1
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
2
|
Kulhankova K, Cheng A, Traore S, Auger M, Pelletier M, Hervault M, Wells K, Green J, Byrne A, Nelson B, Sponchiado M, Boosani C, Heffner C, Snow K, Murray S, Villacreses R, Rector M, Gansemer N, Stoltz D, Allamargot C, Couture F, Hemez C, Hallée S, Barbeau X, Harvey M, Lauvaux C, Gaillet B, Newby G, Liu D, McCray PB, Guay D. Amphiphilic shuttle peptide delivers base editor ribonucleoprotein to correct the CFTR R553X mutation in well-differentiated airway epithelial cells. Nucleic Acids Res 2024; 52:11911-11925. [PMID: 39315713 PMCID: PMC11514481 DOI: 10.1093/nar/gkae819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Base editing could correct nonsense mutations that cause cystic fibrosis (CF), but clinical development is limited by the lack of delivery methods that efficiently breach the barriers presented by airway epithelia. Here, we present a novel amphiphilic shuttle peptide based on the previously reported S10 peptide that substantially improved base editor ribonucleoprotein (RNP) delivery. Studies of the S10 secondary structure revealed that the alpha-helix formed by the endosomal leakage domain (ELD), but not the cell penetrating peptide (CPP), was functionally important for delivery. By isolating and extending the ELD, we created a novel shuttle peptide, termed S237. While S237 achieved lower delivery of green fluorescent protein, it outperformed S10 at Cas9 RNP delivery to cultured human airway epithelial cells and to pig airway epithelia in vivo, possibly due to its lower net charge. In well-differentiated primary human airway epithelial cell cultures, S237 achieved a 4.6-fold increase in base editor RNP delivery, correcting up to 9.4% of the cystic fibrosis transmembrane conductance regulator (CFTR) R553X allele and restoring CFTR channel function close to non-CF levels. These findings deepen the understanding of peptide-mediated delivery and offer a translational approach for base editor RNP delivery for CF airway disease.
Collapse
Affiliation(s)
| | | | - Soumba Traore
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Maud Auger
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Mia Pelletier
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | | | - Kevin D Wells
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Jonathan A Green
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Addison Byrne
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Benjamin Nelson
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Chandra Boosani
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Caleb S Heffner
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Kathy J Snow
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Stephen A Murray
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Raul A Villacreses
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael V Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Nicholas D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chantal Allamargot
- Central Microscopy Research Facility (CMRF), and Office for the Vice President of Research (OVPR), University of Iowa, Iowa City, IA, USA
| | | | - Colin Hemez
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | | - Bruno Gaillet
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - David Guay
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| |
Collapse
|
3
|
Monarch K, Yoon J, Uh K, Reese E, Restrepo DC, de Carvalho Madrid DM, Touchard L, Spate LD, Samuel MS, Driver JP, Lim JH, Schlink S, Whitworth KM, Wells KD, Prather RS, Chen PR, Lee K. Fetal bone engraftment reconstitutes the immune system in pigs with severe combined immunodeficiency. Lab Anim (NY) 2024; 53:276-286. [PMID: 39289566 PMCID: PMC11439731 DOI: 10.1038/s41684-024-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Genetic modification of genes such as recombination activating gene 2 (RAG2) or interleukin-2 receptor-γ (IL2RG) results in pigs exhibiting severe combined immunodeficiency (SCID). Pigs presenting a SCID phenotype are important animal models that can be used to establish xenografts and to study immune system development and various immune-related pathologies. However, due to their immunocompromised nature, SCID pigs have shortened lifespans and are notoriously difficult to maintain. The failure-to-thrive phenotype makes the establishment of a breeding population of RAG2/IL2RG double-knockout pigs virtually impossible. Here, to overcome this limitation, we investigated whether reconstituting the immune system of SCID piglets with a fetal bone allograft would extend their lifespan. Following intramuscular transplantation, allografts gave rise to lymphocytes expressing T cell (CD3, CD4 and CD8), B cell (CD79α) and natural killer cell (CD335) lineage markers, which were detected in circulation as well in the spleen, liver, bone marrow and thymic tissues. The presence of lymphocytes indicates broad engraftment of donor cells in the recipient SCID pigs. Unlike unreconstituted SCID pigs, the engrafted animals thrived and reached puberty under standard housing conditions. This study demonstrates a novel method to extend the survival of SCID pigs, which may improve the availability and use of SCID pigs as a biomedical animal model.
Collapse
Affiliation(s)
- Kaylynn Monarch
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Junchul Yoon
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Kyungjun Uh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Emily Reese
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Diana Canaveral Restrepo
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | | | - Laurie Touchard
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Lee D Spate
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Melissa S Samuel
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - John P Driver
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Ji-Hey Lim
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sarah Schlink
- Office of Animal Resources, University of Missouri, Columbia, MO, USA
| | - Kristin M Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Kevin D Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Paula R Chen
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA.
- United States Department of Agriculture - Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO, USA.
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA.
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
Bishara K, Kwon JH, Hill MA, Helke KL, Norris RA, Whitworth K, Prather RS, Rajab TK. Characterization of Green Fluorescent Protein in Heart Valves of a Transgenic Swine Model for Partial Heart Transplant Research. J Cardiovasc Dev Dis 2023; 10:254. [PMID: 37367419 PMCID: PMC10299052 DOI: 10.3390/jcdd10060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
A transgenic strain of pigs was created to express green fluorescent protein (GFP) ubiquitously using a pCAGG promoter. Here, we characterize GFP expression in the semilunar valves and great arteries of GFP-transgenic (GFP-Tg) pigs. Immunofluorescence was performed to visualize and quantify GFP expression and colocalization with nuclear staining. GFP expression was confirmed in both the semilunar valves and great arteries of GFP-Tg pigs compared to wild-type tissues (aorta, p = 0.0002; pulmonary artery, p = 0.0005; aortic valve; and pulmonic valve, p < 0.0001). The quantification of GFP expression in cardiac tissue allows this strain of GFP-Tg pigs to be used for future research in partial heart transplantation.
Collapse
Affiliation(s)
- Katherine Bishara
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Jennie H. Kwon
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Morgan A. Hill
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Russell A. Norris
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Kristin Whitworth
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA; (K.W.)
| | - Randall S. Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA; (K.W.)
| | - Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| |
Collapse
|
5
|
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022; 189:246-254. [DOI: 10.1016/j.theriogenology.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
6
|
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence. J Neurosci 2021; 41:3105-3119. [PMID: 33637558 DOI: 10.1523/jneurosci.2738-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.
Collapse
|
7
|
Zhao Y, Bunch TD, Isom SC. Effects of electrical biostimulation and silver ions on porcine fibroblast cells. PLoS One 2021; 16:e0246847. [PMID: 33566869 PMCID: PMC7875371 DOI: 10.1371/journal.pone.0246847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
The medical applications of electrical biostimulation and silver ions have been evaluated in laboratory experiments and clinical studies for more than two decades. Their effects on preventing infection and promoting wound healing have been described. However, little is known about the role of electrical biostimulation and/or silver ion on changes in cellular transcriptome dynamics. To our knowledge, few studies have been conducted to investigate the potential of electrical biostimulation and silver ions in cell reprogramming. Besides, it is essential to assess any possible adverse effects or potential benefits of the silver ions on mammalian cells to address its safety concerns and to improve silver medical products. In this study, we investigated transcriptomic changes in porcine fibroblast cells in response to electrical biostimulation in the presence of silver ions. Exposed cells presented distinct morphological changes after treatment, which was mainly due to the exposure of silver ions rather than the electrical current itself. Gene expression analyses suggested that electrical biostimulation and silver ions did not increase the expression of pluripotency genes. Interestingly, a set of genes related to cellular metabolic processes were differentially expressed after cells were exposed to electrically generated silver ions for 21 hours. We found that 2.00 mg/L of electrically generated silver ion caused an increase of ATP generation and an increase of the total pool of NAD+ and NADH, while ROS production did not change. Aside from toxic effects, the results reported herein demonstrate the alternative effects of silver ions on mammalian cells, especially an oxidative phosphorylation burst. To our knowledge, this response of mammalian cells to silver ions has not been described previously. Although the function of this burst is not understood, it may lead to alterations in cellular activities such as metabolic remodeling and cell reprogramming, and/or serve an as-yet unknown function in neutralization or detoxification of the silver ions within the cells.
Collapse
Affiliation(s)
- Yuanfeng Zhao
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Thomas D. Bunch
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - S. Clay Isom
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kim G, Roy PK, Fang X, Hassan BM, Cho J. Improved preimplantation development of porcine somatic cell nuclear transfer embryos by caffeine treatment. J Vet Sci 2019; 20:e31. [PMID: 31161749 PMCID: PMC6538509 DOI: 10.4142/jvs.2019.20.e31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
This study examined the effects of a caffeine treatment to improve nuclear reprogramming in porcine cloned embryos. Embryonic development and the expression of genes related to pluripotency (POU5F1, SOX2, NANOG, and CDX2) were compared after caffeine supplementation during manipulation at different concentrations (0, 1.25, 2.5, and 5.0 mM) and after varying the delayed activation time (control, 1, 2, and 4 h) after fusion. Caffeine added to media during manipulation produced a higher rate of development to blastocysts in the 1.25 mM group than in the other concentration groups (22.8% vs. 16.1%, 16.2%, and 19.2%; p < 0.05). When caffeine was added during the 4 h delayed activation, the 1.25 mM caffeine concentration produced a significantly higher rate of development than those in the other 4 h-activation-delayed caffeine concentration groups (22.4% vs. 9.4%, 14.0%, and 11.1%; p < 0.05). On the other hand, no significant improvement over that in the control group was observed when caffeine was supplemented during both the manipulation period and delayed activation period (16.0% vs. 15.2%), respectively. The levels of POU5F1, SOX2, and NANOG expression in blastocysts were significantly higher in the delayed activation caffeine group (4 h, 1.25 mM) than in the control group (1 h, 0 mM; p < 0.05). In conclusion, a caffeine treatment at 1.25 mM during delayed activation for 4 h can improve the preimplantation development of porcine somatic cell nuclear transfer embryos by activating nuclear reprogramming.
Collapse
Affiliation(s)
- Ghangyong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Xenotransplantation Research Center, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Pantu Kumar Roy
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bahia Ms Hassan
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
9
|
Lopukhov AV, Singina GN, Zinovieva NA. Biotechnological bases of the development of cloned pig embryos. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The term ‘clone’ in animal biotechnology refers to an organism derived from non-sexual reproduction, which is both a direct offspring and a genetic copy of the parent organism. To date, the pig appears to be the most interesting object in cloning research. Somatic cell nuclear transfer in pigs has a wide range of potential applications in various fields of human scientific and economic activities. However, the efficiency of producing cloned embryos in swine is still lower than that of other livestock species, in particular horses and cattle. Somatic cell nuclear transfer is a technically complex multi-stage technology, at each stage of which the pig oocytes, which are more susceptible to changes of surrounding conditions, are affected by various factors (mechanical, physical, chemical). At the stage of oocyte maturation, changes in the cell ultrastructures of the ooplasm occur, which play an important role in the subsequent nuclear reprogramming of the transferred donor cell. Before transfer to the oocyte donor somatic cells are synchronized in the G0/G1 stage of the cell cycle to ensure the normal ploidy of the cloned embryo. When removing the nucleus of pig oocytes maturated in vitro, it is necessary to pay attention to the problem of preserving the viability of cells, which were devoid of their own nuclear material. To perform the reconstruction, a somatic cell is placed, using micro-tools, in the perivitelline space, where the first polar body was previously located, or in the cytoplasm of an enucleated oocyte. The method of manual cloning involves the removal of the oocyte nucleus with subsequent fusion with the donor cell without the use of micromanipulation techniques. The increased sensitivity of oocytes to the environmental conditions causes special requirements for the choice of the system for in vitro culture of cloned pig embryos. In this work, we have reviewed the modern methods used for the production of cloned embryos and identified the technological issues that prevent improving the efficiency of somatic cloning of pigs.
Collapse
Affiliation(s)
- A. V. Lopukhov
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst
| | - G. N. Singina
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst
| | - N. A. Zinovieva
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst
| |
Collapse
|
10
|
Song SH, Lee KL, Xu L, Joo MD, Hwang JY, Oh SH, Kong IK. Production of cloned cats using additional complimentary cytoplasm. Anim Reprod Sci 2019; 208:106125. [PMID: 31405460 DOI: 10.1016/j.anireprosci.2019.106125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is an important technique for producing cloned animals. It, however, is inefficient when there is use of SCNT for cloned animal production. Cytoplasm injection cloning technology (CICT) was developed to overcome the inefficiencies of SCNT use of this purpose. The use of CICT involves additional cytoplasm fusing with enucleated oocytes to restore the cytoplasmic volume, thus improving the in vitro developmental competence and quality of cloned embryos. In this study, there was application of CICT in cats to improve the in vitro developmental competence of cloned embryos, as well as the production of the offspring. The results of this study were that fusion rate of the cloned embryos with use of the CICT method was greater than that with SCNT (80.0 ± 4.8% compared with 67.8 ± 11.3%, respectively), and more blastocysts developed with use of CICT than SCNT (20.0 ± 2.0% compared with 13.5 ± 5.0%, respectively). The 62 cloned embryos that were produced with use of CICT were transferred into five estrous synchronized recipients, and 151 cloned embryos produced using SCNT were transferred to 13 estrous-synchronized recipients. After the embryo transfer, there was birth from surrogate mothers of one live-born kitten that resulted using SCNT compared with three live-born kittens using CICT. The number of CICT-cloned embryos born was greater than that of SCNT-cloned embryos (4.8 ± 2.3% compared with 0.7 ± 1.3%, P < 0.05). These results indicate that the CICT technique can be used to produce cloned kittens, including endangered feline species.
Collapse
Affiliation(s)
- Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Ji-Yoon Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
11
|
Yuan Y, Park J, Tian Y, Choi J, Pasquariello R, Alexenko AP, Dai A, Behura SK, Roberts RM, Ezashi T. A six-inhibitor culture medium for improving naïve-type pluripotency of porcine pluripotent stem cells. Cell Death Discov 2019; 5:104. [PMID: 31240131 PMCID: PMC6579764 DOI: 10.1038/s41420-019-0184-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
Understanding essential signaling network requirements and making appropriate adjustments in culture conditions are crucial if porcine pluripotent stem cells (PSC) are to achieve their full potential. Here, we first used two protein factors (LIF and FGF2) and kinase inhibitor combinations in attempts to convert primed type lentiviral-reprogrammed porcine induced PSC (Lv-piPSC) into naïve-like state and developed a medium called FL6i. In addition to FGF2 and LIF, this medium contained inhibitors of MAPK14, MAPK8, TGFB1, MAP2K1, GSK3A and BMP. Crucially, the usual TGFB1 and BMP4 protein components of many stem cell media were replaced in FL6i with inhibitors of TGFB1 and BMP. With this medium, Lv-piPSC were readily transformed from their original primed state into cells that formed colonies with typical features of naïve-state stem cells. The FL6i medium also assisted generation of naïve-type piPSC lines from porcine embryonic fibroblasts with non-integrating episomal plasmids (Epi-piPSC). These lines, despite retaining variable amounts of vector DNA, expressed higher endogenous pPOU5F1 and pSOX2 than Lv-piPSC. They have been cultured without obvious morphological change for >45 passages and retained pluripotent phenotypes in terms of upregulation of genes associated with pluripotency, low expression of genes linked to emergence of somatic cell lineages, and ability to generate well differentiated teratomas in immune-compromised mice. FL6i conditions, therefore, appear to support elevated pluripotent phenotypes. However, FL6i was less able to support the generation of embryonic stem cells from porcine blastocysts. Although colonies with dome-shaped morphologies were evident and the cells had some gene expression features linked to pluripotency, the phenotypes were ultimately not stable. Pathway analysis derived from RNAseq data performed on the various cell lines generated in this study suggest the benefits of employing the FL6i medium on porcine cells reside in its ability to minimize TGFB1 and BMP signaling, which would otherwise de-stabilize the stem cell state.
Collapse
Affiliation(s)
- Ye Yuan
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA.,2Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA.,3Colorado Center for Reproductive Medicine, Lone Tree, CO 80124 USA
| | - Jinkyu Park
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA.,2Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA.,4Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510 USA
| | - Yuchen Tian
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Jungmin Choi
- 5Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065 USA
| | - Rolando Pasquariello
- 3Colorado Center for Reproductive Medicine, Lone Tree, CO 80124 USA.,6Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milano, 20133 Italy
| | - Andrei P Alexenko
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA.,2Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Aihua Dai
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Susanta K Behura
- 2Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - R Michael Roberts
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA.,2Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Toshihiko Ezashi
- 1Bond Life Sciences Center, University of Missouri, Columbia, MO 65211 USA.,2Division of Animal Sciences, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
12
|
Uh K, Ryu J, Zhang L, Errington J, Machaty Z, Lee K. Development of novel oocyte activation approaches using Zn2+ chelators in pigs. Theriogenology 2019; 125:259-267. [DOI: 10.1016/j.theriogenology.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
13
|
Exogenous Nitric Oxide Donation During In Vitro Maturation Improves Embryonic Development after Parthenogenesis and Somatic Cell Nuclear Transfer in Pigs. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Ullah O, Li Z, Ali I, Xu L, Liu H, Shah SZA, Fang N. Pterostilbene alleviates hydrogen peroxide-induced oxidative stress via nuclear factor erythroid 2 like 2 pathway in mouse preimplantation embryos. J Reprod Dev 2018; 65:73-81. [PMID: 30429414 PMCID: PMC6379763 DOI: 10.1262/jrd.2018-089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pterostilbene (PTS) in blueberries is a phytoalexin with antioxidant properties. PTS exerts strong cytoprotective effects on various cells via Nuclear Factor Erythroid 2 like 2 (NFE2L2)
pathway. We evaluated the antioxidant PTS treatment in mouse preimplantation embryos. In vitro culture media were supplemented with different concentrations of PTS.
Treatment of zygotes with 0.25 μM PTS improved the development of day 4 blastocysts (P < 0.05). Moreover, H2O2 treatment significantly increased the
reactive oxygen species level and reduced the glutathione level in mouse blastocyst, whereas PTS treatment counteracted these effects. The fluorescence intensity of apoptotic positive cell
was higher in the H2O2 group than in the PTS group. Furthermore, PTS-treated embryos significantly increased the protein expression of NFE2L2 in the nucleus and
decreased Kelch-like ECH-associated protein1 (KEAP1). PTS treatment significantly increased the expression of downstream target genes involved in the NFE2L2 pathway, such as catalase
(CAT), heme oxygenase1 (HMOX1), glutathione peroxidase (GPX), and superoxide dismutase (SOD); these genes confer
cellular protection. In addition, PTS treatment significantly increased the expression of anti-apoptotic B-cell lymphoma 2 (BCL2), with a concomitant reduction in the
apoptotic Bcl-2-associated X protein (BAX) and Caspase-3 genes in the embryo. PTS treatment also increased the protein expression of BCL2 and reduced the
protein expression of BAX in the mouse embryo. In conclusion, PTS activated NFE2L2 signaling pathway in the development of mouse embryos by altering downstream expression of genes involved
in the antioxidant mechanisms and apoptosis.
Collapse
Affiliation(s)
- Obaid Ullah
- Department of Animal Science, Agricultural College, Yanbian University, Jilin Province 133002, China
| | - Zhongshu Li
- Department of Animal Science, Agricultural College, Yanbian University, Jilin Province 133002, China
| | - Ihsan Ali
- Department of Animal Science, Agricultural College, Yanbian University, Jilin Province 133002, China
| | - Lijie Xu
- Department of Animal Science, Agricultural College, Yanbian University, Jilin Province 133002, China
| | - Haixing Liu
- Department of Animal Science, Agricultural College, Yanbian University, Jilin Province 133002, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Nanzhu Fang
- Department of Animal Science, Agricultural College, Yanbian University, Jilin Province 133002, China
| |
Collapse
|
15
|
de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre H, Bordignon V. A fast and reliable protocol for activation of porcine oocytes. Theriogenology 2018; 123:22-29. [PMID: 30273737 DOI: 10.1016/j.theriogenology.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022]
Abstract
Oocyte activation is physiologically triggered by the sperm during fertilization, however, production of porcine embryos by somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA) requires artificial oocyte activation. Although effective protocols for artificial oocyte activation have been developed, current protocols require long exposures to non-specific inhibitors, which do not mimic the physiological process and may have detrimental consequences for embryo development. This study attempted to mimic the physiological activation events induced by fertilization, through the manipulation of Ca2+ and Zn2+ levels, and protein kinase C (PKC) as well as cyclin dependent kinase 1 (CDK1) activities, with the aim of developing an improved protocol for activation of porcine oocytes. In the first experiment, matured oocytes were exposed to ionomycin (Ion) for 5 min, and then treated with a specific CDK1 inhibitor (RO-3306) and/or PKC activator (OAG) for different time intervals. The highest rate of pronuclear (PN) formation (58.8%) was obtained when oocytes were treated with PKCa + CDK1i for 4 h. Second, PN formation and embryo development were evaluated in oocytes exposed for different times to a Zn2+ chelator (TPEN) following Ion treatment. This revealed that 15 min was the minimal exposure time to TPEN required to maximise oocyte activation and embryo development. Next, we observed that treatment with PKCa + CDK1i for 4 h after TPEN for 15 min decreased embryo development compared to TPEN alone. Lastly, we compared the efficiency of the Ion (5 min) plus TPEN (15 min) protocol (IT-20) with a control protocol used in our laboratory (CT-245) for production of PA, SCNT and ICSI embryos. In PA embryos, IT-20 resulted in higher cleavage (72% vs 49.2%) and blastocyst from cleaved embryos (65.5% vs 46.2%) compared to CT-245. In ICSI embryos, higher PN rates were obtained with the IT-20 protocol compared with CT-245 and the non-activated (N-A) group. Moreover, the two protocols were equally efficient for activation of SCNT embryos. Based on these findings, we propose that IT-20 is a fast and effective protocol for activation of porcine oocytes.
Collapse
Affiliation(s)
- Mariana P de Macedo
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada.
| |
Collapse
|
16
|
Sá AL, Sampaio RV, da Costa Almeida NN, Sangalli JR, Brito KNL, Bressan FF, Rissino JD, do Socorro Damasceno Santos S, Meirelles FV, Ohashi OM, dos Santos Miranda M. Effect of POU5F1 Expression Level in Clonal Subpopulations of Bovine Fibroblasts Used as Nuclear Donors for Somatic Cell Nuclear Transfer. Cell Reprogram 2017; 19:294-301. [DOI: 10.1089/cell.2016.0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- André Luiz Sá
- Laboratório de Fecundação In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Rafael V. Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Karynne Nazaré Lins Brito
- Laboratório de Fecundação In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Joirge Dores Rissino
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Flavio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Otávio Mitio Ohashi
- Laboratório de Fecundação In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Moysés dos Santos Miranda
- Laboratório de Fecundação In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
17
|
Parthenogenetic activation and somatic cell nuclear transfer of porcine oocytes activated by an electric pulse and AZD5438 treatment. ZYGOTE 2017; 25:453-461. [PMID: 28712374 DOI: 10.1017/s0967199417000272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.
Collapse
|
18
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
19
|
Felmer R, Arias ME. Activation treatment of recipient oocytes affects the subsequent development and ploidy of bovine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Mol Reprod Dev 2015; 82:441-9. [DOI: 10.1002/mrd.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
- R. Felmer
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera; Temuco Chile
- Faculty of Agriculture and Forestry; Department of Agricultural Sciences and Natural Resources; Universidad de La Frontera; Temuco Chile
| | - M. E. Arias
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera; Temuco Chile
| |
Collapse
|
20
|
Isolation and characterization of trophoblast-derived stem-like cells from peri-implantation porcine embryos. Anim Reprod Sci 2015; 154:128-41. [PMID: 25660622 DOI: 10.1016/j.anireprosci.2015.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/09/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
In mammals, the trophoblast lineage of the embryo is specified before attachment/implantation to become the fetal portion of the placenta. Trophoblast-derived cells were isolated and cultured from day 10 and day 13 porcine embryos and were grown in vitro in a defined, serum-free culture medium for over 2 years without showing any signs of senescence. However, trophoblast-derived cells placed into serum-containing medium rapidly senesce and fail to proliferate. Semiquantitative and quantitative gene expression analyses of cells in culture from 0 to 30 days confirmed the presence (and relative abundance) of mRNA transcripts from genes involved in trophoblast function (CDX2, TEAD4, CYP17A1, HSD17B1, FGFR2, PLET, HAND1) as well as some genes known to mediate pluripotency (POU5F1, KLF4, CMYC). Protein immunolocalization demonstrated expression of both trophoblast and mesenchymal cell markers. DNA methylation patterns in promoters of three critical developmental genes (HAND1, KLF4, TEAD4) did not change appreciably over 4 months of culture in vitro. It was demonstrated that these trophoblast-derived cells are easily stably transfected with an exogenous transgene (eGFP) by a variety of methods, and show the ability to survive and to be passaged repeatedly after transfection. In summary, early embryonic porcine trophoblast-derived cells have demonstrated unique characteristics, which means they could be used as valuable tools for laboratory work. Anticipated applications include the study of trophoblast physiology as well as possible solutions for improving efficiency of transgenesis by somatic cell nuclear transfer and for pluripotency reprogramming of cells.
Collapse
|
21
|
Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O'Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 2014; 91:78. [PMID: 25100712 DOI: 10.1095/biolreprod.114.121723] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Targeted modification of the pig genome can be challenging. Recent applications of the CRISPR/Cas9 system hold promise for improving the efficacy of genome editing. When a designed CRISPR/Cas9 system targeting CD163 or CD1D was introduced into somatic cells, it was highly efficient in inducing mutations. When these mutated cells were used with somatic cell nuclear transfer, offspring with these modifications were created. When the CRISPR/Cas9 system was delivered into in vitro produced presumptive porcine zygotes, the system was effective in creating mutations in eGFP, CD163, and CD1D (100% targeting efficiency in blastocyst stage embryos); however, it also presented some embryo toxicity. We could also induce deletions in CD163 or CD1D by introducing two types of CRISPRs with Cas9. The system could also disrupt two genes, CD163 and eGFP, simultaneously when two CRISPRs targeting two genes with Cas9 were delivered into zygotes. Direct injection of CRISPR/Cas9 targeting CD163 or CD1D into zygotes resulted in piglets that have mutations on both alleles with only one CD1D pig having a mosaic genotype. We show here that the CRISPR/Cas9 system can be used by two methods. The system can be used to modify somatic cells followed by somatic cell nuclear transfer. System components can also be used in in vitro produced zygotes to generate pigs with specific genetic modifications.
Collapse
Affiliation(s)
- Kristin M Whitworth
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri
| | - Kiho Lee
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri
| | - Joshua A Benne
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri
| | - Benjamin P Beaton
- National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Lee D Spate
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Stephanie L Murphy
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri
| | - Melissa S Samuel
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Jiude Mao
- National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Chad O'Gorman
- National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Clifton N Murphy
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri
| | | | | | | | - Kevin D Wells
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Randall S Prather
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
22
|
Liu Q, Zhang M, Hou D, Han X, Jin Y, Zhao L, Nie X, Zhou X, Yun T, Zhao Y, Huang X, Hou D, Yang N, Wu Z, Li X, Li R. Karyotype characterization of in vivo- and in vitro-derived porcine parthenogenetic cell lines. PLoS One 2014; 9:e97974. [PMID: 24844788 PMCID: PMC4028241 DOI: 10.1371/journal.pone.0097974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023] Open
Abstract
Mammalian haploid cell lines provide useful tools for both genetic studies and transgenic animal production. To derive porcine haploid cells, three sets of experiments were conducted. First, genomes of blastomeres from 8-cell to 16-cell porcine parthenogenetically activated (PA) embryos were examined by chromosome spread analysis. An intact haploid genome was maintained by 48.15% of blastomeres. Based on this result, two major approaches for amplifying the haploid cell population were tested. First, embryonic stem-like (ES-like) cells were cultured from PA blastocyst stage embryos, and second, fetal fibroblasts from implanted day 30 PA fetuses were cultured. A total of six ES-like cell lines were derived from PA blastocysts. No chromosome spread with exactly 19 chromosomes (the normal haploid complement) was found. Four cell lines showed a tendency to develop to polyploidy (more than 38 chromosomes). The karyotypes of the fetal fibroblasts showed different abnormalities. Cells with 19–38 chromosomes were the predominant karyotype (59.48–60.91%). The diploid cells were the second most observed karyotype (16.17%–22.73%). Although a low percentage (3.45–8.33%) of cells with 19 chromosomes were detected in 18.52% of the fetus-derived cell lines, these cells were not authentic haploid cells since they exhibited random losses or gains of some chromosomes. The haploid fibroblasts were not efficiently enriched via flow cytometry sorting. On the contrary, the diploid cells were efficiently enriched. The enriched parthenogenetic diploid cells showed normal karyotypes and expressed paternally imprinted genes at extremely low levels. We concluded that only a limited number of authentic haploid cells could be obtained from porcine cleavage-stage parthenogenetic embryos. Unlike mouse, the karyotype of porcine PA embryo-derived haploid cells is not stable, long-term culture of parthenogenetic embryos, either in vivo or in vitro, resulted in abnormal karyotypes. The porcine PA embryo-derived diploid fibroblasts enriched from sorting might be candidate cells for paternally imprinted gene research.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Manling Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongxia Hou
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xuejie Han
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yong Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihua Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Nie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ting Yun
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yuhang Zhao
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xianghua Huang
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Daorong Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaoqiang Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueling Li
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
- * E-mail: (XL); (RL)
| | - Rongfeng Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (XL); (RL)
| |
Collapse
|
23
|
Xiao X, Zi XD, Niu HR, Xiong XR, Zhong JC, Li J, Wang L, Wang Y. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes. Reprod Biol Endocrinol 2014; 12:30. [PMID: 24754924 PMCID: PMC3998235 DOI: 10.1186/1477-7827-12-30] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The competence for embryonic development after IVF is low in the yak, therefore, we investigated the effects of supplementation of FSH, LH and the proteasome inhibitor MG132 in IVM media on yak oocyte competence for development after IVF. METHODS In Experiment 1, yak cumulus-oocyte complexes (COCs) were in vitro matured (IVM) in TCM-199 with 20% fetal calf serum (FCS), 1 microg/mL estradiol-17beta, and different combinations of LH (50 or 100 IU/mL) and FSH (0, 1, 5, 10 microg/mL) at 38.6 degrees C, 5% CO2 in air for 24 h. Matured oocytes were exposed to frozen-thawed, heparin-capacitated yak sperm. Presumptive zygotes were cultured in SOF medium containing 6 mg/ml BSA, 0.5 mg/mL myoinositol, 3% (v/v) essential amino acids, 1% nonessential amino acids and 100 μg/mL L-glutamine (48 h, 38.5 degrees C, 5% CO2, 5% O2, and 90% N2). In Experiment 2, cumulus cells were collected at the end of IVM to determine FSHR and LHR mRNA expression by real-time PCR. In Experiment 3 and 4, COCs were cultured in the presence or absence of the proteasomal inhibitor MG132 from either 0-6 h or 18-24 h after initiation of maturation. RESULTS The optimum concentration of FSH and LH in IVM media was 5 microg/mL FSH and 50 IU/mL LH which resulted in the greatest cleavage (79.1%) and blastocyst rates (16.1%). Both FSHR and LHR mRNA were detected in yak cumulus cells after IVM. Treatment with MG132 early in maturation reduced (P<0.05) cleavage and blastocyst rates. Conversely, treatment with MG132 late in maturation improved (P<0.05) blastocyst rate. Optimal results with MG132 were achieved at a concentration of 10 microM. CONCLUSIONS An optimum concentration of FSH and LH in IVM medium, and treatment with MG132 late in maturation can improve yak oocytes competence for development after IVF.
Collapse
Affiliation(s)
- Xiao Xiao
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Xiang-Dong Zi
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Hui-Ran Niu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Xian-Rong Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Jin-Cheng Zhong
- College of Tibetan Plateau Research, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Jian Li
- College of Tibetan Plateau Research, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Li Wang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Yong Wang
- College of Tibetan Plateau Research, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| |
Collapse
|
24
|
Pregnancy and Neonatal Care of SCNT Animals. PRINCIPLES OF CLONING 2014. [PMCID: PMC7149996 DOI: 10.1016/b978-0-12-386541-0.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Mukherjee A, Malik H, Saha AP, Dubey A, Singhal DK, Boateng S, Saugandhika S, Kumar S, De S, Guha SK, Malakar D. Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J Assist Reprod Genet 2013; 31:229-39. [PMID: 24305840 DOI: 10.1007/s10815-013-0116-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/09/2013] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The aim of the present study was to determine whether supplementation of resveratrol, a stilbenoid antioxidant with therapeutic significance, influences goat (Capra hircus) oocyte maturation and subsequent embryonic development and expression of apoptosis and early embryonic development-related genes. METHODS Five different concentrations of resveratrol (0.1, 0.25, 0.5, 2.0 and 5.0 μM) were used in in vitro maturation (IVM) medium. Cell tracker blue and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent stains were used to assay intracellular glutathione and reactive oxygen species levels in mature oocytes. Parthenogenetic activation and hand-made cloning were performed to check the developmental potential following resveratrol treatment. We used quantitative real-time PCR to analyze embryonic gene expression. RESULT Compared to control, no significant improvement was observed in nuclear maturation in resveratrol-treated groups and at 5.0 μM concentration maturation rate decreased significantly (P < 0.05). But resveratrol treatment at the concentrations of 0.25, 0.5 μM significantly reduced intracellular ROS, and increased GSH concentrations. Oocytes treated with 0.25, 0.5 μM resveratrol when subsequently used for PA and HMC, higher extent of blastocyst yields were observed. Expression analysis of proapoptotic (Bax) gene in mature oocytes, cumulus cells, and HMC-derived blastocysts revealed lesser transcript abundances in various resveratrol-treated groups., however no change in the same was observed for antiapoptotic gene (Bcl2). Differential expression of genes associated with developmental competence and nuclear reprogramming was also observed in HMC-derived blastocysts. CONCLUSION Our results show that resveratrol treatment at optimum concentrations (0.25 and 0.5 μM) during IVM produced beneficial microenvironment within oocytes by increasing the intracellular GSH, decreasing ROS level and this in turn, stimulated embryonic development and regulated gene expression.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim GA, Oh HJ, Park JE, Kim MJ, Park EJ, Jo YK, Jang G, Kim MK, Kim HJ, Lee BC. Species-specific challenges in dog cloning. Reprod Domest Anim 2013; 47 Suppl 6:80-3. [PMID: 23279471 DOI: 10.1111/rda.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning.
Collapse
Affiliation(s)
- G A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pedersen R, Andersen AD, Hermann-Bank ML, Stagsted J, Boye M. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype. Gut Microbes 2013; 4:371-81. [PMID: 23974297 PMCID: PMC3839981 DOI: 10.4161/gmic.26108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.
Collapse
Affiliation(s)
- Rebecca Pedersen
- National Veterinary Institute; Technical University of Denmark; Frederiksberg, Denmark,Correspondence to: Rebecca Pedersen, and
| | | | | | - Jan Stagsted
- Institute of Food Chemistry and Technology; University of Aarhus; Tjele, Denmark
| | - Mette Boye
- National Veterinary Institute; Technical University of Denmark; Frederiksberg, Denmark
| |
Collapse
|
28
|
Isom SC, Stevens JR, Li R, Spollen WG, Cox L, Spate LD, Murphy CN, Prather RS. Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies. Physiol Genomics 2013; 45:577-89. [PMID: 23695885 DOI: 10.1152/physiolgenomics.00094.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Substantial mortality of in vitro manipulated porcine embryos is observed during peri-attachment development. Herein we describe our efforts to characterize the transcriptomes of embryonic disc (ED) and trophectoderm (TE) cells from porcine embryos derived from in vivo fertilization, in vitro fertilization (IVF), parthenogenetic oocyte activation (PA), and somatic cell nuclear transfer (SCNT) on days 10, 12, and 14 of gestation. The IVF, PA, and SCNT embryos were generated with in vitro matured oocytes and were cultured overnight in vitro before being transferred to recipient females. Sequencing of cDNA from the resulting embryonic samples was accomplished with the Genome Analyzer IIx platform from Illumina. Reads were aligned to a custom-built swine transcriptome. A generalized linear model was fit for ED and TE samples separately, accounting for embryo type, gestation day, and their interaction. Those genes with significant differences between embryo types were characterized in terms of gene ontologies and KEGG pathways. Transforming growth factor-β signaling was downregulated in the EDs of IVF embryos. In TE cells from IVF embryos, ubiquitin-mediated proteolysis and ErbB signaling were aberrantly regulated. Expression of genes involved in chromatin modification, gene silencing by RNA, and apoptosis was significantly disrupted in ED cells from SCNT embryos. In summary, we have used high-throughput sequencing technologies to compare gene expression profiles of various embryo types during peri-attachment development. We expect that these data will provide important insight into the root causes of (and possible opportunities for mitigation of) suboptimal development of embryos derived from assisted reproductive technologies.
Collapse
Affiliation(s)
- S Clay Isom
- Animal Dairy & Veterinary Sciences Department, Utah State University, Logan, Utah, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 2013; 13:43. [PMID: 23688045 PMCID: PMC3691671 DOI: 10.1186/1472-6750-13-43] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. RESULTS 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. CONCLUSION Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.
Collapse
Affiliation(s)
- Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Ludwig Geistlinger
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Annegret Wuensch
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Anne Richter
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Andrea Baehr
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Katrin Kraehe
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Katinka Burkhardt
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Krzysztof Flisikowski
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Tatiana Flisikowska
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Claudia Merkl
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Martina Landmann
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Marina Durkovic
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Alexander Tschukes
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Simone Kraner
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Dirk Schindelhauer
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Tobias Petri
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Alexander Kind
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Angelika Schnieke
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Ralf Zimmer
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
30
|
Rødgaard T, Skovgaard K, Stagsted J, Heegaard PMH. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs. Cell Reprogram 2013; 15:185-94. [PMID: 23668862 DOI: 10.1089/cell.2012.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.
Collapse
Affiliation(s)
- Tina Rødgaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
31
|
Yang X, Mao J, Walters EM, Zhao MT, Teson J, Lee K, Prather RS. Xenopus egg extract treatment reduced global DNA methylation of donor cells and enhanced somatic cell nuclear transfer embryo development in pigs. Biores Open Access 2013; 1:79-87. [PMID: 23515109 PMCID: PMC3559225 DOI: 10.1089/biores.2012.0214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The efficiency to produce offspring by somatic cell nuclear transfer (SCNT) is low. It has been showed that treatment of donor cells with Xenopus oocyte extract increased live births in ovine and handmade cloned embryo development in pigs. Scriptaid treatment after oocyte activation is another approach to improve SCNT efficiency. The present study was carried out to investigate (a) the effects of treatment of donor cells with Xenopus egg extract on donor cell DNA methylation at days 0 and 4 with two digitonin permeabilization concentrations (10 and 15 μg/mL), (b) the effects of treatment of donor cells with Xenopus egg extract on early development of cloned embryos, and (c) the effects of combined treatments, treating donor cells with extract before nuclear transfer and treatment of cloned embryos with scriptaid after oocyte activation, on embryo development. Compared to the control, a decrease of DNA methylation in donor cells was observed at 2.5 h after extract treatment. However, this effect was not observed after the cells were cultured for four more days. More embryos developed into blastocysts in the Xenopus egg extract-treated group than in the control (13.4±1.9% vs. 9.1±1.9%, p=0.01). Furthermore, scriptaid treatment of cloned embryos further increased the frequency of development to blastocyst, compared to the control reconstructed with the same extract-treated cells (22.5±0.9% vs. 15.3±0.9%, p<0.01). In addition, egg extract treatments increased the cell number in the blastocysts. This study demonstrated that Xenopus egg extract treatment reduced donor cell DNA methylation and enhanced the SCNT embryo development. Moreover, the combined treatments of donor cells with egg extract before nuclear transfer and of cloned embryos with scriptaid could improve cloned embryo development additively.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Division of Animal Sciences, University of Missouri , Columbia, Missouri. ; Key Laboratory of Stem Cell and Regenerative Medicine, Center of Cell Developmental Biology, College of Preclinical Medicine, Fujian Medical University , Fuzhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
32
|
Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol J Vet Sci 2013; 15:509-16. [PMID: 23214372 DOI: 10.2478/v10181-012-0078-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The completely new strategy of pseudophysiological transcomplementary (transcytoplasmic) activation (PP-TCA) of nuclear-transferred oocytes, which had been derived from pWAPhGH-GFPBsd transfected foetal fibroblast cells, was recently applied to the somatic cell cloning of pigs. It resulted in the considerable enhancing not only the cleavage activity of cultured cloned embryos, but also their morula and blastocyst formation rates as compared to the use of standard simultaneous fusion and electrical activation of reconstituted oocytes (77% vs. 57%, 63% vs. 46% and 40% vs. 27%, respectively). Altogether, the use of cytosolic components descended from heterologous (rabbit) zygotes as the agents for stimulation of porcine clonal cytoplasmic hybrids (cybrids) turned out to be reliable and feasible strategy for the generation of transgenic blastocysts by somatic cell nuclear transfer (SCNT). Furthermore, to our knowledge, no previous study has reported the preimplantation developmental outcome of transgenic nuclear-transferred pig embryos following the PP-TCA that was developed and optimised in our laboratory.
Collapse
|
33
|
The combined treatment of calcium ionophore with strontium improves the quality of ovine SCNT embryo development. ZYGOTE 2012; 21:139-50. [DOI: 10.1017/s0967199412000470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryPoor embryo quality is a major problem that contributes to the failure of pregnancy in somatic cell nuclear transfer (SCNT). The aims of this study were to improve the quality of ovine SCNT embryos by modifying the conventional activation protocol with the addition of SrCl2. In order to achieve this objective we conducted a series of experiments with in vitro-matured oocytes to optimize conditions for oocyte activation with strontium, and subsequently applied the protocol to SCNT embryos. The results showed that in vitro-matured oocytes could be activated effectively by 10 mM SrCl2 + 5 mg/ml cytochalasin B (CB) for 5 h in the absence of Ca2+ and that the blastocyst rate on day 7 (33.2%) was similar to that in the control group (31.0%) (5 M calcium ionophore [IP] A23187 for 5 min and cultured in CB/cycloheximide [CHX] for 5 h; P > 0.05). In SCNT experiments, the total cell number/blastocyst (104.12 ± 6.86) in the IP + SrCl2/CB-treatment group was, however, significantly higher than that in the control group (81.07 ± 3.39; P < 0.05). Apoptotic index (12.29 ± 1.22%) was significantly lower than the control (17.60 ± 1.39%; P < 0.05) when a combination of IP and SrCl2/CB was applied to SCNT embryos. In addition, karyotyping of the SCNT embryos showed that the percentage of diploid blastocysts in the IP + SrCl2/CB-treatment group was slightly higher than that in the control (P > 0.05). We conclude that the modified activation protocol with IP + SrCl2/CB can improve significantly the quality of ovine SCNT embryos in terms of total cell number, apoptosis and ploidy.
Collapse
|
34
|
You J, Lee E, Bonilla L, Francis J, Koh J, Block J, Chen S, Hansen PJ. Treatment with the proteasome inhibitor MG132 during the end of oocyte maturation improves oocyte competence for development after fertilization in cattle. PLoS One 2012; 7:e48613. [PMID: 23144909 PMCID: PMC3492449 DOI: 10.1371/journal.pone.0048613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Maturation of the oocyte involves nuclear and cytoplasmic changes that include post-translational processing of proteins. The objective was to investigate whether inhibition of proteasomes during maturation would alter competence of the bovine oocyte for fertilization and subsequent development. Cumulus-oocyte complexes were cultured in the presence or absence of the proteasomal inhibitor MG132 from either 0-6 h or 16-22 h after initiation of maturation. Treatment with MG132 early in maturation prevented progression to meiosis II and reduced fertilization rate and the proportion of oocytes and cleaved embryos that became blastocysts. Conversely, treatment with MG132 late in maturation improved the percentage of oocytes and cleaved embryos that became blastocysts without affecting nuclear maturation or fertilization rate. Optimal results with MG132 were achieved at a concentration of 10 µM - effects were generally not observed at lower or higher concentrations. Using proteomic analysis, it was found that MG132 at the end of maturation increased relative expression of 6 proteins and decreased relative expression of 23. Among those increased by MG132 that are potentially important for oocyte competence are GAPDH, involved in glycolysis, TUBA1C, needed for organellar movement, and two proteins involved in protein folding (P4HB and HYOU1). MG132 decreased amounts of several proteins that exert anti-apoptotic actions including ASNS, HSP90B1, PDIA3 and VCP. Another protein decreased by MG132, CDK5, can lead to apoptosis if aberrantly activated and one protein increased by MG132, P4HB, is anti-apoptotic. Finally, the pregnancy rate of cows receiving embryos produced from oocytes treated with MG132 from 16-22 h of maturation was similar to that for control embryos, suggesting that use of MG132 for production of embryos in vitro does not cause a substantial decrease in embryo quality.
Collapse
Affiliation(s)
- Jinyoung You
- College of Veterinary Medicine, Kangwon National University, Chunchon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chunchon, Korea
| | - Luciano Bonilla
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
| | - Jasmine Francis
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
- Dept. of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jeremy Block
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
- Ovatech LLC, Gainesville, Florida, United States of America
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
- Dept. of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Peter J. Hansen
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Samiec M, Skrzyszowska M. Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology 2012; 78:1855-67. [PMID: 22979963 DOI: 10.1016/j.theriogenology.2012.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 02/05/2023]
Abstract
The present study was undertaken to investigate the preimplantation developmental competence of cloned pig embryos that were derived from fibroblast cell nuclei by different methods for the activation of reconstructed oocytes. In subgroups IA and IB, nuclear-transferred (NT) oocytes derived from either adult cutaneous or fetal fibroblast cells that had been classified as nonapoptotic by intra vitam analysis for programmed cell death using the YO-PRO-1 DNA fluorochrome underwent sequential physical (i.e., electrical) and chemical activation (SE-CA). This novel method of SE-CA, which was developed and optimized in our laboratory, involves treatment of reconstituted oocytes with direct current pulses and subsequent exposure to 7.5 μM calcium ionomycin, followed by incubation with 30 μM R-roscovitine (R-RSCV), 0.7 mM 6-dimethylaminopurine and 3.5 μg/mL cycloheximide. In subgroups IIA and IIB, NT oocytes were subjected to the standard method of simultaneous fusion and activation mediated by direct current pulses. The proportion of cloned embryos in subgroup IA that reached the morula and blastocyst stages was 145/248 (58.5%) and 78/248 (31.5%), respectively. The proportions of cloned embryos in subgroup IB that reached the morula and blastocyst stages were 186/264 (70.5%) and 112/264 (42.4%), respectively. In turn, subgroup IIA yielded proportions at the morula and blastocyst stages of 110/234 (47.0%) and 49/234 (20.9%), respectively. Subgroup IIB yielded proportions at the morula and blastocyst stages of 144/243 (59.3%) and 74/243 (30.5%), respectively. In summary, the SE-CA of NT oocytes reconstructed from either type of nonapoptotic/nonnecrotic (i.e., YO-PRO-1-negative) fibroblast cell resulted in porcine cloned embryos with considerably better in vitro developmental outcomes than those of cloned embryos generated using the simultaneous fusion and activation approach. To our knowledge, this is the first report of the successful stimulation of porcine NT oocytes using electric pulses followed by an additional activation with a higher dose (1.5 times) of calcium ionomycin and subsequent exposure to a combination of 30 μM R-RSCV and lower concentrations (by 3 times) of 6-dimethylaminopurine and cycloheximide. Moreover, we report here the first use of R-RSCV, a novel meiosis-promoting factor-related p34(cdc2) kinase inhibitor, in the oocyte activation protocol for the somatic cell cloning of pigs.
Collapse
Affiliation(s)
- M Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Kraków, Poland.
| | | |
Collapse
|
36
|
Rødgaard T, Skovgaard K, Stagsted J, Heegaard PMH. Expression of innate immune response genes in liver and three types of adipose tissue in cloned pigs. Cell Reprogram 2012; 14:407-17. [PMID: 22928970 DOI: 10.1089/cell.2012.0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity.
Collapse
Affiliation(s)
- Tina Rødgaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
37
|
Mao J, Tessanne K, Whitworth KM, Spate LD, Walters EM, Samuel MS, Murphy CN, Tracy L, Zhao J, Prather RS. Effects of combined treatment of MG132 and scriptaid on early and term development of porcine somatic cell nuclear transfer embryos. Cell Reprogram 2012; 14:385-9. [PMID: 22917492 DOI: 10.1089/cell.2012.0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although improving, the efficiency of producing offspring by somatic cell nuclear transfer (SCNT) is still low (<1.5%). Our laboratory has demonstrated that histone deacetylase inhibitor (Scriptaid) treatment of reconstructed embryos enhances blastocyst formation and cloning efficiency in pigs. It has also been shown that proteasomal inhibitor MG132 treatment for 2 h after activation of oocytes increases blastocyst rate and pregnancy rate. The current experiment was carried out to determine the effects of combined MG132 and Scriptaid treatment on early embryo development in vitro and on term development in vivo. Immediately after electrofusion and activation, SCNT oocytes were treated with 0, 1, or 10 μM MG132 for 2 h in the presence of 500 nM Scriptaid, washed and treated with Scriptaid for an additional 14 to 15 h, then cultured in porcine zygote medium 3 (PZM3) until day 6. There was no difference in percent cleavage (58.1 ± 7.2%, 62.7 ± 7.2%, and 62.5 ± 7.2%) on day 2, or total cell number (23.1 ± 2.2, 24.0 ± 2.0, and 24.5 ± 2.3 for the 0, 1, and 10 μM MG132 groups, respectively) on day 6 among the three groups. Interestingly, there was no difference in percentage of blastocysts between the 0 (18.5±4.7%) and 1 (25.1 ± 4.7%) μM MG132 treatment groups; however, compared with the 10 μM MG132 group (14.0 ± 4.7%), more embryos from the 1 μM MG132 group developed into blastocysts (p<0.05). To determine the effects on term development in vivo, two MG132 groups were included (0 and 1 μM MG132), and embryos were treated as above and transferred into synchronized surrogates after treatment. There was no difference in the oocyte-donor cell fusion rate, number of embryos transferred, pregnancy rate at days 28, 60, and at term, pigs delivered per embryo transfer, litter size, body weight at birth, nor cloning efficiency between the Scriptaid-alone control and MG132+Scriptaid combined groups. In summary, the combined treatment of MG132 and Scriptaid did not improve term development compared to Scriptaid treatment alone.
Collapse
Affiliation(s)
- Jiude Mao
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
L-carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione synthesis and embryonic gene expression. Theriogenology 2012; 78:235-43. [DOI: 10.1016/j.theriogenology.2012.02.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/03/2012] [Accepted: 02/15/2012] [Indexed: 11/22/2022]
|
39
|
Miller D, Packthongsuk K, Rathbun T, Boyle D, Troyer D, Davis DL. Confocal Imaging of Trans-epithelial Trafficking by Immune and Umbilical Cord Stem Cells in the Neonatal Porcine Intestine. Anat Histol Embryol 2012; 41:461-8. [DOI: 10.1111/j.1439-0264.2012.01157.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 04/01/2012] [Indexed: 11/30/2022]
Affiliation(s)
- D. Miller
- Department of Animal Sciences and Industry; Kansas State University; Manhattan; KS; USA
| | - K. Packthongsuk
- Department of Animal Sciences and Industry; Kansas State University; Manhattan; KS; USA
| | - T. Rathbun
- Department of Animal Sciences and Industry; Kansas State University; Manhattan; KS; USA
| | - D. Boyle
- Division of Biology; Kansas State University; Manhattan; KS; USA
| | - D. Troyer
- Department of Anatomy and Physiology; Kansas State University; Manhattan; KS; USA
| | - D. L. Davis
- Department of Animal Sciences and Industry; Kansas State University; Manhattan; KS; USA
| |
Collapse
|
40
|
Zhao MT, Yang X, Lee K, Mao J, Teson JM, Whitworth KM, Samuel MS, Spate LD, Murphy CN, Prather RS. The in vivo developmental potential of porcine skin-derived progenitors and neural stem cells. Stem Cells Dev 2012; 21:2682-8. [PMID: 22482370 DOI: 10.1089/scd.2012.0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multipotent skin-derived progenitors (SKPs) can be traced back to embryonic neural crest cells and are able to differentiate into both neural and mesodermal progeny in vitro. Neural stem cells (NSCs) are capable of self-renewing and can contribute to neuron and glia in the nervous system. Recently, we derived porcine SKPs and NSCs from the same enhanced green fluorescent protein (EGFP) transgenic fetuses and demonstrated that SKPs could contribute to neural and mesodermal lineages in vivo. However, it remains unclear whether porcine SKPs and NSCs can generate ectoderm and mesoderm lineages or other germ layers in vivo. Embryonic chimeras are a well-established tool for investigating cell lineage determination and cell potency through normal embryonic development. Thus, the purpose of this study was to investigate the in vivo developmental potential of porcine SKPs and fetal brain-derived NSCs by chimera production. Porcine SKPs, NSCs, and fibroblasts were injected into precompact in vitro fertilized embryos (IVF) and then transferred into corresponding surrogates 24 h postinjection. We found that porcine SKPs could incorporate into the early embryos and contribute to various somatic tissues of the 3 germ layers in postnatal chimera, and especially have an endodermal potency. However, this developmental potential is compromised when they differentiate into fibroblasts. In addition, porcine NSCs fail to incorporate into host embryos and contribute to chimeric piglets. Therefore, neural crest-derived SKPs may represent a more primitive state than their counterpart neural stem cells in terms of their contributions to multiple cell lineages.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Photoreceptor Differentiation following Transplantation of Allogeneic Retinal Progenitor Cells to the Dystrophic Rhodopsin Pro347Leu Transgenic Pig. Stem Cells Int 2012; 2012:939801. [PMID: 22567027 PMCID: PMC3337587 DOI: 10.1155/2012/939801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/26/2012] [Indexed: 11/24/2022] Open
Abstract
Purpose. Transplantation of stem, progenitor, or precursor cells has resulted in photoreceptor replacement and evidence of functional efficacy in rodent models of retinal degeneration. Ongoing work has been directed toward the replication of these results in a large animal model, namely, the pig. Methods. Retinal progenitor cells were derived from the neural retina of GFP-transgenic pigs and transplanted to the subretinal space of rhodopsin Pro347Leu-transgenic allorecipients, in the early stage of the degeneration and the absence of immune suppression. Results. Results confirm the survival of allogeneic porcine RPCs without immune suppression in the setting of photoreceptor dystrophy. The expression of multiple photoreceptor markers by grafted cells included the rod outer segment-specific marker ROM-1. Further evidence of photoreceptor differentiation included the presence of numerous photoreceptor rosettes within GFP-positive grafts, indicative of the development of cellular polarity and self-assembly into rudiments of outer retinal tissue. Conclusion. Together, these data support the tolerance of RPCs as allografts and demonstrate the high level of rod photoreceptor development that can be obtained from cultured RPCs following transplantation. Strategies for further progress in this area, together with possible functional implications, are discussed.
Collapse
|
42
|
Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C, Bray-Ward P, Jones BW, Marc RE, Wang W, Zhou L, Noel JM, McCall MA, DeMarco PJ, Prather RS, Kaplan HJ. Generation of an inbred miniature pig model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2012; 53:501-7. [PMID: 22247487 DOI: 10.1167/iovs.11-8784] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Pro23His (P23H) rhodopsin (RHO) mutation underlies the most common form of human autosomal dominant retinitis pigmentosa (adRP). The objective of this investigation was to establish a transgenic miniature swine model of RP using the human P23H RHO gene. METHODS Somatic cell nuclear transfer (SCNT) was used to create transgenic miniature pigs that expressed the human P23H RHO mutation. From these experiments, six transgenic founders were identified whose retinal function was studied with full-field electroretinography (ffERG) from 3 months through 2 years. Progeny from one founder were generated and genotyped to determine transgene inheritance pattern. Retinal mRNA was isolated, and the ratio of P23H to wild-type pig RHO was measured. RESULTS A single transgene integration site was observed for five of the six founders. All founders had abnormal scotopic and photopic ffERGs after 3 months. The severity of the ffERG phenotype was grouped into moderately and severely affected groups. Offspring of one founder inherited the transgene as an autosomal dominant mutation. mRNA analyses demonstrated that approximately 80% of total RHO was mutant P23H. CONCLUSIONS Expression of the human RHO P23H transgene in the retina creates a miniature swine model with an inheritance pattern and retinal function that mimics adRP. This large-animal model can serve as a novel tool for the study of the pathogenesis and therapeutic intervention in the most common form of adRP.
Collapse
Affiliation(s)
- Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhao MT, Whitworth KM, Zhang X, Zhao J, Miao YL, Zhang Y, Prather RS. Deciphering the mesodermal potency of porcine skin-derived progenitors (SKP) by microarray analysis. Cell Reprogram 2012; 12:161-73. [PMID: 20436954 DOI: 10.1089/cell.2009.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skin stem cells have an essential role in maintaining tissue homeostasis by dynamically replenishing those constantly lost during tissue turnover or following injury. Multipotent skin derived progenitors (SKP) can generate both neural and mesodermal progeny, representing neural crest-derived progenitors during embryogenesis through adulthood. SKP cells develop into spheres in suspension and can differentiate into fibroblast-like cells (SFC) in adhesive culture with serum. Concomitantly they gradually lose the neural potential but retain certain mesodermal potential. However, little is known about the molecular mechanism of the transition of SKP spheres into SFC in vitro. Here we characterized the transcriptional profiles of porcine SKP spheres and SFC by microarray analysis. We found 305 upregulated and 96 downregulated genes, respectively. The downregulated genes are mostly involved in intrinsic programs like the Dicer pathway and asymmetric cell division, whereas upregulated genes are likely to participate in extrinsic signaling pathways such as ErbB signaling, MAPK signaling, ECM-receptor reaction, Wnt signaling, cell communication, and tumor growth factor (TGF)-β signaling pathways. These intrinsic programs and extrinsic signaling pathways collaborate to mediate the transcription-state transition between SKP spheres and SFC. We speculate that these potential signaling pathways may play an important role in regulating the cell fate transition between SKP spheres and SFC in vitro.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. ADVANCES IN GENETICS 2012; 80:37-97. [PMID: 23084873 PMCID: PMC3683964 DOI: 10.1016/b978-0-12-404742-6.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
45
|
You J, Kim J, Lee H, Hyun SH, Hansen PJ, Lee E. MG132 treatment during oocyte maturation improves embryonic development after somatic cell nuclear transfer and alters oocyte and embryo transcript abundance in pigs. Mol Reprod Dev 2011; 79:41-50. [PMID: 22083810 DOI: 10.1002/mrd.21402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/05/2011] [Indexed: 11/08/2022]
Abstract
The objective of this study was to examine the effect of treating pig oocytes during in vitro maturation (IVM) with a proteasome inhibitor, MG132, on oocyte maturation and embryonic development. In one series of experiments, oocytes from medium-sized follicles (3-8 mm in diameter) were untreated (MCO) or treated with MG132 during 0-22 hr (M0-22) or 30-42 hr (M30-42) of IVM. There was no significant effect of MG132 on nuclear maturation or cytoplasmic maturation (as assessed by intracellular amounts of glutathione and p34cdc2 kinase activity). Blastocyst formation after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), however, was increased for M30-42 (65.2% and 27.7% for PA and SCNT, respectively) compared to MCO (42.6% and 13.6%, respectively) and M0-22 (45.3% and 19.5%, respectively; P<0.05). Expression of PCNA and ERK2 was increased in M30-42 for IVM oocytes while transcript abundance for POUF51, DNMT1, FGFR2, and PCNA was increased in M30-42 for 4-cell SCNT embryos. When oocytes derived from small follicles (<3 mm in diameter) were untreated (SCO) or treated with MG132 during 0-22 hr (S0-22), 30-42 hr (S30-42) of IVM, or 0-22 and 30-42 hr of IVM (S0-22/30-42), expression of POU5F1, DNMT1, FGFR2, and PCNA and blastocyst formation were increased for SCNT embryos derived from S30 to 42 (16.5%) and S0-22/30-42 oocytes (20.8%) as compared to embryos from SCO (8.7%) or S0-22 oocytes (8.8%; P<0.05). Results demonstrate that treatment of oocytes with MG132 during the later stage of IVM improves embryonic development and alters gene expression in pigs.
Collapse
Affiliation(s)
- Jinyoung You
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Ezashi T, Matsuyama H, Telugu BPV, Roberts RM. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biol Reprod 2011; 85:779-87. [PMID: 21734265 PMCID: PMC3184293 DOI: 10.1095/biolreprod.111.092809] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/11/2011] [Accepted: 06/16/2011] [Indexed: 01/13/2023] Open
Abstract
During reprogramming of porcine mesenchymal cells with a four-factor (POU5F1/SOX2/KLF4/MYC) mixture of vectors, a fraction of the colonies had an atypical phenotype and arose earlier than the recognizable porcine induced pluripotent stem (iPS) cell colonies. Within days after each passage, patches of cells with an epithelial phenotype formed raised domes, particularly under 20% O(2) conditions. Relative to gene expression of the iPS cells, there was up-regulation of genes for transcription factors associated with trophoblast (TR) lineage emergence, e.g., GATA2, PPARG, MSX2, DLX3, HAND1, GCM1, CDX2, ID2, ELF5, TCFAP2C, and TEAD4 and for genes required for synthesis of products more typical of differentiated TR, such as steroids (HSD17B1, CYP11A1, and STAR), pregnancy-associated glycoproteins (PAG6), and select cytokines (IFND, IFNG, and IL1B). Although POU5F1 was down-regulated relative to that in iPS cells, it was not silenced in the induced TR (iTR) cells over continued passage. Like iPS cells, iTR cells did not senesce on extended passage and displayed high telomerase activity. Upon xenografting into immunodeficient mice, iTR cells formed nonhemorrhagic teratomas composed largely of layers of epithelium expressing TR markers. When cultured under conditions that promoted embryoid body formation, iTR cells formed floating spheres consisting of a single epithelial sheet whose cells were tethered laterally by desmosome-like structures. In conclusion, reprogramming of porcine fibroblasts to iPS cells generates, as a by-product, colonies composed of self-renewing populations of TR cells, possibly containing TR stem cells.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Bond Life Sciences Center and Division of Animal Sciences, Genetics Area Program, and Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Haruyo Matsuyama
- Bond Life Sciences Center and Division of Animal Sciences, Genetics Area Program, and Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Bhanu Prakash V.L. Telugu
- Bond Life Sciences Center and Division of Animal Sciences, Genetics Area Program, and Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - R. Michael Roberts
- Bond Life Sciences Center and Division of Animal Sciences, Genetics Area Program, and Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
47
|
Whyte JJ, Prather RS. Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 2011; 78:879-91. [PMID: 21671302 PMCID: PMC3522184 DOI: 10.1002/mrd.21333] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/09/2011] [Indexed: 12/18/2022]
Abstract
Genetically modified swine hold great promise in the fields of agriculture and medicine. Currently, these swine are being used to optimize production of quality meat, to improve our understanding of the biology of disease resistance, and to reduced waste. In the field of biomedicine, swine are anatomically and physiologically analogous to humans. Alterations of key swine genes in disease pathways provide model animals to improve our understanding of the causes and potential treatments of many human genetic disorders. The completed sequencing of the swine genome will significantly enhance the specificity of genetic modifications, and allow for more accurate representations of human disease based on syntenic genes between the two species. Improvements in both methods of gene alteration and efficiency of model animal production are key to enabling routine use of these swine models in medicine and agriculture.
Collapse
Affiliation(s)
- Jeffrey J. Whyte
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, U.S.A
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, U.S.A
- Division of Animal Science, University of Missouri, Columbia, MO, U.S.A
| | - Randall S. Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, U.S.A
- Division of Animal Science, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
48
|
Whitworth KM, Zhao J, Spate LD, Li R, Prather RS. Scriptaid Corrects Gene Expression of a Few Aberrantly Reprogrammed Transcripts in Nuclear Transfer Pig Blastocyst Stage Embryos. Cell Reprogram 2011; 13:191-204. [DOI: 10.1089/cell.2010.0087] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Sciences, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri
| | - Jiangou Zhao
- Division of Animal Sciences, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri
| | - Rongfeng Li
- Division of Animal Sciences, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, E125 Animal Science Research Center, Columbia, Missouri
| |
Collapse
|
49
|
Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 2011; 78:2. [PMID: 21268178 DOI: 10.1002/mrd.21271] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Zhou Y, Wang S, Yu Z, Hoyt RF, Qu X, Horvath KA. Marrow stromal cells differentiate into vasculature after allogeneic transplantation into ischemic myocardium. Ann Thorac Surg 2011; 91:1206-12. [PMID: 21353199 DOI: 10.1016/j.athoracsur.2011.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND Marrow stromal cells (MSCs) are reportedly able to improve ventricular function after myocardial infarction through the paracrine effect or regenerating myocytes. However, the evidence to prove that is scant. In this animal study, we employed MSCs isolated from transgenic pigs designed to express enhanced green fluorescent proteins as the donor to study the fate of the cells after allogeneic transplantation. METHODS Green MSCs prepared from transgenic pigs were allogeneically transplanted into chronic ischemic myocardium of 8 Yorkshire pigs by direct intramyocardial injection (total 1.2 × 10(8) cells in 2.5 mL saline, with 25 injection sites). Cohorts of 2 animals were sacrificed at 1, 2, 4, and 6 weeks, and 3 months after injection to study the fate of the injected cells. RESULTS Allogeneic injection of the green MSCs is safe; no observable side effects or signs of graft versus host disease were observed. By 4',6-diamidino-2-phenylindole (DAPI) counterstained frozen sections, the green cells were found migrating from the injected area into deeper layers of myocardium over the course of 1 to 6 weeks. By immunofluorescent staining, the green cells were associated with smooth muscle actin or von Willebrand factor positive cells, suggesting that the transplanted cells were contributing to the formation of new vessels. We found no evidence that these cells were associated with the new generation of cardiac myocytes. Three months after injection, clusters of MSCs still can be found in the middle layer of ischemic myocardium; however, no unlimited cell growth was found. CONCLUSIONS Allogeneic transplantation of green MSCs can be safely used to elucidate the mechanisms of cell-based therapy. The benefits of this therapy appear mainly due to the angiogenesis, not the regeneration, of cardiac myocytes.
Collapse
Affiliation(s)
- Yifu Zhou
- Cardiothoracic Surgery Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1550, USA.
| | | | | | | | | | | |
Collapse
|