1
|
Conese M, Napolitano O, Laselva O, Di Gioia S, Nappi L, Trabace L, Matteo M. The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved? Int J Mol Sci 2023; 24:ijms24043612. [PMID: 36835024 PMCID: PMC9962629 DOI: 10.3390/ijms24043612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The pathomechanisms of preeclampsia (PE), a complication of late pregnancy characterized by hypertension and proteinuria, and due to improper placentation, are not well known. Mesenchymal stem cells derived from the amniotic membrane (AMSCs) may play a role in PE pathogenesis as placental homeostasis regulators. PLACenta-specific protein 1 (PLAC1) is a transmembrane antigen involved in trophoblast proliferation that is found to be associated with cancer progression. We studied PLAC1 in human AMSCs obtained from control subjects (n = 4) and PE patients (n = 7), measuring the levels of mRNA expression (RT-PCR) and secreted protein (ELISA on conditioned medium). Lower levels of PLAC1 mRNA expression were observed in PE AMSCs as compared with Caco2 cells (positive controls), but not in non-PE AMSCs. PLAC1 antigen was detectable in conditioned medium obtained from PE AMSCs, whereas it was undetectable in that obtained from non-PE AMSCs. Our data suggest that abnormal shedding of PLAC1 from AMSC plasma membranes, likely by metalloproteinases, may contribute to trophoblast proliferation, supporting its role in the oncogenic theory of PE.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
- Correspondence:
| | - Ottavio Napolitano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Maria Matteo
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
2
|
Devor EJ, Santillan DA, Warrier A, Scroggins SM, Santillan MK. Placenta-specific protein 1 (PLAC1) expression is significantly down-regulated in preeclampsia via a hypoxia-mediated mechanism. J Matern Fetal Neonatal Med 2022; 35:8419-8425. [PMID: 34565269 PMCID: PMC8959068 DOI: 10.1080/14767058.2021.1977792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Examine a mechanism of PLAC1 regulation and its potential role in preeclampsia (PE). MATERIALS AND METHODS Placental tissue samples and detailed clinical information were obtained through the University of Iowa Maternal Fetal Tissue Bank (IRB# 200910784) from gestational and maternal age-matched control (n = 17) and PE affected pregnancies (n = 12). PLAC1 and PLAC1 promoter-specific expression was measured using quantitative polymerase chain reaction (qPCR) and differences were assessed via the standard ΔΔCt method. In addition, the role of hypoxia in PLAC1 transcription was investigated through the exposure of HTR8/SVneo human trophoblast cells to the hypoxia mimic dimethyloxaloylglycine (DMOG). RESULTS PLAC1 expression is seen to be 8.9-fold lower in human placentas affected by preeclampsia in comparison with controls (p < .05). Further, this decrease is paralleled by a significantly lower expression of the P2 or proximal PLAC1 promoter (p < .05). Expression of mediator complex subunit 1 (MED1), a known hypoxia-sensitive transcription coactivator and PLAC1 effector, is significantly correlated with PLAC 1 expression (r2 = 0.607, p < .001). These data suggest that PLAC1 expression is significantly down-regulated in preeclampsia at least in part via a MED1 hypoxia-mediated mechanism. CONCLUSIONS We confirm that PLAC1 transcription is suppressed in the placentae of women affected by preeclampsia. We further demonstrate that this suppression is driven through the P2 or proximal PLAC1 promoter. This demonstration led to the identification of the MED1-TRAP cofactor complex as the hypoxia-sensitive driver.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Akshaya Warrier
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sabrina M. Scroggins
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
3
|
Devor EJ, Schickling BM, Lapierre JR, Bender DP, Gonzalez-Bosquet J, Leslie KK. The Synthetic Curcumin Analog HO-3867 Rescues Suppression of PLAC1 Expression in Ovarian Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090942. [PMID: 34577642 PMCID: PMC8465575 DOI: 10.3390/ph14090942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Elevated expression of placenta-specific protein 1 (PLAC1) is associated with the increased proliferation and invasiveness of a variety of human cancers, including ovarian cancer. Recent studies have shown that the tumor suppressor p53 directly suppresses PLAC1 transcription. However, mutations in p53 lead to the loss of PLAC1 transcriptional suppression. Small molecules that structurally convert mutant p53 proteins to wild-type conformations are emerging. Our objective was to determine whether the restoration of the wild-type function of mutated p53 could rescue PLAC1 transcriptional suppression in tumors harboring certain TP53 mutations. Ovarian cancer cells OVCAR3 and ES-2, both harboring TP53 missense mutations, were treated with the p53 reactivator HO-3867. Treatment with HO-3867 successfully rescued PLAC1 transcriptional suppression. In addition, cell proliferation was inhibited and cell death through apoptosis was increased in both cell lines. We conclude that the use of HO-3867 as an adjuvant to conventional therapeutics in ovarian cancers harboring TP53 missense mutations could improve patient outcomes. Validation of this conclusion must, however, come from an appropriately designed clinical trial.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence:
| | - Brandon M. Schickling
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - Jace R. Lapierre
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - David P. Bender
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Ma J, Li L, Du J, Pan C, Zhang C, Chen Y. Placenta-specific protein 1 enhances liver metastatic potential and is associated with the PI3K/AKT/NF-κB signaling pathway in colorectal cancer. Eur J Cancer Prev 2021; 30:220-231. [PMID: 32701605 PMCID: PMC8011505 DOI: 10.1097/cej.0000000000000611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Abstract
To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cells with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. The expression of PLAC1 was detected by reverse transcriptase PCR, western blot, and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in-vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. PLAC1 was expressed in HT-29, WiDr, and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 not only enhanced significantly the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but also promoted the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on the activation of the PI3K/Akt/NF-κB pathway. The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Lei Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Jun Du
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Chengwu Pan
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Chensong Zhang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Yuzhong Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| |
Collapse
|
5
|
Yilmaz N, Timur H, Ugurlu EN, Yilmaz S, Ozgu-Erdinc AS, Erkilinc S, Inal HA. Placenta specific protein-1 in recurrent pregnancy loss and in In Vitro Fertilisation failure: a prospective observational case-control study. J OBSTET GYNAECOL 2019; 40:843-848. [PMID: 31791163 DOI: 10.1080/01443615.2019.1674263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Observations from studies have provided evidence that Placenta-specific protein1 (PLAC1) is important for the establishment and maintenance of pregnancy and suggest it as a potential biomarker for gestational pathologies. The aim of this study is to investigate whether maternal serum PLAC1 levels have any impact on etiopathogenesis of recurrent pregnancy loss (RPL) and repeated implantation failure after In Vitro Fertilisation (RIF). We conducted a prospective observational case-control study in a Research Hospital. Twenty-eight patients with RPL (group 1), 30 patients with unexplained infertility and RIF (group 2), 29 fertile patients (group 3) were included. The demographic features and serum PLAC1 levels were compared. There was a significant difference in PLAC1 levels between the groups (group 1 = 19.71 + 16.55 ng/ml; group 2 = 4.82 + 1.44 ng/ml; group 3 = 0.89 + 0.62 ng/ml, respectively) (p=.001). Positive correlation was found between serum PLAC1 levels and abortion rates (r = 0.64; p=.001), a negative correlation was found between serum PLAC1 levels and live birth rates (r = -0.69; p=.001). PLAC1 might have a negative effect on implantation in RPL and RIF. There may be a subgroup of PLAC with different bioactivity. There are no relevant studies conducted among these populations, further large-scale studies are needed to assess the molecular role of PLAC1 on implantation.IMPACT STATEMENTWhat is already known about this subject? PLAC1 (placenta-specific protein-1) gene is located on the X chromosome which encodes for a protein that is thought to be important for placental development although its role has not been clearly defined. Studies in the literature have provided evidence that PLAC1 has an important role in the establishment and maintenance of pregnancy and suggest it as a potential biomarker for gestational pathologies. Several reports over the past few years have demonstrated PLAC1 expression in a variety of human tumours including lung cancers, breast cancer, hepatocellular and colorectal cancers, gastric cancers and uterine cancers.What do the results of this study add? There have been no previous studies conducted among patients with recurrent pregnancy loss (RPL) or repeated implantation failure after In Vitro Fertilisation (RIF) that have searched for any association between PLAC1 levels and implantation failure. This study has demonstrated higher PLAC1 levels in infertile women with RIF and RPL for the first time; suggesting that it could have a negative effect on implantation in these populations. PLAC1 could be detected in the serum as a biomarker that is associated with RIF and RPL. What are the implications of these findings for clinical practice and/or further research? Defining the precise role of PLAC1 during implantation will provide new insight into understanding of poor reproductive outcomes such as RIF and RPL and help in developing treatment strategies. Further large-scale studies with more patients are needed to uncover the clinical value of PLAC1 as a biomarker to predict repeated implantation failure and RPL.
Collapse
Affiliation(s)
- Nafiye Yilmaz
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Hakan Timur
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Evin Nil Ugurlu
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Saynur Yilmaz
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - A Seval Ozgu-Erdinc
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Selcuk Erkilinc
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Hasan Ali Inal
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Mahmoudian J, Ghods R, Nazari M, Jeddi-Tehrani M, Ghahremani MH, Ghaffari-Tabrizi-Wizsy N, Ostad SN, Zarnani AH. PLAC1: biology and potential application in cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1039-1058. [PMID: 31165204 PMCID: PMC11028298 DOI: 10.1007/s00262-019-02350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran
| | | | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Nafisi Building, Enghelab St., Tehran, 1417613151, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shi LY, Ma Y, Zhu GY, Liu JW, Zhou CX, Chen LJ, Wang Y, Li RC, Yang ZX, Zhang D. Placenta‐specific 1 regulates oocyte meiosis and fertilization through furin. FASEB J 2018; 32:5483-5494. [DOI: 10.1096/fj.201700922rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Ya Shi
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Ma
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Gang-Yi Zhu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jin-Wei Liu
- Department of GynecologyZhejiang Provincial People's HospitalHangzhouChina
| | - Chun-Xiang Zhou
- Prenatal Diagnosis Center of Jiangsu ProvinceAffiliated Drum Tower Hospital, Nanjing University Medical SchoolNanjingChina
| | - Liang-Jian Chen
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | | | - Zhi-Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Yang L, Zha TQ, He X, Chen L, Zhu Q, Wu WB, Nie FQ, Wang Q, Zang CS, Zhang ML, He J, Li W, Jiang W, Lu KH. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer. Oncol Rep 2017; 39:53-60. [PMID: 29138842 PMCID: PMC5783604 DOI: 10.3892/or.2017.6086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Qi Zha
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang He
- Department of Digestive, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Bing Wu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Feng-Qi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Chong-Shuang Zang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Mei-Ling Zhang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Jing He
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Jiang
- Department of Biochemistry, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Kai-Hua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
9
|
Liso A, Massenzio F, Stracci F. PLAC1 immunization does not induce infertility in mice. Immunotherapy 2017; 9:481-486. [DOI: 10.2217/imt-2017-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Placenta specific 1 (PLAC1) is a protein rarely expressed in normal cells, except it is important for placental development, with a possible role in the establishment of the mother–fetus interface. The gene is also highly active in a wide variety of cancers and therefore, immunization with PLAC1 peptides could possibly be part of future immunotherapeutic strategies. We investigated whether vaccination against PLAC1 could induce infertility. Materials & methods: We inoculated female mice with PLAC1 peptides, put them in mating, measured antibody response (ELISA assay) and checked, in immunohistochemistry, binding of the induced antibodies to the native antigen. Results: We demonstrated that mice consistently develop antibody responses. We also demonstrated that female mice, after being inoculated with the PLAC1 peptide mix, do became pregnant and can give birth to normal infants. Conclusion: PLAC1 antigens as a specific anti-cancer vaccine could induce anti-PLAC1 antibodies which do not necessarily cause infertility.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medicine & Surgery, University of Foggia, viale L. Pinto,1 71122 – Foggia, Italy
| | - Francesca Massenzio
- Department of Medicine & Surgery, University of Foggia, viale L. Pinto,1 71122 – Foggia, Italy
| | - Fabrizio Stracci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Devor EJ, Gonzalez-Bosquet J, Warrier A, Reyes HD, Ibik NV, Schickling BM, Newtson A, Goodheart MJ, Leslie KK. p53 mutation status is a primary determinant of placenta-specific protein 1 expression in serous ovarian cancers. Int J Oncol 2017; 50:1721-1728. [PMID: 28339050 PMCID: PMC5403493 DOI: 10.3892/ijo.2017.3931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) expression is co-opted in numerous human cancers. As a consequence of PLAC1 expression, tumor cells exhibit enhanced proliferation and invasiveness. This characteristic is associated with increased aggressiveness and worse patient outcomes. Recently, the presence of the tumor suppressor p53 was shown in vitro to inhibit PLAC1 transcription by compromising the P1, or distal/cancer, promoter. We sought to determine if this phenomenon occurs in primary patient tumors as well. Furthermore, we wanted to know if p53 mutation influenced PLAC1 expression as compared with wild-type. We chose to study serous ovarian tumors as they are well known to have a high rate of p53 mutation. We report herein that the phenomenon of PLAC1 transcription repression does occur in serous ovarian carcinomas but only when TP53 is wild-type. We find that mutant or absent p53 protein de-represses PLAC1 transcription. We further propose that the inability of mutant p53 to repress PLAC1 transcription is due to the fact that the altered TP53 protein is unable to occupy a putative p53 binding site in the PLAC1 P1 promoter thus allowing transcription to occur. Finally, we show that PLAC1 transcript number is significantly negatively correlated with patient survival in our samples. Thus, we suggest that characterizing tumors for TP53 mutation status, p53 protein status and PLAC1 transcription could be used to predict likely prognosis and inform treatment options in patients diagnosed with serous ovarian cancer.
Collapse
Affiliation(s)
- Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Akshaya Warrier
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Henry D Reyes
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Nonye V Ibik
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Brandon M Schickling
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andreea Newtson
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Nazari M, Zarnani AH, Ghods R, Emamzadeh R, Najafzadeh S, Minai-Tehrani A, Mahmoudian J, Yousefi M, Vafaei S, Massahi S, Nejadmoghaddam MR. Optimized protocol for soluble prokaryotic expression, purification and structural analysis of human placenta specific-1(PLAC1). Protein Expr Purif 2017; 133:139-151. [PMID: 28315746 DOI: 10.1016/j.pep.2017.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Placenta specific -1 (PLAC1) has been recently introduced as a small membrane-associated protein mainly involved in placental development. Expression of PLAC1 transcript has been documented in almost one hundred cancer cell lines standing for fourteen distinct cancer types. The presence of two disulfide bridges makes difficult to produce functional recombinant PLAC1 in soluble form with high yield. This limitation also complicates the structural studies of PLAC1, which is important for prediction of its physiological roles. To address this issue, we employed an expression matrix consisting of two expression vectors, five different E. coli hosts and five solubilization conditions to optimize production of full and truncated forms of human PLAC1. The recombinant proteins were then characterized using an anti-PLAC1-specific antibody in Western blotting (WB) and enzyme linked immunosorbent assay (ELISA). Structure of full length protein was also investigated using circular dichroism (CD). We demonstrated the combination of Origami™ and pCold expression vector to yield substantial amount of soluble truncated PLAC1 without further need for solubilization step. Full length PLAC1, however, expressed mostly as inclusion bodies with higher yield in Origami™ and Rosetta2. Among solubilization buffers examined, buffer containing Urea 2 M, pH 12 was found to be more effective. Recombinant proteins exhibited excellent reactivity as detected by ELISA and WB. The secondary structure of full length PLAC1 was considered by CD spectroscopy. Taken together, we introduced here a simple, affordable and efficient expression system for soluble PLAC1 production.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Rahman Emamzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sam Massahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Reza Nejadmoghaddam
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wu Y, Lin X, Di X, Chen Y, Zhao H, Wang X. Oncogenic function of Plac1 on the proliferation and metastasis in hepatocellular carcinoma cells. Oncol Rep 2016; 37:465-473. [PMID: 27878289 DOI: 10.3892/or.2016.5272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Placenta-specific protein 1 (Plac1), which is selectively expressed in the placental syncytiotrophoblast in adult normal tissues, plays an essential role in normal placental and embryonic development. Accumulating evidence suggests that enhanced Plac1 expression is closely associated with the progression of human cancer. Whether Plac1 contributes to the pathophysiology of hepatocellular carcinoma (HCC) remains unclear. In the present study, our data revealed that the expression of Plac1 in human HCC tissues was upregulated, which significantly correlated with metastasis of HCC. Knockdown of Plac1 by small interfering RNA (siRNA) in Bel-7402 and HepG2 cells resulted in decreasing tumor cell proliferation and increasing apoptosis, which implied the oncogenic potential of Plac1. Moreover, silencing of Plac1 induced G1 cell cycle arrest through suppression of cyclin D1 and CDK4 expression. Furthermore, depletion of Plac1 repressed epithelial-mesenchymal transition (EMT), with decreased cell migration and invasion, supporting upregulated E-cadherin expression and downregulated vimentin, twist and snail expression that characterize EMT. Further study suggested that decreased Plac1 expression attenuated the phosphorylation of Akt. These findings have uncovered that Plac1 plays a pivotal role in the progression of HCC, and may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaoqing Di
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yonghua Chen
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hanning Zhao
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xin Wang
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
13
|
Muto M, Fujihara Y, Tobita T, Kiyozumi D, Ikawa M. Lentiviral Vector-Mediated Complementation Restored Fetal Viability but Not Placental Hyperplasia in Plac1-Deficient Mice. Biol Reprod 2015; 94:6. [PMID: 26586843 DOI: 10.1095/biolreprod.115.133454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 12/25/2022] Open
Abstract
The X-linked Plac1 gene is maternally expressed in trophoblast cells during placentation, and its disruption causes placental hyperplasia and intrauterine growth restriction. In contrast, Plac1 is also reported to be one of the upregulated genes in the hyperplastic placenta generated by nuclear transfer. However, the effect of overexpressed Plac1 on placental formation and function remained unaddressed. We complemented the Plac1 knockout placental dysfunction by lentiviral vector-mediated, placenta-specific Plac1 transgene expression. Whereas fetal development and the morphology of maternal blood sinuses in the labyrinth zone improved, placental hyperplasia remained, with an expanded the junctional zone that migrated and encroached into the labyrinth zone. Further experiments revealed that wild-type placenta with transgenically expressed Plac1 resulted in placental hyperplasia without the encroaching of the junctional zone. Our findings suggest that Plac1 is involved in trophoblast cell proliferation, differentiation, and migration. Its proper expression is required for normal placentation and fetal development.
Collapse
Affiliation(s)
- Masanaga Muto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Tobita
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Maxwell JR, Denson JL, Joste NE, Robinson S, Jantzie LL. Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome. Placenta 2015; 36:1378-84. [PMID: 26601766 DOI: 10.1016/j.placenta.2015.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Preterm birth is a major cause of infant morbidity and long-term disability, and is associated with numerous central nervous system (CNS) deficits. Infants exposed to intrauterine inflammation, specifically chorioamnionitis, are at risk for very early preterm birth and neurological complications including cerebral palsy, epilepsy, and behavioral and cognitive deficits. However, placenta-brain axis abnormalities and their relationship to subsequent permanent CNS injury remain poorly defined. METHODS Intrauterine injury was induced in rats on embryonic day 18 (E18) by transient systemic hypoxia-ischemia (TSHI) and intra-amniotic lipopolysaccharide (LPS) injection. Placenta, brain and serum were collected from E19 to postnatal day 0 (P0). Histology, TUNEL staining, western blot and multiplex immunoassays were used to quantify placental and brain abnormalities, and fetal serum cytokine levels. RESULTS Prenatal TSHI + LPS caused acute and subacute placental injury hallmarked by inflammatory infiltrate, edema, hemorrhage and cell death along with placental increases in IL-1β and TNFα. TSHI + LPS increased a diverse array of circulating inflammatory proteins including IL-1β, TNFα, IL-6, IL-10, IL-4, IFNγ and CXCL1, both immediately after TSHI + LPS and in live born pups. CNS inflammation was characterized by increased CXCL1. DISCUSSION Prenatal TSHI + LPS in rats induces placental injury and inflammation histologically consistent with chorioamnionitis, concomitant with elevated serum and CNS pro-inflammatory cytokines. This model accurately recapitulates key pathophysiological processes observed in extremely preterm infants including placental, fetal, and CNS inflammation. Further investigation into the mechanism of CNS injury following chorioamnionitis and the placental-brain axis will guide the use of future interventions.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Departments of Pediatrics and Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Jesse L Denson
- Departments of Pediatrics and Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Nancy E Joste
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Shenandoah Robinson
- Departments of Neurosurgery and Neurology, Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston MA, USA
| | - Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
15
|
Gundling WE, Wildman DE. A review of inter- and intraspecific variation in the eutherian placenta. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140072. [PMID: 25602076 PMCID: PMC4305173 DOI: 10.1098/rstb.2014.0072] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is one of the most morphologically variable mammalian organs. Four major characteristics are typically discussed when comparing the placentas of different eutherian species: placental shape, maternal-fetal interdigitation, intimacy of the maternal-fetal interface and the pattern of maternal-fetal blood flow. Here, we describe the evolution of three of these features as well as other key aspects of eutherian placentation. In addition to interspecific anatomical variation, there is also variation in placental anatomy and function within a single species. Much of this intraspecific variation occurs in response to different environmental conditions such as altitude and poor maternal nutrition. Examinations of variation in the placenta from both intra- and interspecies perspectives elucidate different aspects of placental function and dysfunction at the maternal-fetal interface. Comparisons within species identify candidate mechanisms that are activated in response to environmental stressors ultimately contributing to the aetiology of obstetric syndromes such as pre-eclampsia. Comparisons above the species level identify the evolutionary lineages on which the potential for the development of obstetric syndromes emerged.
Collapse
Affiliation(s)
- William E Gundling
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Derek E Wildman
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Placenta-specific protein 1 is conserved throughout the Placentalia under purifying selection. ScientificWorldJournal 2014; 2014:537356. [PMID: 25180201 PMCID: PMC4142310 DOI: 10.1155/2014/537356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022] Open
Abstract
Placental mammals (Placentalia) are a very successful group that, today, comprise 94% of all mammalian species. Recent phylogenetic analyses, coupled with new, quite complete fossils, suggest that the crown orders were all established rapidly from a common ancestor just after the Cretaceous/Tertiary (K/T) boundary 65 million years ago. Extensive molecular and morphologic evidence has led to a description of the common ancestor of all Placentalia in which a two-horned uterus and a hemochorial placenta are present. Thus, the process of placentation in which the placenta invades and anchors to the uterine epithelium was already established. One factor that has been suggested as a crucial component of this process is placenta-specific protein 1 (PLAC1). A phylogenetic analysis of the PLAC1 protein in 25 placental mammal species, representing nine of the sixteen crown orders of the Placentalia, suggests that this protein was present in the placental common ancestor in the form we see it today, that it evolved in the Placentalia and has been subject to the effects of purifying selection since its appearance.
Collapse
|
17
|
Chang WL, Yang Q, Zhang H, Lin HY, Zhou Z, Lu X, Zhu C, Xue LQ, Wang H. Role of placenta-specific protein 1 in trophoblast invasion and migration. Reproduction 2014; 148:343-52. [PMID: 24989904 DOI: 10.1530/rep-14-0052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.
Collapse
Affiliation(s)
- Wen-Lin Chang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Qing Yang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Hui Zhang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Hai-Yan Lin
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Zhi Zhou
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Xiaoyin Lu
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Cheng Zhu
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Li-Qun Xue
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Hongmei Wang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| |
Collapse
|
18
|
Ghods R, Ghahremani MH, Darzi M, Mahmoudi AR, Yeganeh O, Bayat AA, Pasalar P, Jeddi-Tehrani M, Zarnani AH. Immunohistochemical characterization of novel murine monoclonal antibodies against human placenta-specific 1. Biotechnol Appl Biochem 2014; 61:363-9. [PMID: 24237073 DOI: 10.1002/bab.1177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/08/2013] [Indexed: 11/08/2022]
Abstract
Human PLAC1 (placenta-specific 1) is a new member of cancer-testis antigens with 212 amino acids, and its expression is restricted to placenta and at much lower levels to testis. Recently, ectopic expression of the PLAC1 transcript has been demonstrated in a wide range of human tumors and cancer cell lines with a proposed function in tumor cell growth. No monoclonal anti-PLAC1 antibody applicable to immunohis-tochemical staining is available so far. To better understand the PLAC1 expression and localization, we aimed to produce monoclonal antibodies (mAbs) against the extracellular region of PLAC1. Mice were immunized with a synthetic peptide corresponding to the C-terminal 11 amino acids of PLAC1 conjugated with a carrier protein. Hybridomas were produced by standard protocol and screened for positive reactivity by enzyme-linked immunosorbent assay. Reactivity of final two clones was then assessed by Western blotting (WB), immunohistochemistry (IHC), and immunocytochemistry (ICC). Both clones showed a specific immunostaining pattern in human term placenta as the positive control. Reactivity was mostly localized to the cytoplasm of syncytiotrophoblasts. One of the clones showed an excellent staining signal in breast, ovary, and prostate cancer cell lines. Importantly, no reactivity was observed with human lymph node cells or prostate. None of the mAbs were able to detect PLAC1 in Western blot. Based on the present results, these mAbs can be used for detection of PLAC1 in IHC and ICC techniques.
Collapse
Affiliation(s)
- Roya Ghods
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Placenta-specific protein 1: a potential key to many oncofetal-placental OB/GYN research questions. Obstet Gynecol Int 2014; 2014:678984. [PMID: 24757447 PMCID: PMC3976915 DOI: 10.1155/2014/678984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/23/2014] [Accepted: 02/10/2014] [Indexed: 12/19/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is a secreted protein found in trophoblasts. Several reports implicate a central role for PLAC1 in establishment and maintenance of the placenta. In addition to placentae PLAC1 is expressed in a variety of solids including breast, endometrial, and ovarian cancers. In order to show that PLAC1 is potentially relevant to a number of research questions in OB/GYN, we report on PLAC1 expression in a selected panel that includes two choriocarcinoma cell lines, normal placental tissues, and endometrial and ovarian tumors. We report for the first time that PLAC1 is also expressed in human fetal tissues. PLAC1 is transcriptionally heterogeneous with one promoter (P1) generating two transcripts with alternately spliced 5' UTRs and the other promoter (P2) generating a third transcript. Placental tissues favor P2 transcripts, while P1 is favored in most of the other cells. Mechanisms determining multiple PLAC1 transcripts and promoter preferences are as yet unknown, but it is clear that this protein is likely to be important in a variety of phenomena relevant to both gynecologic oncology and maternal-fetal medicine.
Collapse
|
20
|
Role of IGF2BP3 in trophoblast cell invasion and migration. Cell Death Dis 2014; 5:e1025. [PMID: 24457969 PMCID: PMC4040666 DOI: 10.1038/cddis.2013.545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 01/06/2023]
Abstract
The insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) is a member of a highly conserved protein family that is expressed specifically in placenta, testis and various cancers, but is hardly detectable in normal adult tissues. IGF2BP3 has important roles in RNA stabilization and translation, especially during early stages of both human and mouse embryogenesis. Placenta is an indispensable organ in mammalian reproduction that connects developing fetus to the uterine wall, and is responsible for nutrient uptake, waste elimination and gas exchange. Fetus development in the maternal uterine cavity depends on the specialized functional trophoblast. Whether IGF2BP3 plays a role in trophoblast differentiation during placental development has never been examined. The data obtained in this study revealed that IGF2BP3 was highly expressed in human placental villi during early pregnancy, especially in cytotrophoblast cells (CTBs) and trophoblast column, but a much lower level of IGF2BP3 was detected in the third trimester placental villi. Furthermore, the expression level of IGF2BP3 in pre-eclamptic (PE) placentas was significantly lower than the gestational age-matched normal placentas. The role of IGF2BP3 in human trophoblast differentiation was shown by in vitro cell invasion and migration assays and an ex vivo explant culture model. Our data support a role of IGF2BP3 in promoting trophoblast invasion and suggest that abnormal expression of IGF2BP3 might be associated with the etiology of PE.
Collapse
|
21
|
Fant ME, Fuentes J, Kong X, Jackman S. The nexus of prematurity, birth defects, and intrauterine growth restriction: a role for plac1-regulated pathways. Front Pediatr 2014; 2:8. [PMID: 24600606 PMCID: PMC3930911 DOI: 10.3389/fped.2014.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/24/2014] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have demonstrated an increased prevalence of birth defects and intrauterine growth restriction (IUGR) among infants born prematurely suggesting they share common biological determinants. The identification of key regulatory pathways contributing to this nexus is essential to ongoing efforts to develop effective intervention strategies. Plac1 is a paternally imprinted and X-linked gene that conforms to this paradigm. Examination of a mutant mouse model has confirmed that Plac1 is essential for normal placental development and function. Moreover, it is expressed throughout the developing embryo indicating that it also has broad relevance to embryogenesis. Most notably, its absence in the developing embryo is associated with abnormal brain development and an increased risk of lethal, postnatal hydrocephalus identifying it as a novel, X-linked determinant of brain development. The essential and non-redundant roles of Plac1 in placental and neurological development represent a novel regulatory paradigm for embryonic growth and pregnancy maintenance. Regulatory pathways influenced, in part, by Plac1 are likely to contribute to the observed nexus of IUGR, prematurity, and birth defects.
Collapse
Affiliation(s)
- Michael E Fant
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA ; Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida , Tampa, FL , USA ; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| | - Juan Fuentes
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| | - Xiaoyuan Kong
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| | - Suzanne Jackman
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| |
Collapse
|
22
|
The oncoplacental gene placenta-specific protein 1 is highly expressed in endometrial tumors and cell lines. Obstet Gynecol Int 2013; 2013:807849. [PMID: 23935632 PMCID: PMC3723095 DOI: 10.1155/2013/807849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is a small secreted protein expressed exclusively in trophoblast cells in the mammalian placenta. PLAC1 is expressed early in gestation and is maintained throughout. It is thought to function in trophoblast invasion of the uterine epithelium and, subsequently, to anchor the placenta to the epithelium. In recent years, evidence has accumulated that PLAC1 is also expressed in a variety of human solid tumors, notably in breast cancers. We demonstrate for the first time that PLAC1 is ubiquitously expressed in tumors originating in uterine epithelium. Further, we find that PLAC1 expression is significantly higher in the more advanced, more aggressive endometrial serous adenocarcinomas and carcinosarcomas relative to endometrioid adenocarcinomas by more than 6-fold and 16-fold, respectively. We also show that PLAC1 is simultaneously transcribed from two promoters but that, in all cases, the more distal P1 promoter dominates the more proximal P2 promoter. While the function of the two PLAC1 promoters and their regulation are as yet unknown, overall expression data suggest that PLAC1 may serve as a biomarker for endometrial cancer as well as a potential prognostic indicator.
Collapse
|
23
|
Rodriguez-Prado YM, Kong X, Fant ME. PLAC1 Expression Decreases in Chorionic Villi in Response to Labor. ISRN OBSTETRICS AND GYNECOLOGY 2013; 2013:704252. [PMID: 23840959 PMCID: PMC3693165 DOI: 10.1155/2013/704252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/26/2013] [Indexed: 11/17/2022]
Abstract
PLAC1 (Placenta-Specific 1) is a recently described, trophoblast-expressed gene essential for normal placental development. The protein localizes to the microvillus membrane surface of the syncytiotrophoblast in direct proximity to the maternal compartment. Although its role has not been defined, increased circulating levels of human PLAC1 mRNA in maternal blood are associated with preeclampsia. Furthermore, PLAC1-null mice exhibit decreased viability in the peripartum period suggesting a role in pregnancy maintenance late in gestation. We examined PLAC1 gene expression in the human placenta during normal pregnancy and pregnancies associated with maternal diabetes and preeclampsia using quantitative, real time PCR (q-RT-PCR). Although there was no apparent difference in PLAC1 gene expression among human pregnancies complicated by diabetes or preeclampsia, an unexpected effect of labor was noted at term. PLAC1 expression in placentae delivered vaginally following induced or spontaneous labor was significantly reduced compared to placentae not exposed to labor making it one of only a few placental genes influenced by labor. The significance of this finding is unknown. Viewed in the context of its importance in placental development, however, these findings are consistent with a role for PLAC1 in the maintenance of the maternal-fetal interface.
Collapse
Affiliation(s)
- Yahdira M Rodriguez-Prado
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL 33606, USA
| | | | | |
Collapse
|
24
|
Matteo M, Greco P, Levi Setti P, Morenghi E, De Rosario F, Massenzio F, Albani E, Totaro P, Liso A. Preliminary evidence for high anti-PLAC1 antibody levels in infertile patients with repeated unexplained implantation failure. Placenta 2013; 34:335-9. [DOI: 10.1016/j.placenta.2013.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
25
|
Jackman SM, Kong X, Fant ME. Plac1 (placenta-specific 1) is essential for normal placental and embryonic development. Mol Reprod Dev 2012; 79:564-72. [PMID: 22729990 DOI: 10.1002/mrd.22062] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/05/2012] [Indexed: 12/28/2022]
Abstract
Plac1 is a recently identified, X-linked gene whose expression is restricted primarily to cells of the trophoblast lineage. It localizes to a chromosomal locus previously implicated in placental growth. We therefore sought to determine if Plac1 is necessary for placental and embryonic development by examining a mutant mouse model. Plac1 ablation resulted in placentomegaly and mild intrauterine growth retardation (IUGR). At E16.5, knockout (KO) and heterozygous (Het) placentae of the Plac1-null allele inherited from the mother (X(m-) X) weighed approximately 100% more than wildtype (WT) placentae, whereas the corresponding embryos weighed 7-12% less. Histologically, Plac1 mutants exhibited an expanded spongiotrophoblast layer that invaded the labyrinth. By contrast, Het placentae that inherited the null allele from the father (XX(p-) ) exhibited normal growth and were histologically indistinguishable from WT placentae, consistent with paternal imprinting of Plac1. When examined across gestation, WT and X(m-) X placental weights peaked at E16.5 and decreased slightly thereafter. KO placentae (X(m-) X(p-) and X(m-) Y), however, continued to increase in weight after E16.5, consistent with a functional role for the paternal Plac1 allele. Subsequent analysis confirmed that the paternal allele partially escapes complete X-inactivation and thus contributes to placental growth regulation. Additionally, although male Plac1 KO mice can survive, they exhibit decreased viability as a consequence of events occurring late in gestation or shortly after birth. Thus, Plac1 is a paternally imprinted, X-linked gene essential for normal placental and embryonic development.
Collapse
Affiliation(s)
- Suzanne M Jackman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | |
Collapse
|
26
|
Kotto-Kome AC, Silva C, Whiteman V, Kong X, Fant ME. Circulating Anti-PLAC1 Antibodies during Pregnancy and in Women with Reproductive Failure: A Preliminary Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/530491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aims of this study were to determine the prevalence of anti-PLAC1 antibodies in normal pregnant women and in women with infertility or recurrent pregnancy loss (RPL). Secondary outcomes were the development of complications associated with anti-PLAC1 seropositivity and the rate of seroconversion during pregnancy. Sera from 103 healthy pregnant women and 45 women with unexplained infertility or RPL were analyzed by ELISA. The prevalence of anti-PLAC1 antibodies was 2% in healthy pregnant women and 4.5% in women with unexplained infertility or RPL (P=0.355). There was no detectable association of seropositivity with increased risk of pregnancy complications. Finally, 2% of women seroconverted during pregnancy. The prevalence of anti-PLAC1 antibodies in women with unexplained infertility or RPL is not significantly higher than the prevalence in normal pregnant women. However, the sample size in this study was too small. The exposure to the PLAC1 antigen during pregnancy can lead to the spontaneous development of antibodies.
Collapse
Affiliation(s)
- Anne C. Kotto-Kome
- Division of Neonatology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Celso Silva
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Valerie Whiteman
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Xiaoyuan Kong
- Division of Neonatology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Michael E. Fant
- Division of Neonatology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606, USA
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| |
Collapse
|
27
|
Paiva P, Whitehead C, Saglam B, Palmer K, Tong S. Measurement of mRNA transcripts of very high placental expression in maternal blood as biomarkers of preeclampsia. J Clin Endocrinol Metab 2011; 96:E1807-15. [PMID: 21865357 DOI: 10.1210/jc.2011-1233] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT mRNA of placental origin in maternal blood shows potential as a clinical biomarker of obstetric diseases such as preeclampsia (PE). We hypothesized that mRNA transcripts very highly expressed in the placenta relative to other tissues will be differentially expressed in PE and be useful as mRNA biomarkers in maternal blood. OBJECTIVE Our objective was to identify a panel of genes highly expressed in the placenta and compare their expression in placenta and maternal whole blood from PE vs. control pregnancies. SETTING Placental tissue and maternal whole blood specimens were obtained from normotensive controls (n = 15) and pregnancies complicated by severe preterm PE (n = 21). INTERVENTION mRNA expression was evaluated by quantitative real-time RT-PCR. RESULTS We identified 20 genes exhibiting highest to fourth highest expression in the placenta relative to all other tissues. All genes were detectable in placenta. Nine of the 20 genes were detectable in maternal whole blood. Four of the nine genes detectable in blood (i.e. PLAC3, PLAC4, CRH, and ERVWE1) were significantly increased in both maternal blood and placenta from PE pregnancies. The remaining five genes detectable in maternal blood were unchanged in both blood and placenta from PE pregnancies. Thus, there was complete correlation of gene expression between maternal blood and placenta. CONCLUSIONS Circulating mRNA coding genes of high placental expression show strong correlation with transcript levels in preeclamptic placenta. Such transcripts may be promising candidates to screen as mRNA biomarkers of PE in maternal whole blood.
Collapse
Affiliation(s)
- Premila Paiva
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
28
|
Chen Y, Moradin A, Schlessinger D, Nagaraja R. RXRα and LXR activate two promoters in placenta- and tumor-specific expression of PLAC1. Placenta 2011; 32:877-84. [PMID: 21937108 DOI: 10.1016/j.placenta.2011.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/05/2023]
Abstract
PLAC1 expression, first characterized as restricted to developing placenta among normal tissues, is also found in a wide range of tumors and transformed cell lines. To understand the basis for its unusual expression profile, we have analyzed the gene structure and its mode of transcription. We find that the gene has a hitherto unique feature, with two promoters, P1 and P2, separated by 105 kb. P2 has been described before. Here we define P1 and show that it and P2 are activated by RXRα in conjunction with LXRα or LXRβ. In placenta, P2 is the preferred promoter, whereas various tumor cell lines tend to express predominantly either one or the other promoter. Furthermore, when each promoter is fused to a luciferase reporter gene and transfected into cancer cell lines, the promoter corresponding to the more active endogenous promoter is preferentially transcribed. Joint expression of activating nuclear receptors can partially account for the restricted expression of PLAC1 in placenta, and may be co-opted for preferential P1 or P2 PLAC1 expression in various tumor cells.
Collapse
Affiliation(s)
- Y Chen
- Laboratory of Genetics, National Institute on Aging, Bayview Research Center, 251 Bayview Blvd, RM 10B117, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
29
|
Avila L, Yuen RK, Diego-Alvarez D, Peñaherrera MS, Jiang R, Robinson WP. Evaluating DNA methylation and gene expression variability in the human term placenta. Placenta 2010; 31:1070-7. [PMID: 20947161 DOI: 10.1016/j.placenta.2010.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 11/17/2022]
Abstract
UNLABELLED Obtaining representative samples from a term placenta for gene-expression studies is confounded by both within placental heterogeneity and sampling effects such as sample location and processing time. Epigenetic processes involved in the regulation of gene expression, such as DNA methylation, may show similar variability, but are less well studied. Therefore, we investigated the nature of within and between- placenta variation in gene expression and DNA methylation of genes that were chosen for being differentially expressed or methylated by cell type within the placenta. METHODS In total, two or more samples from each of 38 normal term placentae were utilized. The expression levels of CDH1, CDH11, ID2, PLAC1 and KISS1 were evaluated by real-time PCR. DNA methylation levels of LINE1 elements and CpGs within the promoter regions of KISS1, PTPN6, CASP8, and APC were similarly quantified by pyrosequencing. RESULTS Despite considerable sample-to-sample variability within each placenta, the within-placenta correlation for both gene expression and methylation was significant for each studied gene. Most of this variability was not due to sample location. However, between placental differences in gene expression were inflated by the dramatic effect of processing time (0-24 h) on mRNA levels, particularly for PLAC1 and KISS1 (both expressed in the apical syncytiotrophoblast). In contrast, DNA methylation levels remained relatively constant over this same time period. CONCLUSION Due to extensive site-to-site variability, multiple sampled sites are needed to accurately represent a placenta for molecular studies. Furthermore, mRNA quantitation of some genes may be hampered by its rapid degradation post-delivery (and possibly perinatally) and thus processing time should be considered in such analyses. Within-placenta correlations in expression and methylation from unrelated genes raise the possibility that methylation and expression variation may potentially reflect cell composition differences between samples rather than true differences occurring at the cellular level.
Collapse
Affiliation(s)
- L Avila
- Department of Medical Genetics, University of British Columbia, Child & Family Research Institute, 950 West 28th Ave.,Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Fant M, Farina A, Nagaraja R, Schlessinger D. PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology. Prenat Diagn 2010; 30:497-502. [PMID: 20509147 PMCID: PMC4627609 DOI: 10.1002/pd.2506] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Placenta-specific 1 (PLAC1) is a recently described X-linked gene with expression restricted primarily to cells derived from trophoblast lineage during embryonic development. PLAC1 localizes to a region of the X chromosome thought to be important in placental development although its role in this process has not been defined. This review summarizes our current understanding of its expression, regulation, and function. PLAC1 is expressed throughout human pregnancy by the differentiated trophoblast and localizes to membranous structures in the syncytiotrophoblast, including the microvillous plasma membrane surface. Recent studies have demonstrated that PLAC1 is also expressed by a wide variety of human cancers. Studies of the PLAC1 promoter regions indicate that its expression in both normal placenta and cancer cells is driven by specific interactions involving a combination of transcription factors. Although functional insight into PLAC1 in the normal trophoblast is lacking, preliminary studies suggest that cancer-derived PLAC1 has the potential to promote tumor growth and function. In addition, it also appears to elicit a specific immunologic response that may influence survival in some cancer patients, suggesting that it may provide a therapeutic target for the treatment of some cancers. We also discuss a potential role for PLAC1 as a biomarker predictive of specific pregnancy complications, such as preeclampsia.
Collapse
Affiliation(s)
- Michael Fant
- Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606-350, USA.
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Saara M. Rawn
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, and the Graduate Program in Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; ,
| | - James C. Cross
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, and the Graduate Program in Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; ,
| |
Collapse
|
32
|
Liu FF, Dong XY, Pang XW, Xing Q, Wang HC, Zhang HG, Li Y, Yin YH, Fant M, Ye YJ, Shen DH, Zhang Y, Wang S, Chen WF. The specific immune response to tumor antigen CP1 and its correlation with improved survival in colon cancer patients. Gastroenterology 2008; 134:998-1006. [PMID: 18395081 DOI: 10.1053/j.gastro.2008.01.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/04/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The present study was undertaken to determine the expression of a newly identified tumor antigen cancer-placenta 1 (CP1) in colorectal carcinoma (CRC) and explore the CP1-specific immune response in CRC patients and its correlation with patient survival. METHODS CP1 expression was determined by reverse-transcription polymerase chain reaction, immunohistochemistry, and Western blot analysis. Serum antibodies against CP1 were detected by enzyme-linked immunosorbent assay, and T-cell response was measured by interferon-gamma/granzyme-B release enzyme-linked immunospot assays. The HLA-A2-restricted epitopes in CP1 were predicted by bioinformatics and then experimentally validated by enzyme-linked immunospot assay. RESULTS CP1 expression was detected in a significant number of CRC tissues, reaching 47.6% at the messenger RNA (mRNA) level and 28.6% at the protein level. Of patients with CP1 mRNA(+) tumors, more than 50% had CP1-responsive CD4(+) and CD8(+) T cells and 30% spontaneous-occurring antibodies against CP1. Further studies revealed 2 dominant HLA-A2-restricted epitopes in the CP1 antigen: p31-39 and p58-66. In a follow-up study up to 33 months after surgery, 9 of the 10 patients with CP1-specific CD8 T-cell response survived, whereas 6 of the 8 nonresponders died. Kaplan-Meier analysis indicated a significant correlation between T-cell response and patient survival. CONCLUSIONS CP1 represents a new class of tumor-specific shared antigen. Its high expression in CRC tissues, prevalence of CP1-specific immune responses in CP1 mRNA(+) CRC patients, and positive correlation with survival suggest that the antigen may be a useful target for cancer immunotherapy.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Gastroenterological Surgery, Surgical Oncology Laboratory, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dong XY, Peng JR, Ye YJ, Chen HS, Zhang LJ, Pang XW, Li Y, Zhang Y, Wang S, Fant ME, Yin YH, Chen WF. Plac1 is a tumor-specific antigen capable of eliciting spontaneous antibody responses in human cancer patients. Int J Cancer 2008; 122:2038-43. [PMID: 18183594 DOI: 10.1002/ijc.23341] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunoselection and tumor evasion constitutes one of the major obstacles in cancer immunotherapy. A potential solution to this problem is the development of polyvalent vaccines, and the identification of more tumor-specific antigens is a prerequisite for the development of cancer vaccines. To identify novel tumor-specific antigens, suppression subtractive hybridization (SSH) was performed to isolate genes differentially expressed in human hepatocellular cancer (HCC) tissues. PLAC1 (PLACenta-specific 1) was one of the genes identified highly expressed in HCC tissues but not in paired noncancerous tissues. Further analyses revealed its expression in several other types of cancer tissues as well as tumor cell lines, but not in normal tissues except for placenta. Among HCC samples tested, 32% (22/69) showed PLAC1 mRNA expression while the protein was detected in 23.3% (7/30). A serological survey revealed that 3.8% (4/101) of HCC patients had anti-PLAC1 antibody response, suggesting the immunogenicity of PLAC1 in HCC patients. PLAC1 represents a new class of tumor associated antigen with restricted expression in placenta and cancer tissues, that may serve as a target for cancer vaccination.
Collapse
Affiliation(s)
- Xue-Yuan Dong
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|