1
|
Kowsar R, Sadeghi K, Hashemzadeh F, Miyamoto A. Ovarian sex steroid and epithelial control of immune responses in the uterus and oviduct: human and animal models†. Biol Reprod 2024; 110:230-245. [PMID: 38038990 PMCID: PMC10873282 DOI: 10.1093/biolre/ioad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
2
|
Wang ZP, Hua M, Jiu T, Ge RL, Bai Z. Biofunctional roles of estrogen in coronavirus disease 2019: Beyond a steroid hormone. Front Pharmacol 2022; 13:1003469. [PMID: 36339571 PMCID: PMC9626865 DOI: 10.3389/fphar.2022.1003469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 09/26/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), epidemic poses a major global public health threat with more than one million daily new infections and hundreds of deaths. To combat this global pandemic, efficient prevention and management strategies are urgently needed. Together with the main characteristics of COVID-19, impaired coagulation with dysfunctions of the immune response in COVID-19 pathophysiology causes high mortality and morbidity. From recent clinical observations, increased expression of specific types of estrogen appears to protect patients from SARS-CoV-2 infection, thereby, reducing mortality. COVID-19 severity is less common in women than in men, particularly in menopausal women. Furthermore, estrogen levels are negatively correlated with COVID-19 severity and mortality. These findings suggest that estrogen plays a protective role in the pathophysiology of COVID-19. In this review, we discuss the potential roles of estrogen in blocking the SARS-CoV-2 from invading alveolar cells and replicating, and summarize the potential mechanisms of anti-inflammation, immune modulation, reactive oxygen species resistance, anti-thrombosis, vascular dilation, and vascular endothelium protection. Finally, the potential therapeutic effects of estrogen against COVID-19 are reviewed. This review provides insights into the role of estrogen and its use as a potential strategy to reduce the mortality associated with COVID-19, and possibly other viral infections and discusses the possible challenges and pertinent questions.
Collapse
Affiliation(s)
- Zhong-Ping Wang
- Clinical Medicine, School of Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Mao Hua
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Tai Jiu
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center of High-Altitude Medicine, School of Medicine, Qinghai University, Xining, China
- Joint Lab of Qinghai-Utah for High Altitude Medicine, School of Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Clinical Medicine, School of Medicine, Qinghai University, Xining, China
- Research Center of High-Altitude Medicine, School of Medicine, Qinghai University, Xining, China
- Joint Lab of Qinghai-Utah for High Altitude Medicine, School of Medicine, Qinghai University, Xining, China
| |
Collapse
|
3
|
Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells 2022; 11:cells11071075. [PMID: 35406639 PMCID: PMC8997425 DOI: 10.3390/cells11071075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Progesterone has been shown to be a potent suppressor of several inflammatory pathways. During pregnancy, progesterone levels increase, allowing for normal pregnancy establishment and maintenance. The dysregulation of progesterone, as well as inflammation, leads to poor pregnancy outcomes. However, it is unclear how progesterone imbalance could impact inflammatory responses in the oviduct and subsequently result in early pregnancy loss. Therefore, in this review, we describe the role of progesterone signaling in regulating the inflammatory response, with a focus on the oviduct and pathological conditions in the Fallopian tubes.
Collapse
|
4
|
The impact of calcitriol and estradiol on the SARS-CoV-2 biological activity: a molecular modeling approach. Sci Rep 2022; 12:717. [PMID: 35027633 PMCID: PMC8758694 DOI: 10.1038/s41598-022-04778-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is currently a big concern around the world. Recent reports show that the disease severity and mortality of COVID-19 infected patients may vary from gender to gender with a very high risk of death for seniors. In addition, some steroid structures have been reported to affect coronavirus, SARS-CoV-2, function and activity. The entry of SARS-CoV-2 into host cells depends on the binding of coronavirus spike protein to angiotensin converting enzyme-2 (ACE2). Viral main protease is essential for the replication of SARS-CoV-2. It was hypothesized that steroid molecules (e.g., estradiol, progesterone, testosterone, dexamethasone, hydrocortisone, prednisone and calcitriol) could occupy the active site of the protease and could alter the interaction of spike protein with ACE2. Computational data showed that estradiol interacted more strongly with the main protease active site. In the presence of calcitriol, the binding energy of the spike protein to ACE2 was increased, and transferring Apo to Locked S conformer of spike trimer was facilitated. Together, the interaction between spike protein and ACE2 can be disrupted by calcitriol. Potential use of estradiol and calcitriol to reduce virus invasion and replication needs clinical investigation.
Collapse
|
5
|
Nakamura Y, Aihara R, Iwata H, Kuwayama T, Shirasuna K. IL1B triggers inflammatory cytokine production in bovine oviduct epithelial cells and induces neutrophil accumulation via CCL2. Am J Reprod Immunol 2020; 85:e13365. [PMID: 33099841 DOI: 10.1111/aji.13365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
PROBLEM The oviduct is essential for reproduction. We previously showed that oviduct epithelial cells (OECs) isolated from aged cows expressed higher levels of inflammatory cytokines, including interleukin (IL) 1A and IL1B. In addition, aging is associated with tissue dysfunction and cellular senescence via a senescence-associated secretory phenotype (SASP) and immune cell accumulation. We investigated whether IL1A or IL1B causes SASP production, cellular senescence, and inflammatory responses in bovine OECs. METHOD OF STUDY The OECs were isolated from bovine oviducts from young (mean 50.3 months) and aged cows (mean 157.0 months) and cultured. RESULTS Treatment with IL1A or IL1B induced SASP production (IL8, IL6, TNFA, and CCL2) and mRNA expression of cell adhesion molecules in bovine OECs, but both IL1s did not induce cellular senescence in OECs and migration of polymorphonuclear neutrophils (PMNs). Cultured medium of OECs treated with IL1s, especially IL1B, dramatically induced PMN migration. Treatment with the CCL2 inhibitor, but not IL8 or its receptor CXCR2 inhibitors, significantly reduced immune cell migration in IL1B-treated OEC-cultured medium. Treatment with IL1B increased PMN adhesion to OECs, resulting in further SASP production in OECs due to a PMN-OEC interaction. CONCLUSION We suggest that senescence-associated IL1s cause SASP production in bovine OECs and CCL2 induced by IL1B is essential for the migration of immune cells to OECs. Specifically, IL1B regulates PMN migration and adhesion to bovine OECs, and PMNs accelerate inflammatory cytokine production from bovine OECs via a direct interaction. These phenomena may contribute to chronic oviductal inflammation, resulting in subfertility.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Riho Aihara
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
6
|
Gegenfurtner K, Fröhlich T, Kösters M, Mermillod P, Locatelli Y, Fritz S, Salvetti P, Forde N, Lonergan P, Wolf E, Arnold GJ. Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid†. Biol Reprod 2020; 101:893-905. [PMID: 31347661 DOI: 10.1093/biolre/ioz142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Pascal Mermillod
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Yann Locatelli
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - P Salvetti
- Allice, Station de Phénotypage, Nouzilly, France
| | - Niamh Forde
- Division of Reproduction and Early Development, School of Medicine, University of Leeds, Leeds, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Marey MA, Aboul Ezz M, Akthar I, Yousef MS, Imakawa K, Shimada M, Miyamoto A. Sensing sperm via maternal immune system: a potential mechanism for controlling microenvironment for fertility in the cow. J Anim Sci 2020; 98:S88-S95. [PMID: 32810249 DOI: 10.1093/jas/skaa147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohamed Ali Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Mohamed Aboul Ezz
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ihshan Akthar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
8
|
Tomazic PV, Darnhofer B, Birner-Gruenberger R. Nasal mucus proteome and its involvement in allergic rhinitis. Expert Rev Proteomics 2020; 17:191-199. [PMID: 32266843 PMCID: PMC7261402 DOI: 10.1080/14789450.2020.1748502] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nasal mucus is the first line defense barrier against various pathogens including allergens. Proteins in nasal mucus maybe used as biomarkers for diagnosis or future therapeutic strategies. Proteomics opens the possibility to investigate whole human proteomes. Areas Covered: We aimed to analyze the existing literature on nasal mucus and nasal secretions proteomic approaches especially in allergic rhinitis. A PubMed/Medline search was conducted entering the following keywords and combinations: “nasal mucus”, “nasal lavage fluid,” nasal secretions,” “nasal swabs,” “allergic rhinitis,” ”proteins,” and “proteomics.” Expert opinion: The majority of studies focus on single proteins or protein groups mainly using ELISA techniques. Four studies met the criteria using mass spectrometry in the analysis of nasal mucus proteomes in rhinologic diseases. In these studies, 7, 35, 267, and 430 proteins were identified, respectively. These four studies are discussed in this review and put in relation to seven other proteomic studies that focus on nasal lavage fluid and nasal secretions obtained by swabs or filter paper. To put it in a nutshell, proteomics facilitates the investigation of the nasal secretome and its role in healthy and diseased state and as potential biomarkers for new diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, The Omics Center Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, The Omics Center Graz, Graz, Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
9
|
Ceciliani F, Lecchi C. The Immune Functions of α 1 Acid Glycoprotein. Curr Protein Pept Sci 2019; 20:505-524. [PMID: 30950347 DOI: 10.2174/1389203720666190405101138] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
α1-acid glycoprotein (orosomucoid, AGP) is an Acute Phase Protein produced by liver and peripheral tissues in response to systemic reaction to inflammation. AGP functions have been studied mostly in human, cattle and fish, although the protein has been also found in many mammalian species and birds. AGP fulfils at least two set of functions, which are apparently different from each other but in fact intimately linked. On one hand, AGP is an immunomodulatory protein. On the other hand, AGP is one of the most important binding proteins in plasma and, beside modulating pharmacokinetics and pharmacodynamics of many drugs, it is also able to bind and transport several endogen ligands related to inflammation. The focus of this review is the immunomodulatory activity of AGP. This protein regulates every single event related to inflammation, including binding of pathogens and modulating white blood cells activity throughout the entire leukocyte attacking sequence. The regulation of AGP activity is complex: the inflammation induces not only an increase in AGP serum concentration, but also a qualitative change in its carbohydrate moiety, generating a multitude of glycoforms, each of them with different, and sometimes opposite and contradictory, activities. We also present the most recent findings about the relationship between AGP and adipose tissue: AGP interacts with leptin receptor and, given its immunomodulatory function, it may be included among the potential players in the field of immunometabolism.
Collapse
Affiliation(s)
- Fabrizio Ceciliani
- Department of Veterinary Medicine, Universita degli Studi di Milano, Milano, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Universita degli Studi di Milano, Milano, Italy
| |
Collapse
|
10
|
Nakamura Y, Iwata H, Kuwayama T, Shirasuna K. S100A8, which increases with age, induces cellular senescence-like changes in bovine oviduct epithelial cells. Am J Reprod Immunol 2019; 82:e13163. [PMID: 31237976 DOI: 10.1111/aji.13163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The oviduct is an essential component in reproduction and oviduct epithelial cells (OECs) secrete various types of cytokine. However, mechanisms of aging and inflammation of OECs are unknown. We previously reported the age-dependent functional changes of bovine OECs such that aged OECs expressed higher levels of inflammatory cytokines. We selected S100A8 and S100A9 as molecules expressed more highly in aged OECs, as candidates to induce age-related changes, and investigated using bovine OECs. METHOD OF STUDY The OECs were isolated from bovine oviductal tissues (Aged, more than 120 months; Young, between 30 and 50 months) and cultured. RESULTS Aged OECs exhibited higher senescence-associated (SA)-β-gal staining (a biomarker of cellular senescence) and mRNA expression of SA-inflammatory cytokines than young OECs. Cellular senescence occurred in both young and aged OECs upon passaging the cells. Treatment with S100A8, but not S100A9, resulted in the induction of cellular senescence in bovine OECs. Both S100A8 and S100A9 stimulated the secretion of the inflammatory cytokine IL-8 from bovine OECs. S100A8-induced IL-8 secretion was dependent on receptor RAGE, AP-1 activation, and reactive oxygen species production. In addition, S100A8 reduced the content of collagen while inducing the expression of matrix metalloproteinases, suggesting the induction of dysregulation of the extracellular matrix in OECs. CONCLUSION We suggest that bovine OECs recognize an excessive increase in age-associated DAMPs, such as S100A8 and S100A9, and that these signals may contribute to chronic oviductal inflammation, resulting in infertility associated with oviductal dysfunction.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
11
|
Understanding the hidden relations between pro- and anti-inflammatory cytokine genes in bovine oviduct epithelium using a multilayer response surface method. Sci Rep 2019; 9:3189. [PMID: 30816156 PMCID: PMC6395797 DOI: 10.1038/s41598-019-39081-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
An understanding gene-gene interaction helps users to design the next experiments efficiently and (if applicable) to make a better decision of drugs application based on the different biological conditions of the patients. This study aimed to identify changes in the hidden relationships between pro- and anti-inflammatory cytokine genes in the bovine oviduct epithelial cells (BOECs) under various experimental conditions using a multilayer response surface method. It was noted that under physiological conditions (BOECs with sperm or sex hormones, such as ovarian sex steroids and LH), the mRNA expressions of IL10, IL1B, TNFA, TLR4, and TNFA were associated with IL1B, TNFA, TLR4, IL4, and IL10, respectively. Under pathophysiological + physiological conditions (BOECs with lipopolysaccharide + hormones, alpha-1-acid glycoprotein + hormones, zearalenone + hormones, or urea + hormones), the relationship among genes was changed. For example, the expression of IL10 and TNFA was associated with (IL1B, TNFA, or IL4) and TLR4 expression, respectively. Furthermore, under physiological conditions, the co-expression of IL10 + TNFA, TLR4 + IL4, TNFA + IL4, TNFA + IL4, or IL10 + IL1B and under pathophysiological + physiological conditions, the co-expression of IL10 + IL4, IL4 + IL10, TNFA + IL10, TNFA + TLR4, or IL10 + IL1B were associated with IL1B, TNFA, TLR4, IL10, or IL4 expression, respectively. Collectively, the relationships between pro- and anti-inflammatory cytokine genes can be changed with respect to the presence/absence of toxins, sex hormones, sperm, and co-expression of other gene pairs in BOECs, suggesting that considerable cautions are needed in interpreting the results obtained from such narrowly focused in vitro studies.
Collapse
|
12
|
Kowsar R, Kowsar Z, Miyamoto A. Up-regulated mRNA expression of some anti-inflammatory mediators in bovine oviduct epithelial cells by urea in vitro: Cellular pathways by Reactome analysis. Reprod Biol 2019; 19:75-82. [PMID: 30626534 DOI: 10.1016/j.repbio.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022]
Abstract
Increased urea concentration is a major cause of low fertility in dairy cows fed high-protein diets. A strong correlation exists between the urea concentration in the blood and oviduct fluid of dairy cows. In this study, bovine oviduct epithelial cells (BOECs) were incubated with varying concentrations of urea (0, 20, 40, and 80 mg/dL) in the absence of ovarian sex steroids (estradiol and progesterone) and luteinizing hormone. The 80 mg/dL urea reduced the cell viability, and thus was excluded in further analysis. Compared to the control (U0), the 20 mg/dL urea (U20) increased the mRNA expression of Toll-like receptor (TLR) 4, interleukin (IL) 10, IL4, and prostaglandin (PG) E synthase (mPGES) but decreased the mRNA expression of tumor necrosis factor α (TNFA). Compared to U0, the 40 mg/dL urea (U40) decreased the mRNA expression of TNFA and increased alpha-1-acid glycoprotein (AGP). U40 also increased TLR2, IL10, and IL4 mRNA expression compared to U0. In addition, compared to U20, the U40 decreased the mRNA expression of TLR4 and IL1B but increased that of AGP and TLR2. Subsequently, the mRNA expression data were then projected into the Reactome database. The Reactome analysis showed that pathways, including cytokine signaling in the immune system (i.e., TNFs bind their physiological receptors) and death receptor signaling (i.e., TNF signaling), were down-regulated in the presence of urea compared to the U0 group. These in vitro data implied that high urea level can alter the balance between pro- and anti-inflammatory responses in BOECs, thus providing a suboptimal environment for the early reproductive events or a weakened innate immune system, predisposing the oviduct to infections.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Zohre Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
13
|
Dadarwal D, Palmer C, Griebel P. Mucosal immunity of the postpartum bovine genital tract. Theriogenology 2017; 104:62-71. [DOI: 10.1016/j.theriogenology.2017.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|
14
|
Danesh Mesgaran S, Gärtner MA, Wagener K, Drillich M, Ehling-Schulz M, Einspanier R, Gabler C. Different inflammatory responses of bovine oviductal epithelial cells in vitro to bacterial species with distinct pathogenicity characteristics and passage number. Theriogenology 2017; 106:237-246. [PMID: 29096271 DOI: 10.1016/j.theriogenology.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
The bovine oviduct provides the site for fertilization and early embryonic development. Modifications to this physiological environment, for instance the presence of pathogenic bacterial species, could diminish reproductive success at early stages of pregnancy. The aim of this study was to elucidate the inflammatory responses of bovine oviductal epithelial cells (BOEC) to a pathogenic bacterial species (Trueperella pyogenes) and a potentially pathogenic bacterium (Bacillus pumilus). BOEC from four healthy animals were isolated, cultured in passage 0 (P0) and passaged until P3. Trypan blue staining determined BOEC viability during 24 h co-culture with different multiplicities of infection (MOI) of T. pyogenes (MOI 0.01, 0.05, 0.1 and 1) or B. pumilus (MOI 1 and 10). BOEC remained viable when co-cultured with T. pyogenes at MOI 0.01 and with B. pumilus at MOI 1 and 10. Extracted total RNA from control and bacteria co-cultured samples was subjected to reverse transcription-quantitative polymerase chain reaction (RTq-PCR) to determine mRNA expression of various studied genes. The rate of release of interleukin 8 (IL8) and prostaglandin E2 (PGE2) from BOEC was measured by ELISA after 24 h co-culture with bacteria. RT-qPCR of various selected pro-inflammatory factors revealed similar mRNA expression of pro-inflammatory factors in BOEC co-cultured with T. pyogenes and in the controls. Higher mRNA expression of IL 1A, -1B, tumor necrosis factor alpha and CXC ligand (CXCL) 1/2, -3, -5 and IL8 and PG synthesis enzymes in BOEC co-cultured with B. pumilus was observed. In the presence of B. pumilus a higher amount of IL8 and PGE2 was released from BOEC than from controls. The viability and pro-inflammatory response of P3 BOEC incubated with bacteria was lower than in P0 BOEC. These findings illustrate the pathogenicity of T. pyogenes towards BOEC in detail and the potential role of B. pumilus in generating inflammation in oviductal cells. Culturing conditions influenced the pro-inflammatory responses of BOEC towards bacteria. Therefore, researchers conducting epithelial-bacterial in vitro co-culture should not underestimate the effects of these parameters.
Collapse
Affiliation(s)
- S Danesh Mesgaran
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - M A Gärtner
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Ehling-Schulz
- Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - R Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - C Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Steinberger B, Yu H, Brodmann T, Milovanovic D, Reichart U, Besenfelder U, Artemenko K, Razzazi-Fazeli E, Brem G, Mayrhofer C. Semen modulated secretory activity of oviductal epithelial cells is linked to cellular proteostasis network remodeling: Proteomic insights into the early phase of interaction in the oviduct in vivo. J Proteomics 2017; 163:14-27. [DOI: 10.1016/j.jprot.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 11/16/2022]
|
16
|
Ohtsu A, Tanaka H, Seno K, Iwata H, Kuwayama T, Shirasuna K. Palmitic acid stimulates interleukin-8 via the TLR4/NF-κB/ROS pathway and induces mitochondrial dysfunction in bovine oviduct epithelial cells. Am J Reprod Immunol 2017; 77. [PMID: 28185389 DOI: 10.1111/aji.12642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
PROBLEM We investigated the effect of palmitic acid (PA), a major saturated fatty acid in NEFA, on bovine oviduct epithelial cells (OECs) during in vitro cell culture. METHOD OF STUDY Bovine oviductal tissues ipsilateral to the corpus luteum were collected 1-3 days after ovulation; the OECs were isolated and cultured. RESULTS PA increased lipid accumulation and activated caspase-3 in OECs, resulting in decreased cell proliferation. PA also stimulated the secretion of inflammatory cytokine interleukin (IL)-8 depending on TLR4, NF-κB activation, and reactive oxygen species (ROS) production. Moreover, PA induced mitochondrial dysfunction, including mitochondrial fission, ATP production, and mitochondrial ROS production. It also increased levels of LC3 and p62 proteins, suggesting autophagy induction in OECs. CONCLUSION We suggest that bovine OECs recognize an excessive increase in endogenous and sterile danger signals, such as PA, which may contribute to chronic oviductal inflammation, resulting in infertility associated with oviductal dysfunction.
Collapse
Affiliation(s)
- Ayaka Ohtsu
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hazuki Tanaka
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Kotomi Seno
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
17
|
Tanaka H, Ohtsu A, Shiratsuki S, Kawahara-Miki R, Iwata H, Kuwayama T, Shirasuna K. Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. Mol Reprod Dev 2016; 83:815-826. [PMID: 27580129 DOI: 10.1002/mrd.22693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
The mammalian oviduct is an essential site for sperm storage, the transport of gametes, fertilization, and embryo development-functions that are aided by cytokines secreted from oviduct epithelial cells (OECs). Aging leads to cellular and organ dysfunction, with infertility associated with advanced maternal age. Few studies have investigated age-dependent changes in the oviduct as a possible cause of infertility, so we compared OECs from young (30-50 months) versus aged (more than 120 months) cattle. Next-generation sequencing was first used to identify age-related differences in gene expression. Several proinflammatory-related genes (including IL1B, IL1A, IL17C, IL8, S100A8, S100A9, and TNFA) were activated in OECs from aged (more than 120 months) compare to young (30-50 months) individuals, whereas genes associated with extracellular matrix-related factors (COLs, POSTN, BGN, and LUM) were down-regulation in aged OECs. Indeed, IL1 B and IL8 abundance was higher in aged OECs than in young OECs. Young OECs also tended to proliferate faster, and the revolution frequency of young, ciliated OECs was higher than that of their aged counterparts. In contrast, aged OECs possessed more F-actin, an actin cytoskeleton marker associated with reduced elasticity, and contained high levels of reactive oxygen species, which are mediators of inflammation and senescence. These different functional characteristics of bovine OECs during the post-ovulatory phase support the emerging concept of "inflammaging," that is, age-dependent inflammation. Mol. Reprod. Dev. 83: 815-826, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hazuki Tanaka
- Department of Animal Science, Laboratory of Animal Reproduction, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Ayaka Ohtsu
- Department of Animal Science, Laboratory of Animal Reproduction, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Shogo Shiratsuki
- Department of Animal Science, Laboratory of Animal Reproduction, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Ryoka Kawahara-Miki
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Hisataka Iwata
- Department of Animal Science, Laboratory of Animal Reproduction, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Laboratory of Animal Reproduction, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Laboratory of Animal Reproduction, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan.
| |
Collapse
|
18
|
Kowsar R, Marey MA, Shimizu T, Miyamoto A. Short communication: Urea induces T helper 2 (Th2) type environment at transcriptional level and prostaglandin E2 secretion in bovine oviduct epithelial cells in culture. J Dairy Sci 2016; 99:5844-5850. [PMID: 27132094 DOI: 10.3168/jds.2016-10874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/24/2016] [Indexed: 12/30/2022]
Abstract
Excess dietary protein intake in early lactation dairy cows resulting in blood urea nitrogen of greater than 19 to 20mg/dL is associated with decreased fertility. Little is known about the local interference of urea in the normal immunological environment of the oviduct that provides optimal conditions for early reproductive events. A bovine oviduct epithelial cell (BOEC) culture was used to determine how urea influences immune environment. The BOEC monolayer was supplemented with low (20mg/dL) and high (40mg/dL) concentrations of urea together with ovarian steroids, estradiol (1ng/mL) and progesterone (1ng/mL), and LH (10ng/mL) at concentrations observed during the preovulatory period. The urea values used in this study were equivalent to 9.3 and 18.7mg/dL of blood urea nitrogen, which are typically common in lactating dairy cows with low or high protein intake, respectively. Stimulation of BOEC with 40mg/dL of urea induced gene expression of IL10 and IL4, epithelial-derived T helper type 2-driving (anti-inflammatory) cytokines as well as mPGES-1 expression and prostaglandin E2 (PGE2) secretion. However, urea concentrations of both 20 and 40mg/dL failed to alter the expression of IL1B and TNFA, Th1-driving cytokines, and the gene expression of TLR4. However, a concentration of 40mg/dL of urea stimulated α 1-acid glycoprotein expression, an acute phase protein. Data from this in vitro study suggest that urea, at least in part, contributes to influence the expression of some immune-related genes toward T helper type 2 type and prostaglandin E2 secretion, leading to disruption in local environment for fertilization and early embryonic development.
Collapse
Affiliation(s)
- R Kowsar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - M A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt 22511
| | - T Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - A Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
19
|
Seasonal proteome changes of nasal mucus reflect perennial inflammatory response and reduced defence mechanisms and plasticity in allergic rhinitis. J Proteomics 2016; 133:153-160. [DOI: 10.1016/j.jprot.2015.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 01/05/2023]
|
20
|
Cerny KL, Ribeiro RAC, Jeoung M, Ko C, Bridges PJ. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome. PLoS One 2016; 11:e0147685. [PMID: 26808832 PMCID: PMC4725743 DOI: 10.1371/journal.pone.0147685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430–2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG’s, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG’s in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expression and related bioinformatic analysis is presented to increase our understanding of how estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as important regulators of fertility in the future.
Collapse
Affiliation(s)
- Katheryn L. Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
| | - Rosanne A. C. Ribeiro
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
| | - Myoungkun Jeoung
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of America
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States of America
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of America
- * E-mail:
| |
Collapse
|