1
|
Mitchell T, Lin J, Hicks S, James J, Rangan P, Forni P. Loss of function of male-specific lethal 3 (Msl3) does not affect spermatogenesis in rodents. Dev Dyn 2024; 253:453-466. [PMID: 37847071 PMCID: PMC11021377 DOI: 10.1002/dvdy.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Male-specific lethal 3 (Msl3) is a member of the chromatin-associated male-specific lethal MSL complex, which is responsible for the transcriptional upregulation of genes on the X chromosome in males of Drosophila. Although the dosage complex operates differently in mammals, the Msl3 gene is conserved from flies to humans. Msl3 is required for meiotic entry during Drosophila oogenesis. Recent reports indicate that also in primates, Msl3 is expressed in undifferentiated germline cells before meiotic entry. However, if Msl3 plays a role in the meiotic entry of mammals has yet to be explored. RESULTS To understand, if Msl3a plays a role in the meiotic entry of mammals, we used mouse spermatogenesis as a study model. Analyses of single-cell RNA-seq data revealed that, in mice, Msl3 is mostly expressed in meiotic cells. To test the role of Msl3 in meiosis, we used a male germline-specific Stra8-iCre driver and a newly generated Msl3flox conditional knock-out mouse line. Msl3 conditional loss-of-function in spermatogonia did not cause spermatogenesis defects or changes in the expression of genes related to meiosis. CONCLUSIONS Our data suggest that, in mice, Msl3 exhibits delayed expression compared to Drosophila and primates, and loss-of-function mutations disrupting the chromodomain of Msl3 alone do not impede meiotic entry in rodents.
Collapse
Affiliation(s)
- T.A. Mitchell
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - J.M. Lin
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - S.M. Hicks
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - J.R. James
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - P. Rangan
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - P.E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
2
|
Das M, Gurusubramanian G, Roy VK. Immunolocalization of apelin receptor (APJ) in mouse seminiferous epithelium. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:450-457. [PMID: 38390701 DOI: 10.1002/jez.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
The apelin receptor (APJ) belongs to the member of the G protein-coupled receptor family, and expression of APJ has been reported in the different cell types of testis. The seminiferous tubules in the testis can be identified as different stages (I-XII). It has been also suggested that different factors could be expressed in stage and cell-specific manner in the seminiferous tubules. Recently, we also shown that expression of APJ is developmentally regulated in the testis from PND1 to PND42. Therefore, we analyzed the expression of APJ in the testis of adult mice by immunohistochemistry. Immunohistochemistry showed that the APJ was highly specific for the round and elongated spermatids with stage-dependent changes. The seminiferous tubules at stages I-VII showed APJ immunostaining in the spermatid steps 1-8, not steps of 13-16. The seminiferous tubules at stages IX-XII showed APJ immunostaining in the spermatid steps 9-12. These results suggested the possible role of APJ in the spermiogenesis process. The intratesticular administration of APJ antagonist, ML221 showed a few round spermatids in the seminiferous tubules and some of the tubules with complete absence of round spermatid. Overall, we present evidence that APJ expression in spermatid is dependent on the stages of the seminiferous epithelium cycle and APJ could be involved in the differentiation of round spermatid to elongated spermatid.
Collapse
Affiliation(s)
- Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Vikas K Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
3
|
Ren H, Zhang Y, Bi Y, Wang H, Fang G, Zhao P. Target silencing of porcine SPAG6 and PPP1CC by shRNA attenuated sperm motility. Theriogenology 2024; 219:138-146. [PMID: 38430798 DOI: 10.1016/j.theriogenology.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The quality of sperm significantly influences the reproductive efficiency of pig herds. High-quality sperm is necessary for efficient fertilization and to maximize the litter numbers in commercial pig farming. However, the understanding of genes regulating porcine sperm motility and viability is limited. In this study, we validated porcine sperm/Sertoli-specific promoters through the luciferase reporter system and identified vital genes for sperm quality via loss-of-function means. Further, the shRNAs driven by the ACE and SP-10 promoters were used to knockdown the SPAG6 and PPP1CC genes which were provisionally important for sperm quality. We assessed the effects of SPAG6 and PPP1CC knockdown on sperm motility by using the sperm quality analyzer and flow cytometry. The results showed that the ACE promoter is active in both porcine Sertoli cells and sperms, whereas the SP-10 promoter is operating exclusively in sperm cells. Targeted interference with SPAG6 and PPP1CC expression in sperm cells decreases the motility and increases apoptosis rates in porcine sperms. These findings not only offer new genetic tools for targeting male germ cells but also highlight the crucial roles of SPAG6 and PPP1CC in porcine sperm function.
Collapse
Affiliation(s)
- Hongyan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yandi Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yanzhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Guijie Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei Province, PR China.
| | - Pengxiang Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China.
| |
Collapse
|
4
|
Liu MM, Fan CQ, Zhang GL. A Single-Cell Landscape of Spermioteleosis in Mice and Pigs. Cells 2024; 13:563. [PMID: 38607002 PMCID: PMC11011153 DOI: 10.3390/cells13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.
Collapse
Affiliation(s)
| | | | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.-M.L.); (C.-Q.F.)
| |
Collapse
|
5
|
Jorban A, Lunenfeld E, Huleihel M. Effect of Temperature on the Development of Stages of Spermatogenesis and the Functionality of Sertoli Cells In Vitro. Int J Mol Sci 2024; 25:2160. [PMID: 38396838 PMCID: PMC10889116 DOI: 10.3390/ijms25042160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Spermatogenesis is the process of proliferation and differentiation of spermatogonial cells to meiotic and post-meiotic stages and sperm generation. Normal spermatogenesis occurs in vivo at 34 °C to 35 °C, and high temperatures are known to cause male infertility. The aim of the present study was to examine the effect of temperature (35 °C compared to 37 °C) on the viability/apoptosis of developed cells, on the development of different stages of spermatogenesis in 3D in vitro culture conditions, and the functionality of Sertoli cells under these conditions. We used isolated cells from seminiferous tubules of sexually immature mice. The cells were cultured in methylcellulose (as a three-dimensional (3D) in vitro culture system) and incubated in a CO2 incubator at 35 °C or 37 °C. After two to six weeks, the developed cells and organoids were collected and examined for cell viability and apoptosis markers. The development of different stages of spermatogenesis was evaluated by immunofluorescence staining or qPCR analysis using specific antibodies or primers, respectively, for cells at each stage. Factors that indicate the functionality of Sertoli cells were assessed by qPCR analysis. The developed organoids were examined by a confocal microscope. Our results show that the percentages and/or the expression levels of the developed pre-meiotic, meiotic, and post-meiotic cells were significantly higher at 35 °C compared to those at 37 °C, including the expression levels of the androgen receptor, the FSH receptor, transferrin, the androgen-binding protein (ABP), and the glial-derived nerve growth factor (GDNF) which were similarly significantly higher at 35 °C than at 37 °C. The percentages of apoptotic cells (according to acridine orange staining) and the expression levels of BAX, FAS, and CASPAS 3 were significantly higher in cultures incubated at 37 °C compared to those incubated at 35 °C. These findings support the in vivo results regarding the negative effect of high temperatures on the process of spermatogenesis and suggest a possible effect of high temperatures on the viability/apoptosis of spermatogenic cells. In addition, increasing the temperature in vitro also impaired the functionality of Sertoli cells. These findings may deepen our understanding of the mechanisms behind optimal conditions for normal spermatogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Areej Jorban
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Eitan Lunenfeld
- Adelson School of Medicine, Ariel University, Ariel 4076414, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
6
|
Kaye EG, Basavaraju K, Nelson GM, Zomer HD, Roy D, Joseph II, Rajabi-Toustani R, Qiao H, Adelman K, Reddi PP. RNA polymerase II pausing is essential during spermatogenesis for appropriate gene expression and completion of meiosis. Nat Commun 2024; 15:848. [PMID: 38287033 PMCID: PMC10824759 DOI: 10.1038/s41467-024-45177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double-strand break (DSB) formation, and disruption of meiotic gene expression and DSB repair in germ cells lacking NELF.
Collapse
Affiliation(s)
- Emily G Kaye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kavyashree Basavaraju
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Debarun Roy
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Irene Infancy Joseph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
7
|
Aisha J, Yenugu S. Characterization of SPINK2, SPACA7 and PDCL2: Effect of immunization on fecundity, sperm function and testicular transcriptome. Reprod Biol 2023; 23:100711. [PMID: 36462395 DOI: 10.1016/j.repbio.2022.100711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
Testicular factors play a vital role in spermatogenesis. We characterized the functional role of rat Spink2, Spaca7 and Pdcl2 genes. Their primary, secondary and tertiary structure were deduced in silico. The genes of rat Spink2, Spaca7 and Pdcl2 mRNA were predominantly expressed in the testis. SPINK2, SPACA7 and PDCL2 protein expression was evident in all the cell types of testis and on spermatozoa. Ablation of each of these proteins by active immunization resulted in reduced fecundity and sperm count. Damage to the anatomical architecture of testis and epididymis was evident. In SPINK2 immunized rats, 283 genes were differentially regulated while it was 434 and 872 genes for SPACA7 and PDCL2 respectively. Genes that were differentially regulated in the testis of SPINK2 immunized rats primarily belonged to extracellular exosome formation, extracellular space and response to drugs. SPACA7 ablation affected genes related to extracellular space, oxidation-reduction processes, endoplasmic reticulum membrane and response to drugs. Differential gene expression was observed for nuclear function, protein binding and positive regulation of transcription from RNA polymerase II promoter in testis of PDCL2 immunized rats. Results of our study demonstrate the role of SPINK2, SPACA7 and PDCL2 in spermatogenesis and in important molecular processes that may dictate testicular function and other physiological responses as well.
Collapse
Affiliation(s)
- Jamil Aisha
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
8
|
Kavarthapu R, Anbazhagan R, Pal S, Dufau ML. Single-Cell Transcriptomic Profiling of the Mouse Testicular Germ Cells Reveals Important Role of Phosphorylated GRTH/DDX25 in Round Spermatid Differentiation and Acrosome Biogenesis during Spermiogenesis. Int J Mol Sci 2023; 24:3127. [PMID: 36834539 PMCID: PMC9962311 DOI: 10.3390/ijms24043127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH)/DDX25 is a member of DEAD-box family of RNA helicase essential for the completion of spermatogenesis and male fertility, as evident from GRTH-knockout (KO) mice. In germ cells of male mice, there are two species of GRTH, a 56 kDa non-phosphorylated form and 61 kDa phosphorylated form (pGRTH). GRTH Knock-In (KI) mice with R242H mutation abolished pGRTH and its absence leads to infertility. To understand the role of the GRTH in germ cell development at different stages during spermatogenesis, we performed single-cell RNA-seq analysis of testicular cells from adult WT, KO and KI mice and studied the dynamic changes in gene expression. Pseudotime analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to elongated spermatids in WT mice, while in both KO and KI mice the trajectory was halted at round spermatid stage indicating incomplete spermatogenesis process. The transcriptional profiles of KO and KI mice were significantly altered during round spermatid development. Genes involved in spermatid differentiation, translation process and acrosome vesicle formation were significantly downregulated in the round spermatids of KO and KI mice. Ultrastructure of round spermatids of KO and KI mice revealed several abnormalities in acrosome formation that includes failure of pro-acrosome vesicles to fuse to form a single acrosome vesicle, and fragmentation of acrosome structure. Our findings highlight the crucial role of pGRTH in differentiation of round spermatids into elongated spermatids, acrosome biogenesis and its structural integrity.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soumitra Pal
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Zomer HD, Osuru HP, Chebolu A, Rayl JM, Timken M, Reddi PP. Sertoli cells require TDP-43 to support spermatogenesis†. Biol Reprod 2022; 107:1345-1359. [PMID: 35986894 PMCID: PMC9663940 DOI: 10.1093/biolre/ioac165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 08/23/2023] Open
Abstract
TAR DNA binding protein of 43 kD (TDP-43) is an evolutionarily conserved, ubiquitously expressed transcription factor and RNA-binding protein with major human health relevance. TDP-43 is present in Sertoli and germ cells of the testis and is aberrantly expressed in the sperm of infertile men. Sertoli cells play a key role in spermatogenesis by offering physical and nutritional support to male germ cells. The current study investigated the requirement of TDP-43 in Sertoli cells. Conditional knockout (cKO) of TDP-43 in mouse Sertoli cells caused failure of spermatogenesis and male subfertility. The cKO mice showed decreased testis weight, and low sperm count. Testis showed loss of germ cell layers, presence of vacuoles, and sloughing of round spermatids, suggesting loss of contact with Sertoli cells. Using a biotin tracer, we found that the blood-testis barrier (BTB) was disrupted as early as postnatal day 24 and worsened in adult cKO mice. We noted aberrant expression of the junction proteins connexin-43 (gap junction) and N-cadherin (ectoplasmic specialization). Oil Red O staining showed a decrease in lipid droplets (phagocytic function) in tubule cross-sections, Sertoli cells cytoplasm, and in the lumen of seminiferous tubules of cKO mice. Finally, qRT-PCR showed upregulation of genes involved in the formation and/or maintenance of Sertoli cell junctions as well as in the phagocytic pathway. Sertoli cells require TDP-43 for germ cell attachment, formation and maintenance of BTB, and phagocytic function, thus indicating an essential role for TDP-43 in the maintenance of spermatogenesis.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Apoorv Chebolu
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL, USA
| |
Collapse
|
10
|
Huang C, Yang C, Pang D, Li C, Gong H, Cao X, He X, Chen X, Mu B, Cui Y, Liu W, Luo Q, Cheng A, Jia L, Chen M, Xiao B, Chen Z. Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis. Lab Anim (NY) 2022; 51:133-145. [PMID: 35469022 DOI: 10.1038/s41684-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1-LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.
Collapse
Affiliation(s)
- Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengcheng Yang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Dejiang Pang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Chao Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiyue Cao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xia He
- Clinical Laboratory of the People's Hospital of Ya'an, Ya'an, P. R. China
| | - Xueyao Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Anchun Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, P. R. China.
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
11
|
Campbell KM, Xu Y, Patel C, Rayl JM, Zomer HD, Osuru HP, Pratt M, Pramoonjago P, Timken M, Miller LM, Ralph A, Storey KM, Peng Y, Drnevich J, Lagier-Tourenne C, Wong PC, Qiao H, Reddi PP. Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. J Biol Chem 2021; 297:101231. [PMID: 34599968 PMCID: PMC8569592 DOI: 10.1016/j.jbc.2021.101231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT-PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.
Collapse
Affiliation(s)
- Kaitlyn M Campbell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chintan Patel
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Pratt
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lyndzi M Miller
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Abigail Ralph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn M Storey
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jenny Drnevich
- High-Performance Biological Computing (HPCBio) Group, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
12
|
Varuzhanyan G, Ladinsky MS, Yamashita SI, Abe M, Sakimura K, Kanki T, Chan DC. Fis1 ablation in the male germline disrupts mitochondrial morphology and mitophagy, and arrests spermatid maturation. Development 2021; 148:271183. [PMID: 34355730 PMCID: PMC8380467 DOI: 10.1242/dev.199686] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
Male germline development involves choreographed changes to mitochondrial number, morphology and organization. Mitochondrial reorganization during spermatogenesis was recently shown to require mitochondrial fusion and fission. Mitophagy, the autophagic degradation of mitochondria, is another mechanism for controlling mitochondrial number and physiology, but its role during spermatogenesis is largely unknown. During post-meiotic spermatid development, restructuring of the mitochondrial network results in packing of mitochondria into a tight array in the sperm midpiece to fuel motility. Here, we show that disruption of mouse Fis1 in the male germline results in early spermatid arrest that is associated with increased mitochondrial content. Mutant spermatids coalesce into multinucleated giant cells that accumulate mitochondria of aberrant ultrastructure and numerous mitophagic and autophagic intermediates, suggesting a defect in mitophagy. We conclude that Fis1 regulates mitochondrial morphology and turnover to promote spermatid maturation.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA
| |
Collapse
|
13
|
O'Donnell L, Rebourcet D, Dagley LF, Sgaier R, Infusini G, O'Shaughnessy PJ, Chalmel F, Fietz D, Weidner W, Legrand JMD, Hobbs RM, McLachlan RI, Webb AI, Pilatz A, Diemer T, Smith LB, Stanton PG. Sperm proteins and cancer-testis antigens are released by the seminiferous tubules in mice and men. FASEB J 2021; 35:e21397. [PMID: 33565176 PMCID: PMC7898903 DOI: 10.1096/fj.202002484r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Sperm develop from puberty in the seminiferous tubules, inside the blood-testis barrier to prevent their recognition as "non-self" by the immune system, and it is widely assumed that human sperm-specific proteins cannot access the circulatory or immune systems. Sperm-specific proteins aberrantly expressed in cancer, known as cancer-testis antigens (CTAs), are often pursued as cancer biomarkers and therapeutic targets based on the assumption they are neoantigens absent from the circulation in healthy men. Here, we identify a wide range of germ cell-derived and sperm-specific proteins, including multiple CTAs, that are selectively deposited by the Sertoli cells of the adult mouse and human seminiferous tubules into testicular interstitial fluid (TIF) that is "outside" the blood-testis barrier. From TIF, the proteins can access the circulatory- and immune systems. Disruption of spermatogenesis decreases the abundance of these proteins in mouse TIF, and a sperm-specific CTA is significantly decreased in TIF from infertile men, suggesting that exposure of certain CTAs to the immune system could depend on fertility status. The results provide a rationale for the development of blood-based tests useful in the management of male infertility and indicate CTA candidates for cancer immunotherapy and biomarker development that could show sex-specific and male-fertility-related responses.
Collapse
Affiliation(s)
- Liza O'Donnell
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Raouda Sgaier
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Giuseppe Infusini
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Peter J O'Shaughnessy
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Frederic Chalmel
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, University Rennes, Rennes, France
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Julien M D Legrand
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robert I McLachlan
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Andrew I Webb
- Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Thorsten Diemer
- Department of Urology, Pediatric Urology and Andrology, Medical Faculty, Justus-Liebig-University Giessen, UKGM GmbH, Giessen, Germany
| | - Lee B Smith
- Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter G Stanton
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Fang X, Gamallat Y, Chen Z, Mai H, Zhou P, Sun C, Li X, Li H, Zheng S, Liao C, Yang M, Li Y, Yang Z, Ma C, Han D, Zuo L, Xu W, Hu H, Sun L, Li N. Hypomorphic and hypermorphic mouse models of Fsip2 indicate its dosage-dependent roles in sperm tail and acrosome formation. Development 2021; 148:269073. [PMID: 34125190 DOI: 10.1242/dev.199216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023]
Abstract
Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.
Collapse
Affiliation(s)
- Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Zhiheng Chen
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Xiaoliang Li
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Zeyu Yang
- Guangdong Technion-Israel Institute of Technology, Shantou, 515063 Guangdong, China
| | - Caiqi Ma
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Wenming Xu
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| |
Collapse
|
15
|
Gamallat Y, Fang X, Mai H, Liu X, Li H, Zhou P, Han D, Zheng S, Liao C, Yang M, Li Y, Zuo L, Sun L, Hu H, Li N. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice. Redox Biol 2021; 43:101969. [PMID: 33901807 PMCID: PMC8099781 DOI: 10.1016/j.redox.2021.101969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Fibrous sheath interacting protein 1 (Fsip1) is a cytoskeletal structural protein of the sperm flagellar proteome. A few studies have reported that it plays a vital role in the tumorigenesis and cancer progression. However, little is known about the role of Fsip1 in spermatogenesis and mammalian sperm flagellogenesis. Fsip1 protein showed the highest expression in round spermatids, and was translocated from nucleus to the anterior region of the elongating spermatid head. To investigate its role we constructed homozygous Fsip1 null (Fsip1−/−) mice. We found that the homozygous Fsip1−/− mutant mice were infertile, with a low sperm count and impaired motility. Interestingly, a subtle phenotype characterized by abnormal head shape, and flagella deformities was observed in the sperm of Fsip1−/− mutant mice similar to the partial globozoospermia phenotype. Electron microscopy analysis of Fsip1−/− sperm revealed abnormal accumulation of mitochondria, disrupted axoneme and retained cytoplasm. Testicular sections showed increased cytoplasmic vacuoles in the elongated spermatid of Fsip1–/–mice, which indicated an intraflagellar transport (IFT) defect. Using proteomic approaches, we characterized the cellular components and the mechanism underlying this subtle phenotype. Our result indicated that Fsip1–/–downregulates the formation of acrosomal membrane and vesicles proteins, intraflagellar transport particles B, and sperm flagellum components. Our results suggest that Fsip1 is essential for normal spermiogenesis, and plays an essential role in the acrosome biogenesis and flagellogenesis by attenuating intraflagellar transport proteins. Disruption of Fsip1 leads to infertility with partial globozoospermia phenotype. Homozygous deletion of Fsip1 alters spermiogenesis. Fsip1 Knockout disrupts acrosome vesicle formation. Fsip1 motif analysis involves in internal fertilization.
Collapse
Affiliation(s)
- Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaonan Liu
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China; Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
16
|
Cruz A, Sullivan DB, Doty KF, Hess RA, Canisso IF, Reddi PP. Acrosomal marker SP-10 (gene name Acrv1) for staging of the cycle of seminiferous epithelium in the stallion. Theriogenology 2020; 156:214-221. [PMID: 32758798 DOI: 10.1016/j.theriogenology.2020.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The acrosome plays a critical role in sperm-oocyte interactions during fertilization. SP-10 is an acrosomal matrix protein, which is evolutionarily conserved among mammals. The SP-10 antibody has been shown to be useful for staging the seminiferous cycle in the mouse and human. A canonical acrosomal marker; however, has never been used for staging in the horse. The objectives of the present study were to investigate the presence of SP-10 within the horse acrosome using an anti-mouse SP-10 antibody, to classify spermatids based on the shape of the acrosome, and then to use that information to assign stages of the cycle of the seminiferous epithelium. Testes from mature stallions with history of normospermic ejaculates were used for immunohistochemistry. We found that the mouse SP-10 antibody stained the horse acrosome vividly in testis cross-sections, indicating evolutionary conservation. Previous methods based on morphology alone without the aid of an antibody marker showed 8 stages in the horse seminiferous epithelium. Morphological detail of the acrosome afforded by the SP-10 marker in this study identified 16 steps of spermatids. This, in turn, led to the identification of 12 distinct stages in the cycle of the seminiferous epithelium of the horse wherein stage I shows recently formed round spermatids and stage XII includes meiotic divisions; a classification that is consistent with other animal models. The SP-10 antibody marks the acrosome in a way that enables researchers in the field to identify stages of spermatogenesis in the horse easily. In conclusion, we demonstrated that immunolabeling for SP-10 can be an objective approach to stage the cycle of the seminiferous epithelium in normospermic stallions; future studies will determine if SP-10 could be used to assess testicular dysfunction.
Collapse
Affiliation(s)
- Anamaria Cruz
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA
| | - Derek B Sullivan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA
| | - Karen F Doty
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA
| | - Igor F Canisso
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana Champaign, USA.
| |
Collapse
|
17
|
Wang D, Cheng L, Xia W, Liu X, Guo Y, Yang X, Guo X, Xu EY. LYPD4, mouse homolog of a human acrosome protein, is essential for sperm fertilizing ability and male fertility†. Biol Reprod 2020; 102:1033-1044. [DOI: 10.1093/biolre/ioaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Fertilization is one of the fundamental biological processes, but so far, we still do not have a full understanding of the underlying molecular mechanism. We have identified a human acrosome protein, LY6/PLAUR domain containing 4 (LYPD4), expressed specifically in human testes and sperm, and conserved within mammals. Mouse Lypd4, also specific to the testis and sperm, is essential for male fertility. LYPD4 protein first appeared in round spermatids during acrosome biogenesis and became part of acrosomes during spermatogenesis and in mature sperm. Lypd4 knockout mice are infertile with normal sperm number and motility. Mutant sperm, however, failed to reach oviduct during sperm migration inside the female reproductive tract, leading to fertilization failure and infertility. In addition, Lypd4 mutant sperms were unable to fertilize denuded egg via IVF (in vitro fertilization) but could fertilize eggs within intact Cumulus-Oocyte Complex, supporting an additional role in sperm-zona interaction. Out of more than five thousand spermatozoa proteins identified by mass spectrometry analysis, only a small subset of proteins (26 proteins) was changed in the absence of LYPD4, revealing a whole proteome picture of mutant sperm defective in sperm migration and sperm-zona binding. ADAM3, a key component of fertilization complex, as well as other sperm ADAM proteins are significantly reduced. We hence propose that LYPD4 plays an essential role in mammalian fertilization, and further investigation of its function and its interaction with other sperm membrane complexes may yield insights into human fertilization and novel strategy to improve IVF success.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liping Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Neurology, and Center for Reproductive Sciences, Northwestern University, Chicago, USA
| |
Collapse
|
18
|
Varuzhanyan G, Rojansky R, Sweredoski MJ, Graham RL, Hess S, Ladinsky MS, Chan DC. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. eLife 2019; 8:51601. [PMID: 31596236 PMCID: PMC6805159 DOI: 10.7554/elife.51601] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/22/2023] Open
Abstract
Differentiating cells tailor their metabolism to fulfill their specialized functions. We examined whether mitochondrial fusion is important for metabolic tailoring during spermatogenesis. Acutely after depletion of mitofusins Mfn1 and Mfn2, spermatogenesis arrests due to failure to accomplish a metabolic shift during meiosis. This metabolic shift includes increased mitochondrial content, mitochondrial elongation, and upregulation of oxidative phosphorylation (OXPHOS). With long-term mitofusin loss, all differentiating germ cell types are depleted, but proliferation of stem-like undifferentiated spermatogonia remains unaffected. Thus, compared with undifferentiated spermatogonia, differentiating spermatogonia and meiotic spermatocytes have cell physiologies that require high levels of mitochondrial fusion. Proteomics in fibroblasts reveals that mitofusin-null cells downregulate respiratory chain complexes and mitochondrial ribosomal subunits. Similarly, mitofusin depletion in immortalized spermatocytes or germ cells in vivo results in reduced OXPHOS subunits and activity. We reveal that by promoting OXPHOS, mitofusins enable spermatogonial differentiation and a metabolic shift during meiosis.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rebecca Rojansky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Robert Lj Graham
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Sonja Hess
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
19
|
Grive KJ, Hu Y, Shu E, Grimson A, Elemento O, Grenier JK, Cohen PE. Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genet 2019; 15:e1007810. [PMID: 30893341 PMCID: PMC6443194 DOI: 10.1371/journal.pgen.1007810] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis is the process by which male gametes are formed from a self-renewing population of spermatogonial stem cells (SSCs) residing in the testis. SSCs represent less than 1% of the total testicular cell population in adults, but must achieve a stable balance between self-renewal and differentiation. Once differentiation has occurred, the newly formed and highly proliferative spermatogonia must then enter the meiotic program in which DNA content is doubled, then halved twice to create haploid gametes. While much is known about the critical cellular processes that take place during the specialized cell division that is meiosis, much less is known about how the spermatocytes in the "first-wave" in juveniles compare to those that contribute to long-term, "steady-state" spermatogenesis in adults. Given the strictly-defined developmental process of spermatogenesis, this study explored the transcriptional profiles of developmental cell stages during testis maturation. Using a combination of comprehensive germ cell sampling with high-resolution, single-cell-mRNA-sequencing, we have generated a reference dataset of germ cell gene expression. We show that discrete developmental stages of spermatogenesis possess significant differences in the transcriptional profiles from neonates compared to juveniles and adults. Importantly, these gene expression dynamics are also reflected at the protein level in their respective cell types. We also show differential utilization of many biological pathways with age in both spermatogonia and spermatocytes, demonstrating significantly different underlying gene regulatory programs in these cell types over the course of testis development and spermatogenic waves. This dataset represents the first unbiased sampling of spermatogonia and spermatocytes during testis maturation, at high-resolution, single-cell depth. Not only does this analysis reveal previously unknown transcriptional dynamics of a highly transitional cell population, it has also begun to reveal critical differences in biological pathway utilization in developing spermatogonia and spermatocytes, including response to DNA damage and double-strand breaks.
Collapse
Affiliation(s)
- Kathryn J. Grive
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Yang Hu
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Eileen Shu
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Andrew Grimson
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Jennifer K. Grenier
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
20
|
Zhao J, Zhao J, Xu G, Wang Z, Gao J, Cui S, Liu J. Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Biol Reprod 2018; 97:497-513. [PMID: 29025062 DOI: 10.1093/biolre/iox093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
As somatic cells in the testis seminiferous tubule, Sertoli cells provide the medium for spermatogenesis. One of the important functions of Sertoli cells is synthesizing and secreting cell factors to affect the production of sperm; however, much of those molecular regulation mechanisms remain unknown. Here, we confirm the localization of protein SPATA2 (spermatogenesis-associated protein 2), which had previously been shown to be highly expressed in Sertoli cells of the adult mouse testis. To further conduct a functional study, we generated SPATA2 global knockout mice via use of the CRISPR/Cas9n gene editing technology. The 120-day-old knockout mice testes showed almost a 40% decrease in size and weight and variations in the histomorphology of the seminiferous epithelium, with a 40% decrease in sperm count. Further examination revealed that the proliferation of germ cells in the seminiferous tubules was attenuated by 28%. In addition, we found that SPATA2 deletion led to an approximately 70% increase in the inhibin alpha-subunit mRNA and protein level in the testes compared to that of wild-type mice. Our data revealed the impact of SPATA2 on male fertility and suggested that SPATA2 ensures the normal secretory function of Sertoli cells.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jianjun Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guojin Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Osuru HP, Pramoonjago P, Abhyankar MM, Swanson E, Roker LA, Cathro H, Reddi PP. Immunolocalization of TAR DNA-binding protein of 43 kDa (TDP-43) in mouse seminiferous epithelium. Mol Reprod Dev 2017; 84:675-685. [PMID: 28600885 DOI: 10.1002/mrd.22851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
Abstract
TAR DNA-binding protein of 43 kDa (TDP-43) is an evolutionarily conserved, ubiquitously expressed, multi-functional DNA/RNA-binding protein with roles in gene transcription, mRNA splicing, stability, transport, micro RNA biogenesis, and suppression of transposons. Aberrant expression of TDP-43 in testis and sperm was recently shown to be associated with male infertility, which highlights the need to understand better the expression of TDP-43 in the testis. We previously cloned TDP-43 from a mouse testis cDNA library, and showed that it functions as a transcriptional repressor and regulates the precise spatiotemporal expression of the Acrv1 gene, which encodes the acrosomal protein SP-10, during spermatogenesis. Here, we performed immunoblotting and immunohistochemistry of the mouse testis using four separate antibodies recognizing the amino and carboxyl termini of TDP-43. TDP-43 is present in the nuclei of germ cells as well as Sertoli cells. TDP-43 expression begins in type B/intermediate spermatogonia, peaks in preleptotene spermatocytes, and becomes undetectable in leptotene and zygotene spermatocytes. Pachytene spermatocytes and early round spermatids again express TDP-43, but its abundance diminishes later in spermatids (at steps 5-8). Interestingly, two of the four antibodies showed TDP-43 expression in spermatids at steps 9-10, which coincides with the initial phase of the histone-to-protamine transition. Immunoreactivity patterns observed in the study suggest that TDP-43 assumes different conformational states at different stages of spermatogenesis. TDP-43 pathology has been extensively studied in the context of neurodegenerative diseases; its role in spermatogenesis warrants further detailed investigation of the involvement of TDP-43 in male infertility.
Collapse
Affiliation(s)
- Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mayuresh M Abhyankar
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eric Swanson
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - LaToya Ann Roker
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Helen Cathro
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, Illinois
| |
Collapse
|
22
|
TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A 2017. [PMID: 28630322 PMCID: PMC5502601 DOI: 10.1073/pnas.1621279114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the "9+2" microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex (N-DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated-Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N-DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1-null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1-null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility.
Collapse
|
23
|
Fakhrzadeh A, Spörndly-Nees E, Ekstedt E, Holm L, Luengo Hendriks CL. New computerized staging method to analyze mink testicular tissue in environmental research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:156-164. [PMID: 27271123 DOI: 10.1002/etc.3517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/07/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Histopathology of testicular tissue is considered to be the most sensitive tool to detect adverse effects on male reproduction. When assessing tissue damage, seminiferous epithelium needs to be classified into different stages to detect certain cell damages; but stage identification is a demanding task. The authors present a method to identify the 12 stages in mink testicular tissue. The staging system uses Gata-4 immunohistochemistry to visualize acrosome development and proved to be both intraobserver-reproducible and interobserver-reproducible with a substantial agreement of 83.6% (kappa = 0.81) and 70.5% (kappa = 0.67), respectively. To further advance and objectify this method, they present a computerized staging system that identifies these 12 stages. This program has an agreement of 52.8% (kappa 0.47) with the consensus staging by 2 investigators. The authors propose a pooling of the stages into 5 groups based on morphology, stage transition, and toxicologically important endpoints. The computerized program then reached a substantial agreement of 76.7% (kappa = 0.69). The computerized staging tool uses local ternary patterns to describe the texture of the tubules and a support vector machine classifier to learn which textures correspond to which stages. The results have the potential to modernize the tedious staging process required in toxicological evaluation of testicular tissue, especially if combined with whole-slide imaging and automated tubular segmentation. Environ Toxicol Chem 2017;36:156-164. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | - Ellinor Spörndly-Nees
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
24
|
Zhang C, Wu J. Retinoid acid: the trigger for the cycle of the seminiferous epithelium in the adult testis? Biol Reprod 2015; 92:115. [PMID: 25810475 DOI: 10.1095/biolreprod.115.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Chen Zhang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|