1
|
Huntsman MC, Kurashima CK, Marikawa Y. Validation of a mouse 3D gastruloid-based embryotoxicity assay in reference to the ICH S5(R3) guideline chemical exposure list. Reprod Toxicol 2024; 125:108558. [PMID: 38367697 PMCID: PMC11016378 DOI: 10.1016/j.reprotox.2024.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
There is growing interest in establishing alternative methods in place of conventional animal tests to assess the developmental and reproductive toxicity (DART) of chemicals. Gastruloids are 3D aggregates of pluripotent stem cells that spontaneously exhibit axial elongation morphogenesis similar to gastrulation. They have been explored as in vitro embryogenesis models for developmental and toxicological studies. Here, a mouse gastruloid-based assay was validated for DART assessment in accordance with the ICH S5(R3) guideline, which provides the plasma concentration data of various reference drugs in rodents, specifically Cmax and AUC for NOAEL and LOAEL. First, adverse effect concentrations of the reference drugs and their known metabolites on gastruloid development were determined based on morphological impact, namely reduced growth or aberrant elongation. Then, the NOAEL to LOAEL concentration range obtained from the gastruloid assay was compared with that in rodents to examine similarities in sensitivity between the in vitro and in vivo assays for each chemical. For 18 out of the 24 reference drugs that have both NOAEL and LOAEL information in rodents, the sensitivity of the gastruloid assay was comparable to the in vivo assay within an 8-fold concentration margin. For 7 out of the 8 additional reference drugs that have only NOAEL or LOAEL information in rodents, the gastruloid assay was in line with the in vivo data. Altogether, these results support the effectiveness of the gastruloid assay, which may be exploited as a non-animal alternative method for DART assessment.
Collapse
Affiliation(s)
- Margaret Carrell Huntsman
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Courtney Kehaulani Kurashima
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| |
Collapse
|
2
|
Kirkwood‐Johnson L, Marikawa Y. Developmental toxicity of remdesivir, an anti-COVID-19 drug, is implicated by in vitro assays using morphogenetic embryoid bodies of mouse and human pluripotent stem cells. Birth Defects Res 2023; 115:224-239. [PMID: 36349436 PMCID: PMC9877128 DOI: 10.1002/bdr2.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Remdesivir is an antiviral drug approved for the treatment of COVID-19, whose developmental toxicity remains unclear. More information about the safety of remdesivir is urgently needed for people of childbearing potential, who are affected by the ongoing pandemic. Morphogenetic embryoid bodies (MEBs) are three-dimensional (3D) aggregates of pluripotent stem cells that recapitulate embryonic body patterning in vitro, and have been used as effective embryo models to detect the developmental toxicity of chemical exposures specifically and sensitively. METHODS MEBs were generated from mouse P19C5 and human H9 pluripotent stem cells, and used to examine the effects of remdesivir. The morphological effects were assessed by analyzing the morphometric parameters of MEBs after exposure to varying concentrations of remdesivir. The molecular impact of remdesivir was evaluated by measuring the transcript levels of developmental regulator genes. RESULTS The mouse MEB morphogenesis was impaired by remdesivir at 1-8 μM. Remdesivir affected MEBs in a manner dependent on metabolic conversion, and its potency was higher than GS-441524 and GS-621763, presumptive anti-COVID-19 drugs that act similarly to remdesivir. The expressions of developmental regulator genes, particularly those involved in axial and somite patterning, were dysregulated by remdesivir. The early stage of MEB development was more vulnerable to remdesivir exposure than the later stage. The morphogenesis and gene expression profiles of human MEBs were also impaired by remdesivir at 1-8 μM. CONCLUSIONS Remdesivir impaired mouse and human MEBs at concentrations that are comparable to the therapeutic plasma levels in humans, urging further investigation into the potential impact of remdesivir on developing embryos.
Collapse
Affiliation(s)
- Lauren Kirkwood‐Johnson
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, Department of Anatomy, Biochemistry and PhysiologyJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, Department of Anatomy, Biochemistry and PhysiologyJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
3
|
Marikawa Y. Toward better assessments of developmental toxicity using stem cell-based in vitro embryogenesis models. Birth Defects Res 2022; 114:972-982. [PMID: 35102709 PMCID: PMC9339025 DOI: 10.1002/bdr2.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
In the past few decades, pluripotent stem cells have been explored as nonanimal alternatives to assess the developmental toxicity of chemicals. To date, numerous versions of stem cell-based assays have been reported that are allegedly effective. Nonetheless, none of the assays has become the gold standard in developmental toxicity assessment. Why? This article discusses several issues in the hope of facilitating the refinement of stem cell assays and their acceptance as the cornerstone in predictive developmental toxicology. Each stem cell assay is built on a limited representation of embryogenesis, so that multiple assays are needed to detect the diverse effects of various chemicals. To validate and compare the strengths and weaknesses of individual assays, standardized lists of reference chemicals should be established. Reference lists should consist of exposures defined by toxicokinetic data, namely maternal plasma concentrations that cause embryonic death or malformations, and also by the effects on the molecular machineries that control embryogenesis. Although not entirely replacing human or animal tests, carefully selected stem cell assays should serve as practical and ethical alternatives to proactively identify chemical exposures that disturb embryogenesis. To achieve this goal, unprecedented levels of coordination and conviction are required among research and regulatory communities.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Department of Anatomy, Biochemistry and PhysiologyInstitute for Biogenesis Research, University of Hawaii John A. Burns School of MedicineHonoluluHawaiiUSA
| |
Collapse
|
4
|
Jamalpoor A, Hartvelt S, Dimopoulou M, Zwetsloot T, Brandsma I, Racz PI, Osterlund T, Hendriks G. A novel human stem cell-based biomarker assay for in vitro assessment of developmental toxicity. Birth Defects Res 2022; 114:1210-1228. [PMID: 35289129 DOI: 10.1002/bdr2.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Testing for developmental toxicity according to the current regulatory guidelines requires large numbers of animals, making these tests very resource intensive, time-consuming, and ethically debatable. Over the past decades, several alternative in vitro assays have been developed, but these often suffered from low predictability and the inability to provide a mechanistic understanding of developmental toxicity. METHODS To identify embryotoxic compounds, we developed a human induced pluripotent stem cells (hiPSCs)-based biomarker assay. The assay is based on the differentiation of hiPSCs into functional cardiomyocytes and hepatocytes. Proper stem cell differentiation is investigated by morphological profiling and assessment of time-dependent expression patterns of cell-specific biomarkers. In this system, a decrease in the expression of the biomarker genes and morphology disruption of the differentiated cells following compound treatment indicated teratogenicity. RESULTS The hiPSCs-based biomarker assay was validated with 21 well-established in vivo animal teratogenic and non-teratogenic compounds during cardiomyocyte and hepatocyte differentiation. The in vivo teratogenic compounds (e.g., thalidomide and valproic acid) markedly disrupted morphology, functionality, and the expression pattern of the biomarker genes in either one or both cell types. Non-teratogenic chemicals generally had no effect on the morphology of differentiated cells, nor on the expression of the biomarker genes. Compared to the in vivo classification, the assay achieved high accuracy (91%), sensitivity (91%), and specificity (90%). CONCLUSION The assay, which we named ReproTracker®, is a state-of-the-art in vitro method that can identify the teratogenicity potential of new pharmaceuticals and chemicals and signify the outcome of in vivo test systems.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Sabine Hartvelt
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Myrto Dimopoulou
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Tom Zwetsloot
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Inger Brandsma
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Peter I Racz
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Torben Osterlund
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Giel Hendriks
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| |
Collapse
|
5
|
Samal P, Gubbins E, van Blitterswijk C, Truckenmüller R, Giselbrecht S. Thin fluorinated polymer film microcavity arrays for 3D cell culture and label-free automated feature extraction. Biomater Sci 2021; 9:7838-7850. [PMID: 34671787 DOI: 10.1039/d1bm00718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an increasing need for automated label-free morphometric analysis using brightfield microscopy images of 3D cell culture systems. This requires automated feature detection which can be achieved by improving the image contrast, e.g. by reducing the refractive index mismatch in the light path. Here, a novel microcavity platform fabricated using microthermoforming of thin fluorinated ethylene-propylene (FEP) films which match the refractive index of cell culture medium and provide a homogenous background signal intensity is described. FEP is chemically inert, mechanically stable and has been used as a substrate for light sheet microscopy. The microcavities promote formation of mouse embryonic stem cell (mESC) aggregates, which show axial elongation and germ layer specification similar to embryonic development. A label-free feature extraction pipeline based on a machine-learning plugin for FIJI is used to extract morphometric features from time-lapse imaging in a highly robust and reproducible manner. Lastly, the pipeline is utilized for testing the effect of the drug Latrunculin A on the mESC aggregates, highlighting the platform's potential for high-content screening (HCS) in drug discovery. This new microengineered tool is an important step towards label-free imaging of free-floating stem cell aggregates and paves the way for high-content drug testing and translational studies.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Eva Gubbins
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
6
|
Kirkwood-Johnson L, Katayama N, Marikawa Y. Dolutegravir impairs stem cell-based 3D morphogenesis models in a manner dependent on dose and timing of exposure: an implication for its developmental toxicity. Toxicol Sci 2021; 184:191-203. [PMID: 34515794 DOI: 10.1093/toxsci/kfab112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dolutegravir is an anti-retroviral drug of the integrase strand transfer inhibitor class used to treat HIV infection. It is the recommended first-line regimen for most people, including women of childbearing age. However, some human and animal studies have suggested that dolutegravir causes birth defects, although its developmental toxicity remains controversial. Here, we investigated the adverse effects of dolutegravir using pluripotent stem cell-based in vitro morphogenesis models that have previously been validated as effective tools to assess the developmental toxicity of various chemicals. Dolutegravir diminished the growth and axial elongation of the morphogenesis model of mouse pluripotent stem cells at exposures of 2 μM and above in a concentration-dependent manner. Concomitantly, dolutegravir altered the expression profiles of developmental regulator genes involved in embryonic patterning. The adverse effects were observed when the morphogenesis model was exposed to dolutegravir at early stages of development, but not at later stages. The potency and molecular impact of dolutegravir on the morphogenesis model were distinct from other integrase strand transfer inhibitors. Lastly, dolutegravir altered the growth and gene expression profiles of the morphogenesis model of human embryonic stem cells at 1 μM and above. These studies demonstrate that dolutegravir impairs morphological and molecular aspects of the in vitro morphogenesis models in a manner dependent on dose and timing of exposure through mechanisms that are unrelated to its action as an integrase strand transfer inhibitor. This finding will be useful for interpreting the conflicting outcomes regarding the developmental toxicity of dolutegravir in human and animal studies.
Collapse
Affiliation(s)
- Lauren Kirkwood-Johnson
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Nana Katayama
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
7
|
Li ASW, Marikawa Y. Methoxyacetic acid inhibits histone deacetylase and impairs axial elongation morphogenesis of mouse gastruloids in a retinoic acid signaling-dependent manner. Birth Defects Res 2020; 112:1043-1056. [PMID: 32496642 DOI: 10.1002/bdr2.1712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Teratogenic potential has been linked to various industrial compounds. Methoxyacetic acid (MAA) is a primary metabolite of the widely used organic solvent and plasticizer, methoxyethanol and dimethoxyethyl phthalate, respectively. Studies using model animals have shown that MAA acts as the proximate teratogen that causes various malformations in developing embryos. Nonetheless, the molecular mechanisms by which MAA exerts its teratogenic effects are not fully understood. METHODS Gastruloids of mouse P19C5 pluripotent stem cells, which recapitulate axial elongation morphogenesis of gastrulation-stage embryos, were explored as an in vitro model to investigate the teratogenic action of MAA. Morphometric parameters of gastruloids were measured to evaluate the morphogenetic effect, and transcript levels of various developmental regulator genes were examined to assess the impact on gene expression patterns. The effects of MAA on the level of retinoic acid (RA) signaling and histone deacetylase activity were also measured. RESULTS MAA reduced axial elongation of gastruloids at concentrations comparable to the teratogenic plasma level (5 mM) in vivo. MAA at 4 mM significantly altered the expression profiles of developmental regulator genes. In particular, it upregulated the RA signaling target genes. The concomitant suppression of RA signaling using a pharmacological agent alleviated the morphogenetic effect of MAA. MAA at 4 mM also significantly reduced the activity of purified histone deacetylase protein. CONCLUSIONS MAA impaired axial elongation morphogenesis in a RA signaling-dependent manner in mouse gastruloids, possibly through the inhibition of histone deacetylase.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| |
Collapse
|
8
|
Samal P, Maurer P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. A New Microengineered Platform for 4D Tracking of Single Cells in a Stem-Cell-Based In Vitro Morphogenesis Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907966. [PMID: 32346909 DOI: 10.1002/adma.201907966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recently developed stem-cell-based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high-content imaging. In contrast, using advanced microengineered tools can help in microscale control, long-term culture, and real-time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film-based microdevices. A pipeline consisting of open-source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non-adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Philipp Maurer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
9
|
Warkus ELL, Marikawa Y. Fluoxetine Inhibits Canonical Wnt Signaling to Impair Embryoid Body Morphogenesis: Potential Teratogenic Mechanisms of a Commonly Used Antidepressant. Toxicol Sci 2018; 165:372-388. [PMID: 29893963 PMCID: PMC6154268 DOI: 10.1093/toxsci/kfy143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fluoxetine is one of the most commonly prescribed antidepressants in the selective serotonin reuptake inhibitor (SSRI) class. Epidemiologic studies have suggested a link between maternal fluoxetine use during pregnancy and an increased incidence of birth defects. However, the mechanisms by which fluoxetine adversely impacts embryonic developments are unknown. Here, we used the mouse P19C5 embryoid body (EB) as a 3D morphogenesis model to investigate the developmental toxicity of fluoxetine. Morphological and molecular changes in P19C5 EBs replicate the processes of axial elongation and patterning seen in early embryos, and these changes are specifically and sensitively altered by exposure to developmental toxicants. Treatment with fluoxetine, or its major metabolite, norfluoxetine, adversely affected EB morphogenesis at concentrations of 6 µM and above. Treatment with other serotonin reuptake inhibitors or serotonin itself did not impair EB morphogenesis, suggesting that the adverse effects of fluoxetine are independent of serotonin signaling. Gene expression analyses showed that various key developmental regulators were affected by fluoxetine, particularly those involved in mesodermal differentiation. Reporter assays demonstrated that fluoxetine inhibited canonical Wnt signaling, and that the pharmacologic activation of canonical Wnt signaling partially alleviated the morphogenetic effects of fluoxetine. Fluoxetine also exhibited cytostatic effects independently of inhibition of the serotonin transporter or canonical Wnt signaling. These results suggest that the SSRI-independent actions of fluoxetine, namely inhibition of canonical Wnt signaling and reduction of cellular proliferation, are largely responsible for the observed adverse morphogenetic impacts. This study provides mechanistic insight for further investigations on the teratogenicity of fluoxetine.
Collapse
Affiliation(s)
- Erica L L Warkus
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813
| |
Collapse
|
10
|
Kim IQ, Marikawa Y. Embryoid body test with morphological and molecular endpoints implicates potential developmental toxicity of trans-resveratrol. Toxicol Appl Pharmacol 2018; 355:211-225. [PMID: 29990529 PMCID: PMC6090541 DOI: 10.1016/j.taap.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Developmental toxicity of compounds, which women of reproductive age are exposed to, should be assessed to minimize the incidence of miscarriage and birth defects. The present study examined the potential developmental toxicity of resveratrol, a dietary supplement widely marketed with various health claims, using the P19C5 embryoid body (EB) morphogenesis assay, which evaluates adverse effects of chemical exposures on tissue growth and axial elongation. Resveratrol (trans isoform) impaired morphogenesis at 4 μM and higher, creating smaller and rounder EBs, whereas cis isoform, and glucuronated and sulfonated metabolites did not. Trans-resveratrol also altered expression levels of developmental regulator genes involved in embryonic patterning, such as Wnt3a, Tbx6, and Cyp26a1. To investigate the mechanisms of trans-resveratrol action, the roles of estrogen receptor, sirtuin 1 (SIRT1), and DNA replication in EB morphogenesis were examined. Neither activators of estrogen receptors (diethylstilbestrol [18 μM] and raloxifene [8 μM]) nor activator of SIRT1 (SRT1720 [2.4-3.2 μM]) caused morphological and molecular alterations that are comparable to trans-resveratrol (10 μM). By contrast, a reduction in the DNA replication rate with aphidicolin (0.4 μM) or hydroxyurea (40 μM) created smaller and rounder EBs and altered the expression levels of Wnt3a, Tbx6, and Cyp26a1 in a manner similar to trans-resveratrol. Consistently, trans-resveratrol significantly reduced the rate of EdU incorporation in P19C5 cells. These results suggest that a reduction in the DNA replication rate is one of the mechanisms by which trans-resveratrol impacts EB development. This study provides mechanistic insight for further investigations on the developmental toxicity of trans-resveratrol.
Collapse
Affiliation(s)
- Iris Q Kim
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| |
Collapse
|
11
|
Warkus ELL, Marikawa Y. Exposure-Based Validation of an In Vitro Gastrulation Model for Developmental Toxicity Assays. Toxicol Sci 2018; 157:235-245. [PMID: 28184906 DOI: 10.1093/toxsci/kfx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Establishment of effective non-animal alternatives for developmental toxicity screening assays is desirable to ensure maternal and fetal health outcomes. Validation of such assays requires a comparison between the in vitro responses to chemical exposures and the in vivo impacts of the corresponding compounds at equivalent concentrations. Here, we investigated how the P19C5 gastrulation model responds to 24 compounds at specific concentrations, some of which are categorized as positive exposures based on previously observed detrimental effects on development in vivo, whereas others are categorized as negative exposures due to lack of effects in vivo. The P19C5 gastrulation model consists of in vitro morphogenesis of mouse stem cells aggregated into embryoid bodies (EBs), which recapitulates growth and axial elongation of early embryos during four days of three-dimensional culture. Adverse impacts of chemical exposures were defined as: death, impaired growth, and altered axial elongation of EBs. Ten out of 17 positive exposures caused adverse impacts on EBs. In contrast, only three out of 17 negative exposures adversely affected EBs, although two of the three diminished viability of somatic cell lines (NIH/3T3, HEK293, and JEG3), suggesting general cytotoxicity. Overall, the study showed that 24 out of 34 exposures impacted EB development in a manner concordant with the in vivo developmental effects. Validation of other alternative assays using the same set of chemical exposures will provide information on the strengths and weaknesses of each assay, and should help determine the most effective ensemble of assays to detect a wide range of developmentally toxic exposures.
Collapse
Affiliation(s)
- Erica L L Warkus
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
12
|
Developmental toxicity assessment of common excipients using a stem cell-based in vitro morphogenesis model. Food Chem Toxicol 2017; 109:376-385. [PMID: 28927898 DOI: 10.1016/j.fct.2017.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022]
Abstract
Various chemical compounds can inflict developmental toxicity when sufficiently high concentrations are exposed to embryos at the critical stages of development. Excipients, such as coloring agents and preservatives, are pharmacologically inactive ingredients that are included in various medications, foods, and cosmetics. However, concentrations that may adversely affect embryo development are largely unknown for most excipients. Here, the lowest observed adverse effect level (LOAEL) to inflict developmental toxicity was assessed for three coloring agents (allura red, brilliant blue, and tartrazine) and three preservatives (butylated hydroxyanisole, metabisulfite, and methylparaben). Adverse impact of a compound exposure was determined using the stem cell-based in vitro morphogenesis model, in which three-dimensional cell aggregates, or embryoid bodies (EBs), recapitulate embryonic processes of body axis elongation and patterning. LOAEL to impair EB morphogenesis was 200 μM for methylparaben, 400 μM for butylated hydroxyanisole, 600 μM for allura red and brilliant blue, and 1000 μM for metabisulfite. Gene expression analyses of excipient-treated EBs revealed that butylated hydroxyanisole and methylparaben significantly altered profiles of developmental regulators involved in axial elongation and patterning of the body. The present study may provide a novel in vitro approach to investigate potential developmental toxicity of common excipients with mechanistic insights.
Collapse
|
13
|
Xing J, Cao Y, Yu Y, Li H, Song Z, Yu H. In Vitro Micropatterned Human Pluripotent Stem Cell Test (µP-hPST) for Morphometric-Based Teratogen Screening. Sci Rep 2017; 7:8491. [PMID: 28819231 PMCID: PMC5561212 DOI: 10.1038/s41598-017-09178-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/21/2017] [Indexed: 01/13/2023] Open
Abstract
Exposure to teratogenic chemicals during pregnancy may cause severe birth defects. Due to high inter-species variation of drug responses as well as financial and ethical burdens, despite the widely use of in vivo animal tests, it’s crucial to develop highly predictive human pluripotent stem cell (hPSC)-based in vitro assays to identify potential teratogens. Previously we have shown that the morphological disruption of mesoendoderm patterns formed by geometrically-confined cell differentiation and migration using hPSCs could potentially serve as a sensitive morphological marker in teratogen detection. Here, a micropatterned human pluripotent stem cell test (µP-hPST) assay was developed using 30 pharmaceutical compounds. A simplified morphometric readout was developed to quantify the mesoendoderm pattern changes and a two-step classification rule was generated to identify teratogens. The optimized µP-hPST could classify the 30 compounds with 97% accuracy, 100% specificity and 93% sensitivity. Compared with metabolic biomarker-based hPSC assay by Stemina, the µP-hPST could successfully identify misclassified drugs Bosentan, Diphenylhydantoin and Lovastatin, and show a higher accuracy and sensitivity. This scalable µP-hPST may serve as either an independent assay or a complement assay for existing assays to reduce animal use, accelerate early discovery-phase drug screening and help general chemical screening of human teratogens.
Collapse
Affiliation(s)
- Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.
| | - Yue Cao
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yang Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.,BioSyM, Singapore-MIT Alliance for Research and Technology, Enterprise Wing 04-13/14 and B1, 1 Create Way, Singapore, 138602, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117597, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Ziwei Song
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117597, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore. .,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,BioSyM, Singapore-MIT Alliance for Research and Technology, Enterprise Wing 04-13/14 and B1, 1 Create Way, Singapore, 138602, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117597, Singapore. .,Gastroenterology Department, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 2016; 66:68-83. [PMID: 27693483 DOI: 10.1016/j.reprotox.2016.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.
Collapse
|
15
|
Heemskerk I, Warmflash A. Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Dev Dyn 2016; 245:976-90. [PMID: 27404482 DOI: 10.1002/dvdy.24432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
In vivo studies have identified the signaling pathways and transcription factors involved in patterning the vertebrate embryo, but much remains unknown about how these are organized in space and time to orchestrate embryogenesis. Recently, embryonic stem cells have been established as a platform for studying spatial pattern formation and differentiation dynamics in the early mammalian embryo. The ease of observing and manipulating stem cell systems promises to fill gaps in our understanding of developmental dynamics and identify aspects that are uniquely human. Developmental Dynamics 245:976-990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Idse Heemskerk
- Department of Biosciences, Rice University, Houston, Texas
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas. .,Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|