoptosis, with reductions in p53 (P < 0.01) and Fas (P < 0.05) proteins versus control, while in contrast, FasL (P < 0.01) and proliferating cell nuclear antigen (P < 0.05) proteins increased. CONCLUSIONS Cyp26a1 is spatiotemporally expressed in the uterus during embryo implantation and decidualization. Overexpression of Cyp26a1 attenuates the process of uterine stromal cell apoptosis, probably via down-regulating the expression of p53 and FasL.
Collapse
Affiliation(s)
- Hong-Fei Xia
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
10
|
Han BC, Xia HF, Sun J, Yang Y, Peng JP. Retinoic acid-metabolizing enzyme cytochrome P450 26a1 (cyp26a1) is essential for implantation: functional study of its role in early pregnancy. J Cell Physiol 2010; 223:471-9. [PMID: 20112286 DOI: 10.1002/jcp.22056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vitamin A (VA) is required for normal fetal development and successful pregnancy. Excessive VA intake during pregnancy may lead to adverse maternal and fetal effects. Cytochrome P450 26A1 (cyp26a1), a retinoic acid (RA)-metabolizing enzyme, is involved in VA metabolism. It has been shown that cyp26a1 is expressed in female reproductive tract, especially in uterus. In order to investigate the role of cyp26a1 during pregnancy, we constructed a recombinant plasmid DNA vaccine encoding cyp26a1 protein and immunized mice with the plasmid. Compared to control groups, the pregnancy rate of the cyp26a1 plasmid-immunized mice were significantly decreased (P < 0.01). Further results showed that both cyp26a1 mRNA and protein were specifically induced in the uterus during implantation period and localized in the uterine luminal epithelium. Importantly, the number of implantation sites was also significantly reduced (P < 0.05) after the uterine injection of cyp26a1-specific antisense oligos or anti-cyp26a1 antibody on day 3 of pregnancy. Accordingly, the expression of RA-related cellular retinoic acid binding protein 1 and tissue transglutaminase was markedly increased (P < 0.05) in the uterine luminal epithelium after intrauterine injection treatments. These data demonstrate that uterine cyp26a1 activity is important for the maintenance of pregnancy, especially during the process of blastocyst implantation.
Collapse
Affiliation(s)
- Bing-Chen Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
11
|
Tay S, Dickmann L, Dixit V, Isoherranen N. A comparison of the roles of peroxisome proliferator-activated receptor and retinoic acid receptor on CYP26 regulation. Mol Pharmacol 2009; 77:218-27. [PMID: 19884280 DOI: 10.1124/mol.109.059071] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cytochrome P450 26 family is believed to be responsible for all-trans-retinoic acid (atRA) metabolism and elimination in the human fetus and adults. CYP26A1 and CYP26B1 mRNA is expressed in a tissue-specific manner, and mice in which the CPY26 isoform has been knocked out show distinct malformations and lethality. The aim of this study was to determine differences in CYP26A1 and CYP26B1 regulation and expression. Analysis of CYP26A1 and CYP26B1 expression in a panel of 57 human livers showed CYP26A1 to be the major CYP26 isoform present in the liver, and its expression to be subject to large interindividual variability between donors. CYP26A1 and retinoic acid receptor (RAR) beta were found to be greatly inducible by atRA in HepG2 cells, whereas CYP26B1, RARalpha, and RARgamma were induced to a much lesser extent. Based on treatments with RAR isoform-selective ligands, RARalpha is the major isoform responsible for CYP26A1 and RARbeta induction in HepG2 cells. Classic cytochrome P450 inducers did not affect CYP26 transcription, whereas the peroxisome proliferator-activated receptor (PPAR) gamma agonists pioglitazone and rosiglitazone up-regulated CYP26B1 transcription by as much as 209- +/- 80-fold and CYP26A1 by 10-fold. RARbeta was also up-regulated by pioglitazone and rosiglitazone. CYP26B1 induction by PPARgamma agonists was abolished by the irreversible PPARgamma antagonist 2-chloro-5-nitrobenzanilide (GW9662), whereas RARbeta and CYP26A1 induction was unaffected by GW9662. Overall, the results of this study suggest that CYP26B1 and CYP26A1 are regulated by different nuclear receptors, resulting in tissue-specific expression patterns. The fact that drugs can alter the expression of CYP26 enzymes may have toxicological and therapeutic importance.
Collapse
Affiliation(s)
- Suzanne Tay
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
12
|
Hu P, Tian M, Bao J, Xing G, Gu X, Gao X, Linney E, Zhao Q. Retinoid regulation of the zebrafish cyp26a1 promoter. Dev Dyn 2009; 237:3798-808. [PMID: 19035346 DOI: 10.1002/dvdy.21801] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA.
Collapse
Affiliation(s)
- Ping Hu
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol Cell Biol 2008; 28:7487-503. [PMID: 18838536 DOI: 10.1128/mcb.00799-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen regulates several biological processes through estrogen receptor alpha (ERalpha) and ERbeta. ERalpha-estrogen signaling is additionally controlled by extracellular signal activated kinases such as AKT. In this study, we analyzed the effect of AKT on genome-wide ERalpha binding in MCF-7 breast cancer cells. Parental and AKT-overexpressing cells displayed 4,349 and 4,359 ERalpha binding sites, respectively, with approximately 60% overlap. In both cell types, approximately 40% of estrogen-regulated genes associate with ERalpha binding sites; a similar percentage of estrogen-regulated genes are differentially expressed in two cell types. Based on pathway analysis, these differentially estrogen-regulated genes are linked to transforming growth factor beta (TGF-beta), NF-kappaB, and E2F pathways. Consistent with this, the two cell types responded differently to TGF-beta treatment: parental cells, but not AKT-overexpressing cells, required estrogen to overcome growth inhibition. Combining the ERalpha DNA-binding pattern with gene expression data from primary tumors revealed specific effects of AKT on ERalpha binding and estrogen-regulated expression of genes that define prognostic subgroups and tamoxifen sensitivity of ERalpha-positive breast cancer. These results suggest a unique role of AKT in modulating estrogen signaling in ERalpha-positive breast cancers and highlights how extracellular signal activated kinases can change the landscape of transcription factor binding to the genome.
Collapse
|
14
|
Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2007; 315:331-54. [PMID: 18241852 DOI: 10.1016/j.ydbio.2007.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/08/2023]
Abstract
CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.
Collapse
Affiliation(s)
- Simne Langton
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, Rm. E-409, New York, NY 10021, USA
| | | |
Collapse
|