1
|
Lin C, Mazzuca MQ, Khalil RA. Increased uterine arterial tone, stiffness and remodeling with augmented matrix metalloproteinase-1 and -7 in uteroplacental ischemia-induced hypertensive pregnancy. Biochem Pharmacol 2024; 228:116227. [PMID: 38643908 PMCID: PMC11410528 DOI: 10.1016/j.bcp.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Preeclampsia is a pregnancy-related disorder manifested as hypertensive pregnancy (HTN-Preg) and often fetal growth restriction (FGR), but the mechanisms involved are unclear. We have reported enhanced reactivity of systemic vessels in HTN-Preg rats, but the critical changes in the uterine circulation are less clear. We tested whether HTN-Preg involves localized aberrations in uterine arterial tone, stiffness and remodeling by matrix metalloproteinases (MMPs). Blood pressure (BP) and litter size were recorded in normal pregnant (Preg) rats and Preg rats with reduced uteroplacental perfusion pressure (RUPP). Isolated uterine arteries were placed in a pressure myograph for measuring intrinsic and extrinsic tone and arterial stiffness. Arteries were bathed in normal Krebs solution (2.5 mM Ca2+), Ca2+-free (2 mM EGTA) Krebs, treated with sodium nitroprusside (SNP), or endothelium denuded, then pressurized at 10 mmHg steps from 10 to 110 mmHg, and the % change in diameter was analyzed to measure total (active + passive), active Ca2+-dependent myogenic, passive, and endothelium-dependent tone, respectively. BP was higher and the litter size and pup weight were reduced in RUPP vs Preg rats. In normal Krebs, increasing intraluminal pressure caused smaller increments in diameter in arteries of RUPP vs Preg rats, suggesting greater total vascular tone. Arterial incubation in Ca2+-free Krebs, treatment with SNP or endothelium-removal abolished the differences in vascular tone, and subtraction of each of these components from total vascular tone revealed significant active Ca2+-dependent myogenic, passive, and endothelium-dependent tone, respectively, in RUPP vs Preg rats. The total and passive strain-stress curves were shifted leftward in arteries of RUPP vs Preg rats, indicating increased uterine arterial stiffness. Arterial sections showed decreased lumen/total and increased wall/total area, and immunohistochemistry revealed greater MMP-1 and MMP-7 staining particularly in the media, suggesting uterine arterial remodeling by MMPs in RUPP vs Preg rats. The increased uterine arterial active myogenic, passive, and endothelium-dependent tone, arterial stiffness and remodeling by MMPs would further reduce uterine blood flow and exacerbate uteroplacental ischemia, FGR and HTN-Preg.
Collapse
Affiliation(s)
- Chen Lin
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, Wang D, Jiao Y, Liu A. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol 2023; 13:1067661. [PMID: 36700222 PMCID: PMC9869165 DOI: 10.3389/fimmu.2022.1067661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Trophoblast immune cell interactions are central events in the immune microenvironment at the maternal-fetal interface. Their abnormalities are potential causes of various pregnancy complications, including pre-eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase (MMP) is highly homologous, zinc(II)-containing metalloproteinase involved in altered uterine hemodynamics, closely associated with uterine vascular remodeling. However, the interactions between MMP and the immune microenvironment remain unclear. Here we discuss the key roles and potential interplay of MMP with the immune microenvironment in the embryo implantation process and pregnancy-related diseases, which may contribute to understanding the establishment and maintenance of normal pregnancy and providing new therapeutic strategies. Recent studies have shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively prevent invasive vascular disease by modulating the activity of MMP. We summarize the main findings of these studies and suggest the possibility of TIMPs as emerging biomarkers and potential therapeutic targets for a range of complications induced by abnormalities in the immune microenvironment at the maternal-fetal interface. MMP and TIMPs are promising targets for developing new immunotherapies to treat pregnancy-related diseases caused by immune imbalance.
Collapse
Affiliation(s)
- Mengyu Jing
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Hongxia Qiu
- Department of Obstetrics, Hangzhou Fuyang Women And Children Hospital, Fuyang, China
| | - Weihua He
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Dan Li
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Yonghui Jiao
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| |
Collapse
|
3
|
Ren Z, Cui N, Zhu M, Khalil RA. TNFα blockade reverses vascular and uteroplacental matrix metalloproteinases imbalance and collagen accumulation in hypertensive pregnant rats. Biochem Pharmacol 2021; 193:114790. [PMID: 34600915 DOI: 10.1016/j.bcp.2021.114790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Preeclampsia is a pregnancy-related disorder of maternal hypertension-in-pregnancy (HTN-Preg) and often fetal growth restriction (FGR). Placental ischemia could be an initiating event leading to inadequate vascular and uteroplacental remodeling and HTN-Preg; however, the molecular targets are unclear. To test the hypothesis that placental ischemia-induced release of proinflammatory cytokines target vascular and uteroplacental matrix metalloproteinases (MMPs), we tested if infusing TNFα (200 ng/kg/day) in day-14 pregnant (Preg) rats causes MMP imbalance and collagen accumulation, and if infusing TNFα decoy receptor Etanercept (0.4 mg/kg/day) in HTN-Preg rats with reduced uteroplacental perfusion pressure (RUPP) reverses MMP imbalance and collagen accumulation. On gestational day-19, blood pressure (BP) was higher in Preg + TNFα and RUPP vs Preg rats, and restored in RUPP + Etanercept rats. Gelatin zymography and Western blots revealed decreases in MMP-2 and MMP-9 and increases in MMP-1 and MMP-7 in aorta, uterus and placenta of Preg + TNFα and RUPP, that were reversed in RUPP + Etanercept rats. Collagen-I and IV were abundant in Preg + TNFα and RUPP, and were decreased in RUPP + Etanercept rats. The litter size, uterine, placenta, and pup weight were markedly reduced in RUPP, insignificantly reduced in Preg + TNFα, and slightly improved in RUPP + Etanercept rats. Thus TNFα blockade reverses the decreases in vascular and uteroplacental MMP-2 and MMP-9, and the increases in MMP-1, MMP-7 and accumulation of collagen-I and IV induced by placental ischemia and TNFα in HTN-Preg rats. Targeting TNFα using cytokine antagonists, or MMPs using MMP modulators could rectify MMP imbalance and collagen accumulation, restore vascular and uteroplacental remodeling, and improve BP in HTN-Preg and preeclampsia.
Collapse
Affiliation(s)
- Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Billhaq DH, Lee SH, Lee S. The potential function of endometrial-secreted factors for endometrium remodeling during the estrous cycle. Anim Sci J 2020; 91:e13333. [PMID: 31909524 DOI: 10.1111/asj.13333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023]
Abstract
Uterine has a pivotal role in implantation and conceptus development. To prepare a conducive uterine condition for possibly new gestation during the estrous cycle, uterine endometrium undergoes dramatic remodeling. In addition, angiogenesis is an indispensable biological process of endometrium remodeling. Furthermore, essential protein expressions related to important biological processes of endometrium remodeling, which are vascular endothelial growth factor (VEGF), myoglobin (MYG), collagen type IV (COL4), fucosyltransferase IV (FUT4), and cysteine-rich protein 2 (CRP2), were detected in the endometrial tissue reported in many previous studies and recently discovered in histotroph substrates during the estrous cycle. Those proteins, which are liable for provoking new vessel development, cell proliferation, cell adhesion, and cell migration, were expressed higher in the histotroph during the luteal phase than follicular phase. Histotroph proteins considerably contribute to endometrium remodeling during the estrous cycle. To that end, the following review will discuss and highlight the relevant information and evidence of the uterine fluid proteins as endometrial-secreted factors that adequately indicate the potential role of the uterine secretions to be involved in the endometrial remodeling process.
Collapse
Affiliation(s)
- Dody Houston Billhaq
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hee Lee
- Institute of Animal Resources, Kangwon National University, Chuncheon, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Ren Z, Cui N, Zhu M, Khalil RA. Placental growth factor reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1 and MMP-7 and collagen types I and IV in hypertensive pregnancy. Am J Physiol Heart Circ Physiol 2018; 315:H33-H47. [PMID: 29569955 DOI: 10.1152/ajpheart.00045.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preeclampsia is a complication of pregnancy manifested as maternal hypertension (HTN) and fetal intrauterine growth restriction, with unclear mechanisms. Placental ischemia increases antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) relative to angiogenic placental growth factor (PlGF); however, the molecular targets are unclear. To test the hypothesis that placental ischemia-induced changes in sFlt-1 and PlGF target vascular and uteroplacental matrix metalloproteinases (MMPs), we tested whether raising the sFlt-1-to-PlGF ratio by infusing sFlt-1 (10 µg·kg-1·day-1) in pregnant (Preg) rats increases blood pressure (BP) and alters MMPs and whether correcting sFlt-1/PlGF by infusing PlGF (20 µg·kg-1·day-1) in Preg rats with reduced uterine perfusion pressure (RUPP) improves BP and reverses the changes in MMPs. On gestational day 19, BP was higher and the litter size and uterine, placenta, and pup weight were less in Preg + sFlt-1 and RUPP than Preg rats and restored in RUPP + PlGF versus RUPP rats. Gelatin and casein zymography and Western blots revealed decreases in MMP-2 and MMP-9 and increases in MMP-1 and MMP-7 in the aorta, uterine artery, uterus, and placenta of Preg + sFlt-1 and RUPP versus Preg rats, which were reversed in RUPP + PlGF versus RUPP rats. Collagen types I and IV were more abundant in Preg + sFlt-1 and RUPP versus Preg rats and were reversed in RUPP + PlGF versus RUPP rats. Thus, PlGF reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1, MMP-7, and collagen types I and IV induced by placental ischemia and sFlt-1 in HTN in pregnancy. Angiogenic factors and MMP modulators could rectify changes in MMPs and collagen, restore vascular and uteroplacental remodeling, and improve HTN and intrauterine growth restriction in preeclampsia. NEW & NOTEWORTHY Understanding the mechanisms of preeclampsia could help in its prevention and management. This study shows that correcting soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) imbalance by infusing PlGF reverses the decreases in vascular and uteroplacental matrix metalloproteinase (MMP)-2 and MMP-9 and the increases in MMP-1, MMP-7, and collagen types I and IV induced by placental ischemia and antiangiogenic sFlt-1 in hypertension in pregnancy. Angiogenic factors and MMP modulators could rectify changes in vascular and uteroplacental MMPs and collagen content and ameliorate hypertension and intrauterine growth restriction in preeclampsia.
Collapse
Affiliation(s)
- Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
7
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Johanns M, Lemoine P, Janssens V, Grieco G, Moestrup SK, Nielsen R, Christensen EI, Courtoy PJ, Emonard H, Marbaix E, Henriet P. Cellular uptake of proMMP-2:TIMP-2 complexes by the endocytic receptor megalin/LRP-2. Sci Rep 2017; 7:4328. [PMID: 28659595 PMCID: PMC5489529 DOI: 10.1038/s41598-017-04648-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/18/2017] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are regulated at multiple transcriptional and post-transcriptional levels, among which receptor-mediated endocytic clearance. We previously showed that low-density lipoprotein receptor-related protein-1 (LRP-1) mediates the clearance of a complex between the zymogen form of MMP-2 (proMMP-2) and tissue inhibitor of metalloproteinases, TIMP-2, in HT1080 human fibrosarcoma cells. Here we show that, in BN16 rat yolk sac cells, proMMP-2:TIMP-2 complex is endocytosed through a distinct LRP member, megalin/LRP-2. Addition of receptor-associated protein (RAP), a natural LRP antagonist, caused accumulation of endogenous proMMP-2 and TIMP-2 in conditioned media. Incubation with RAP also inhibited membrane binding and cellular uptake of exogenous iodinated proMMP-2:TIMP-2. Moreover, antibodies against megalin/LRP-2, but not against LRP-1, inhibited binding of proMMP-2:TIMP-2 to BN16 cell surface. BIAcore analysis confirmed direct interaction between the complex and megalin/LRP-2. Conditional renal invalidation of megalin/LRP-2 in mice resulted in accumulation of proMMP-2 and TIMP-2 in their urine, highlighting the physiological relevance of the binding. We conclude that megalin/LRP-2 can efficiently mediate cell-surface binding and endocytosis of proMMP-2:TIMP-2 complex. Therefore megalin/LRP-2 can be considered as a new actor in regulation of MMP-2 activity, an enzyme crucially involved in many pathological processes.
Collapse
Affiliation(s)
- Manuel Johanns
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Pascale Lemoine
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Virginie Janssens
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Giuseppina Grieco
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Soren K Moestrup
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | | | - Pierre J Courtoy
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Hervé Emonard
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Etienne Marbaix
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Patrick Henriet
- de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
9
|
Li W, Cui N, Mazzuca MQ, Mata KM, Khalil RA. Increased vascular and uteroplacental matrix metalloproteinase-1 and -7 levels and collagen type I deposition in hypertension in pregnancy: role of TNF-α. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626073 PMCID: PMC5625170 DOI: 10.1152/ajpheart.00207.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia is a pregnancy-related disorder manifested as maternal hypertension in pregnancy (HTN-Preg) and fetal growth restriction. Placental ischemia could be an initiating event that leads to abnormal vascular and uteroplacental remodeling in HTN-Preg; however, the molecular targets and intermediary mechanisms involved are unclear. We tested the hypothesis that placental ischemia could target vascular and uteroplacental matrix metalloproteinases (MMPs) through an inflammatory cytokine-mediated mechanism. MMP levels and distribution were measured in the aorta, uterus, and placenta of normal pregnant (Preg) rats and pregnant rats with reduced uterine perfusion pressure (RUPP). Maternal blood pressure was higher and the litter size and pup weight were lower in RUPP compared with Preg rats. Gelatin zymography showed prominent uterine MMP-2 and MMP-9 activity that was dependent on the amount of loaded protein. At saturating protein loading, both gelatin and casein zymography revealed two additional bands corresponding to MMP-1 and MMP-7 that were greater in the aorta, uterus, and placenta of RUPP compared with Preg rats. Western blots and immunohistochemistry confirmed increased MMP-1 and MMP-7 in the aorta, uterus, and placenta of RUPP versus Preg rats. The levels of MMP-1 and MMP-7 substrate collagen type I were greater in tissues of RUPP compared with Preg rats. In organ culture, TNF-α increased MMP-1 and MMP-7 in the aorta, uterus, and placenta of Preg rats, and a TNF-α antagonist prevented the increases in MMPs in tissues of RUPP rats. Thus, placental ischemia, possibly through TNF-α, increases vascular and uteroplacental MMP-1 and MMP-7, which, in turn, alter collagen deposition and cause inadequate tissue remodeling in HTN-Preg. Cytokine antagonists may reverse the increase in MMP-1 and MMP-7 expression/activity and, in turn, restore proper vascular and uteroplacental remodeling in HTN-Preg and preeclampsia.NEW & NOTEWORTHY The molecular mechanisms of preeclampsia are unclear, making it difficult to predict, prevent, or manage the pregnancy-associated disorder. This study showed that placental ischemia, possibly through the release of TNF-α, causes increases in the levels of matrix metalloproteinase (MMP)-1 and MMP-7, which could alter collagen deposition and cause inadequate uteroplacental and vascular remodeling in hypertension in pregnancy. The data suggest that targeting MMP-1 and MMP-7 and their upstream modulators, such as TNF-α, could provide a new approach in the management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Wei Li
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karina M Mata
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
11
|
Gelatin Binding Proteins in Reproductive Physiology. Indian J Microbiol 2016; 56:383-393. [PMID: 27784933 DOI: 10.1007/s12088-016-0618-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022] Open
Abstract
In order to advance the assisted reproductive technologies used in animals and human beings, it is important to accumulate basic informations about underlying molecular mechanisms that shape the biological processes of reproduction. From within seminal plasma, proteins perform a wide variety of distinct functions that regulate major reproductive events such as fertilization. The ability of such proteins to bind and interact with different antagonistic ions and biomolecules such as polysaccharides, lipids, and other proteins present in the male and female reproductive tract define these capabilities. Over the last two decades, extensive work has been undertaken in an attempt to define the role of seminal plasma proteins, of which, Gelatin binding proteins (GBPs) represent a large family. GBPs comprise of known group of Bovine seminal plasma (BSP) protein family, matrix metallo proteinases (MMP 2 and MMP 9) and fibronectin, which have been widely studied. The presence of a type II repeat is a characteristic feature of GBPs, which is similar in structure to the fibronectin type II domain (fn2), which has ability to bind multiple ligands including gelatin, glycosaminoglycans, choline phospholipids, and lipoproteins. Two fn2 domains are present within the BSP protein family, while, three fn2 domains are found in gelatinases (MMP-2 and MMP9), and ELSPBP1 (Epididymosomes Transfer Epididymal Sperm Binding Protein 1) contains four long fn2 domains. For the most part BSP proteins are exclusively expressed in seminal vesicles although mBSPH1, mBSPH2 and hBSPH1 are all expressed in the epididymis. The expression of gelatinases has been demonstrated in several organs and tissues such as the prostate, testis, epididymis, ovary, human placenta, cervix and endometrial wall. This review intends to bring current updates on the role of GBPs in reproductive physiology to light, which may act as basis for future studies on GBPs.
Collapse
|
12
|
Dang Y, Li W, Tran V, Khalil RA. EMMPRIN-mediated induction of uterine and vascular matrix metalloproteinases during pregnancy and in response to estrogen and progesterone. Biochem Pharmacol 2013; 86:734-47. [PMID: 23856290 DOI: 10.1016/j.bcp.2013.06.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
Abstract
Pregnancy is associated with uteroplacental and vascular remodeling in order to adapt for the growing fetus and the hemodynamic changes in the maternal circulation. We have previously shown upregulation of uterine matrix metalloproteinases (MMPs) during pregnancy. Whether pregnancy-associated changes in MMPs are localized to the uterus or are generalized in feto-placental and maternal circulation is unclear. Also, the mechanisms causing the changes in uteroplacental and vascular MMPs during pregnancy are unclear. MMPs expression, activity and tissue distribution were measured in uterus, placenta and aorta of virgin, mid-pregnant (mid-Preg) and late pregnant (late-Preg) rats. Western blots and gelatin zymography revealed increases in MMP-2 and -9 in uterus and aorta of late-Preg compared with virgin and mid-Preg rats. In contrast, MMP-2 and -9 were decreased in placenta of late-Preg versus mid-Preg rats. Extracellular MMP inducer (EMMPRIN) was increased in uterus and aorta of pregnant rats, but was less in placenta of late-Preg than mid-Preg rats. Prolonged treatment of uterus or aorta of virgin rats with 17β-estradiol and progesterone increased the amount of EMMPRIN, MMP-2 and -9, and the sex hormone-induced increases in MMPs were prevented by EMMPRIN neutralizing antibody. Immunohistochemistry revealed that MMP-2 and -9 and EMMPRIN increased in uterus and aorta of pregnant rats, but decreased in placenta of late-Preg versus mid-Preg rats. Thus pregnancy-associated upregulation of uterine MMPs is paralleled by increased vascular MMPs, and both are mediated by EMMPRIN and induced by estrogen and progesterone, suggesting similar role of MMPs in uterine and vascular tissue remodeling and function during pregnancy. The decreased MMPs and EMMPRIN in placenta of late-Preg rats suggests reduced role of MMPs in feto-placental circulation during late pregnancy.
Collapse
Affiliation(s)
- Yiping Dang
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
Mamo S, Mehta JP, Forde N, McGettigan P, Lonergan P. Conceptus-endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol Reprod 2012; 87:6, 1-9. [PMID: 22517619 DOI: 10.1095/biolreprod.112.099945] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Successful growth and development of the posthatching blastocyst and pregnancy establishment are a result of the interaction between a competent embryo and a receptive uterine environment. We examined the global transcriptome profiles of the Day 16 bovine conceptus and pregnant endometrium tissues using RNA-Seq to identify genes that contribute to the dialogue during the period of pregnancy recognition. Using stringent filtering criterion, a total of 16 018 and 16 262 transcripts of conceptus and pregnant endometrium origin, respectively, were identified with distinct tissue-specific expression profiles. Of these, 2261 and 2505 transcripts were conceptus and endometrium specific. Using Cytoscape software, a total of 133 conceptus ligands that interact with corresponding receptors on the endometrium and 121 endometrium ligands that interact with corresponding receptors on the conceptus were identified. While 87 ligands were commonly detected, 46 were conceptus specific and 34 endometrium specific. This study is one of the first to provide a comprehensive list of potentially secreted molecules in the conceptus that interact with receptors on the endometrium and vice versa during the critical window of maternal recognition of pregnancy. The identified tissue-specific genes may serve as candidates to study pregnancy recognition and they or downstream products may represent potential early markers of pregnancy.
Collapse
Affiliation(s)
- Solomon Mamo
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
14
|
Yin Z, Sada AA, Reslan OM, Narula N, Khalil RA. Increased MMPs expression and decreased contraction in the rat myometrium during pregnancy and in response to prolonged stretch and sex hormones. Am J Physiol Endocrinol Metab 2012; 303:E55-70. [PMID: 22496348 PMCID: PMC3404560 DOI: 10.1152/ajpendo.00553.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Normal pregnancy is associated with uterine relaxation to accommodate the stretch imposed by the growing fetus; however, the mechanisms underlying the relationship between pregnancy-associated uterine stretch and uterine relaxation are unclear. We hypothesized that increased uterine stretch during pregnancy is associated with upregulation of matrix metalloproteinases (MMPs), which in turn cause inhibition of myometrium contraction and promote uterine relaxation. Uteri from virgin, midpregnant (day 12), and late-pregnant rats (day 19) were isolated, and myometrium strips were prepared for measurement of isometric contraction and MMP expression and activity using RT-PCR, Western blot analysis, and gelatin zymography. Oxytocin caused concentration-dependent contraction of myometrium strips that was reduced in mid- and late-pregnant rats compared with virgin rats. Pretreatment with the MMP inhibitors SB-3CT (MMP-2/MMP-9 Inhibitor IV), BB-94 (batimastat), or Ro-28-2653 (cipemastat) enhanced contraction in myometrium of pregnant rats. RT-PCR, Western blot analysis, and gelatin zymography demonstrated increased mRNA expression, protein amount, and activity of MMP-2 and MMP-9 in myometrium of late-pregnant>midpregnant>virgin rats. Prolonged stretch of myometrium strips of virgin rats under 8 g basal tension for 18 h was associated with reduced contraction and enhanced expression and activity of MMP-2 and MMP-9, which were reversed by MMP inhibitors. Concomitant treatment of stretched myometrium of virgin rats with 17β-estradiol (E2), progesterone (P4), or E2+P4 was associated with further reduction in contraction and increased MMP expression and activity. MMP-2 and MMP-9 caused significant reduction of oxytocin-induced contraction of myometrium of virgin rat. Thus, normal pregnancy is associated with reduced myometrium contraction and increased MMPs expression and activity. The results are consistent with the possibility that myometrium stretch and concomitant increase in sex hormones during pregnancy are associated with increased expression/activity of specific MMPs, which in turn inhibit uterine contraction and promote uterine relaxation.
Collapse
Affiliation(s)
- Zongzhi Yin
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|