1
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Ponce D, Rodríguez F, Miranda JP, Binder AM, Santos JL, Michels KB, Cutler GB, Pereira A, Iñiguez G, Mericq V. Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche. Epigenetics 2023; 18:2200366. [PMID: 37053179 PMCID: PMC10114989 DOI: 10.1080/15592294.2023.2200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Biochemical premature adrenarche is defined by elevated serum DHEAS [≥40 μg/dL] before age 8 y in girls. This condition is receiving more attention due to its association with obesity, hyperinsulinemia, dyslipidemia, and polycystic ovary syndrome. Nevertheless, the link between early androgen excess and these risk factors remains unknown. Epigenetic modifications, and specifically DNA methylation, have been associated with the initiation and progression of numerous disorders, including obesity and insulin resistance. The aim of this study was to determine if prepubertal androgen exposure is associated with a different methylation profile in pubertal girls. Eighty-six healthy girls were studied. At age 7 y, anthropometric measurements were begun and DHEAS levels were determined. Girls were classified into Low DHEAS (LD) [<42 μg/dL] and High DHEAS (HD) [≥42 μg/dL] groups. At Tanner stages 2 and 4 a DNA methylation microarray was performed to identify differentially methylated CpG positions (DMPs) between HD and LD groups. We observed a differential methylation pattern between pubertal girls with and without biochemical PA. Moreover, a set of DNA methylation markers, selected by the LASSO method, successfully distinguished between HD and LD girls regardless of Tanner stage. Additionally, a subset of these markers were significantly associated with glucose-related measures such as insulin level, HOMA-IR, and glycaemia. This pilot study provides evidence consistent with the hypothesis that high DHEAS concentration, or its hormonally active metabolites, may induce a unique blood methylation signature in pubertal girls, and that this methylation pattern is associated with altered glucose metabolism.
Collapse
Affiliation(s)
- Diana Ponce
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Momeni A, Haghpanah T, Nematollahi-Mahani SN, Ashourzadeh S, Eftekhar-Vaghefi SH. Comparing the effects of vitrification, before and after mouse oocyte in vitro maturation on developmental competence, changes in epigenetic regulators and stress oxidative response. Biochem Biophys Res Commun 2023; 679:179-190. [PMID: 37703761 DOI: 10.1016/j.bbrc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Since the developmental stage of oocyte is a challenging issue in the success of vitrification, this study investigated the effects of vitrification, before and after in vitro maturation, on the survival and maturation rates, developmental competence and the expression levels of genes involved in apoptosis, oxidative stress and epigenetic modifications. Mouse germinal vesicle (GV) oocytes were divided into four groups: fresh in vitro matured oocytes without vitrification (fIVM), in vitro matured oocytes after vitrification (vIVM), in vitro matured oocytes before vitrification (IVMv). In addition, in vivo matured oocytes (MII) were used as control. After oocytes collection, maturation and survival rates as well as the intracellular reactive oxygen species (ROS) level were evaluated. Also, the expression level of various genes was analyzed by qRT-PCR. In addition, following artificial activation (parthenogenesis), the developmental competence of oocytes to the blastocyst stage was evaluated. A significant decrease in maturation rate and survival of vIVM oocytes was observed compared to fIVM and IVMv oocytes. Intracellular ROS levels were significantly increased in both vitrified groups compared to the fIVM group, and no significant difference between vitrified groups. Pro-apoptotic genes; BAX and Bcl2 as well as genes related to oxidative stress response Hsp1a, Hsp1b and SOD1were significantly increased in the vIVM group compared to the IVMv group. Interestingly, epigenetic regulators genes DNMT1, DNMT3a and DNMT3b were highly expressed in IVMv oocytes along with a decrease in the artificial activation rate compared to the vIVM oocytes. Our results indicated that despite observing more negative effects of vitrification before IVM on the survival rate and maturation as well as apoptosis status, less epigenetic changes in vIVM oocytes can make this process a better option in the treatment of infertility than IVM of oocytes followed by vitrification, a hypothesis that needs to be investigation in human oocytes.
Collapse
Affiliation(s)
- Asma Momeni
- Anatomical Sciences Department, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Anatomical Sciences Department, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Afzalipour Hospital, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Anatomical Sciences Department, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Anatomy, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
4
|
Chen J, Zhu Z, Xu S, Li J, Huang L, Tan W, Zhang Y, Zhao Y. HDAC1 participates in polycystic ovary syndrome through histone modification to regulate H19/miR-29a-3p/NLRP3-mediated granulosa cell pyroptosis. Mol Cell Endocrinol 2023; 573:111950. [PMID: 37207962 DOI: 10.1016/j.mce.2023.111950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Histone deacetylase 1 (HDAC1) is known to participate in the molecular etiology of polycystic ovary syndrome (PCOS). However, its role in granulosa cell (GC) pyroptosis remains unclear. This study sought to investigate the mechanism of HDAC1 in PCOS-induced GC pyroptosis through histone modification. Clinical serum samples and the general data of study subjects were collected. PCOS mouse models were established using dehydroepiandrosterone and cell models were established in HGL5 cells using dihydrotestosterone. Expressions of HDAC1, H19, miR-29a-3p, and NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-related proteins and levels of hormones and inflammatory cytokines were determined. Ovarian damage was observed by hematoxylin-eosin staining. Functional rescue experiments were conducted to verify the role of H19/miR-29a-3p/NLRP3 in GC pyroptosis in PCOS. HDAC1 and miR-29a-3p were downregulated whereas H19 and NLRP3 were upregulated in PCOS. HDAC1 upregulation attenuated ovarian damage and hormone disorders in PCOS mice and suppressed pyroptosis in ovarian tissues and HGL5 cells. HDAC1 inhibited H3K9ac on the H19 promoter and H19 competitively bound to miR-29a-3p to improve NLRP3 expression. Overexpressed H19 or NLRP3 or inhibited miR-29a-3p reversed the inhibition of GC pyroptosis by HDAC1 upregulation. Overall, HDAC1 suppressed GC pyroptosis in PCOS through deacetylation to regulate the H19/miR-29a-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Jiying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Zhiying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Shi Xu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lilan Huang
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Wenqing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanli Zhao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
5
|
Babu A, Ramanathan G. Multi-omics insights and therapeutic implications in polycystic ovary syndrome: a review. Funct Integr Genomics 2023; 23:130. [PMID: 37079114 DOI: 10.1007/s10142-023-01053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease that causes adverse effects in women in their reproductive phase. Nonetheless, the molecular mechanisms remain unclear. Over the last decade, sequencing and omics approaches have advanced at an increased pace. Omics initiatives have come to the forefront of biomedical research by presenting the significance of biological functions and processes. Thus, multi-omics profiling has yielded important insights into understanding the biology of PCOS by identifying potential biomarkers and therapeutic targets. Multi-omics platforms provide high-throughput data to leverage the molecular mechanisms and pathways involving genetic alteration, epigenetic regulation, transcriptional regulation, protein interaction, and metabolic alterations in PCOS. The purpose of this review is to outline the prospects of multi-omics technologies in PCOS research by revealing novel biomarkers and therapeutic targets. Finally, we address the knowledge gaps and emerging treatment strategies for the management of PCOS. Future PCOS research in multi-omics at the single-cell level may enhance diagnostic and treatment options.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Sanamiri K, Soleimani Mehranjani M, Shahhoseini M, Shariatzadeh SMA. The effect of platelet lysate on mouse ovarian structure, function and epigenetic modifications after autotransplantation. Reprod Biomed Online 2023; 46:446-459. [PMID: 36690568 DOI: 10.1016/j.rbmo.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
RESEARCH QUESTION What are the effects of platelet lysate on structure, function and epigenetic modifications of heterotopically transplanted mouse ovarian tissues? DESIGN Mice were divided into three groups (n = 17 per group): control (mice with no ovariectomy, grafting or treatment), autograft and autograft plus platelet lysate (3 ml/kg at the graft sites). Inflammatory markers, serum malondialdehyde (MDA) concentration and total antioxidant capacity were assessed on day 7 after transplantation. Twenty-eight days after transplantation, stereological and hormonal analyses were conducted. Chromatin immunoprecipitation and quantitative real-time polymerase chain reaction were also used to quantify the epigenetic modifications of maturation genes, parallel to their expression. RESULTS The total volume of the ovary, cortex and medulla, and the number of different types of follicles, the concentration of interleukin (IL)-10, progesterone and oestradiol and total antioxidant capacity significantly decreased in the autograft group compared with the control group (P < 0.001); these parameters significantly increased in the autograft plus platelet lysate group compared with the autograft group (P < 0.001). The concentrations of tumour necrosis factor alpha, IL-6 and MDA increased significantly in the autograft group compared with the control group (P < 0.001); in the autograft plus platelet lysate group, these parameters significantly decreased compared with the autograft group (P < 0.001). In the autograft plus platelet lysate group, the expression levels of Gdf-9 (P < 0.0021), Igf-1 (P < 0.0048) and Igf-2 (P < 0.0063) genes also increased along with a lower incorporation of MeCP2 in the promoter regions (P < 0.001) compared with the autograft group. CONCLUSIONS Platelet lysate can contribute to follicular survival by improving folliculogenesis and increasing the expression of oocyte maturation genes.
Collapse
Affiliation(s)
- Khadijeh Sanamiri
- Department of Biology, Faculty of Science, Arak University, Arak, 381-5688138, Iran
| | | | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | | |
Collapse
|
7
|
Alaee S, Mirani M, Derakhshan Z, Koohpeyma F, Bakhtari A. Thymoquinone improves folliculogenesis, sexual hormones, gene expression of apoptotic markers and antioxidant enzymes in polycystic ovary syndrome rat model. Vet Med Sci 2023; 9:290-300. [PMID: 36104839 PMCID: PMC9857009 DOI: 10.1002/vms3.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Nowadays, polycystic ovary syndrome (PCOS) is a prevalent cause of infertility affecting women of reproductive age around the world. Thymoquinone is a natural antioxidant, derived from Nigella sativa. OBJECTIVES The current study aimed to evaluate the protective effects of thymoquinone on the detrimental effects of PCOS rats induced with letrozole. METHODS Thirty-two female rats were randomly divided into four groups: (1) Control, (2) PCOS, (3) PCOS+5 mg/kg thymoquinone and (4) PCOS+10 mg/kg thymoquinone. Thymoquinone was administered every 3 days for 30 days. Ovaries were histopathologically and stereologically examined, and antioxidant and apoptotic enzymes gene expression in ovaries and sex hormones in serum were measured. RESULTS The number of unilaminar, multilaminar, antral, and graffian follicles, volume density of corpus luteum (p < 0.01), and GPx1 gene expression in ovaries and level of FSH in the blood increased in both thymoquinone groups when compared to untreated PCOS (p < 0.05). Ovaries in thymoquinone groups showed a significant reduction in the number of atretic follicles, ovary weight and volume, volume density of cortex and ovarian cysts, Bax gene expression (p < 0.01) and Bax/Bcl2 ratio as well as levels of luteinizing hormone (LH), LH/FSH ratio and testosterone (p < 0.05) in the blood of female rats when compared to PCOS group. Administration of thymoquinone restored the most detrimental effects of PCOS on ovaries (p < 0.01) and sexual hormones (p < 0.05) in rats. CONCLUSIONS These data suggest that thymoquinone has improved effects on ovarian function in the PCOS rat model. Therefore, thymoquinone might be useful as a protective agent and adjunct treatment in PCOS patients.
Collapse
Affiliation(s)
- Sanaz Alaee
- Department of Reproductive BiologySchool of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Maryam Mirani
- Department of Reproductive BiologySchool of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Zahra Derakhshan
- Department of Reproductive BiologySchool of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research CenterShiraz University of Medical SciencesShirazIran
| | - Azizollah Bakhtari
- Department of Reproductive BiologySchool of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
8
|
Eini F, kutenaei MA, Foroutan T, Salehi E. High levels of follicular fluid testosterone could impair oocyte developmental competency via affecting aryl hydrocarbon receptor pathway in PCOS patients. BMC Mol Cell Biol 2022; 23:47. [DOI: 10.1186/s12860-022-00449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Although hormonal and metabolic dysfunction have been recognized as a possible cause of polycystic ovarian syndrome (PCOS), the associations between hyperandrogenism and aryl hydrocarbon receptor (Ahr) signaling pathway remains controversial. The current study aimed to investigate the effect of hyperandrogenism on oocyte developmental competency via regarding Ahr signaling downstream pathway in granulosa cells.
Materials and methods
Granulosa cells were collected from 45 PCOS patients under assisted reproductive technique (ART). Gene expression of Ahr downstream pathway was evaluated based on Reverse Transcription Q-PCR assay. Moreover the correlation was investigated between gene expression and hyperandrogenism, and oocyte developmental competency in PCOS.
Results
From the 45 PCOS patients, 26 (64.44%) had a high level of follicular fluid testosterone (FFT). Based on the FFT level, two groups of PCOS: HFT (high level of FFT) and non-HFT, were shown significant differences in oocyte and embryo quality, and fertilization and cleavage rates. Moreover, the mean relative expressions of Ahr and Arnt genes were significantly higher in HFT –PCOS group (p < 0.01 and p < 0.01) respectively. Also, the significant positive correlations were obtained for Ahr, Arnt, Cyp1A1, and Cyp1B1 with incidence of clinical hyperandrogenism and FFT level. Besides, our results showed that Ahr, Cyp1A1, and Cyp1B1 gene expression was correlated significantly with fertilization rate.
Conclusion
The present study suggested that hyperandrogenism could impair oocyte developmental competency via affecting Ahr signaling downstream pathway.
Collapse
|
9
|
Lin HY, Yang YN, Chen YF, Huang TY, Crawford DR, Chuang HY, Chin YT, Chu HR, Li ZL, Shih YJ, Chen YR, Yang YCSH, Ho Y, Davis PJ, Whang-Peng J, Wang K. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside improves female ovarian aging. Front Cell Dev Biol 2022; 10:862045. [PMID: 36111333 PMCID: PMC9469098 DOI: 10.3389/fcell.2022.862045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced fertility associated with normal aging may reflect the over-maturity of oocytes. It is increasingly important to reduce aging-induced infertility since recent trends show people marrying at later ages. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, has been reported to have anti-inflammatory and anti-aging properties. To evaluate whether THSG can reduce aging-related ovarian damage in a female mouse model of aging, THSG was administered by gavage at a dose of 10 mg/kg twice weekly, starting at 4 weeks of age in a group of young mice. In addition, the effect of THSG in a group of aged mice was also studied in mice starting at 24 weeks of age. The number of oocytes in the THSG-fed group was higher than in the untreated control group. Although the percentage of secondary polar bodies (PB2) decreased during aging in the THSG-fed group, it decreased much more slowly than in the age-matched control group. THSG administration increased the quality of ovaries in young mice becoming aged. Western blotting analyses also indicated that CYP19, PR-B, and ER-β expressions were significantly increased in 36-week-old mice. THSG also increased oocyte numbers in aged mice compared to mice without THSG fed. Studies of qPCR and immunohistochemistry (IHC) analyses of ovaries in the aged mice groups were conducted. THSG increased gene expression of anti-Müllerian hormone (AMH), a biomarker of oocyte number, and protein accumulation in 40-week-old mice. THSG increased the expression of pgc1α and atp6, mitochondrial biogenesis-related genes, and their protein expression. THSG also attenuated the fading rate of CYP11a and CYP19 associated with sex hormone synthesis. And THSG maintains a high level of ER-β expression, thereby enhancing the sensitivity of estrogen. Our findings indicated that THSG increased or extended gene expression involved in ovarian maintenance and rejuvenation in young and aged mice. On the other hand, THSG treatments significantly maintained oocyte quantity and quality in both groups of young and aged mice compared to each age-matched control group. In conclusion, THSG can delay aging-related menopause, and the antioxidant properties of THSG may make it suitable for preventing aging-induced infertility.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ning Yang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Hui-Yu Chuang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Tang Chin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ru Chu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Yih Ho,
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, Liu LL. DNA Methylation in Polycystic Ovary Syndrome:Emerging Evidence and Challenges. Reprod Toxicol 2022; 111:11-19. [PMID: 35562068 DOI: 10.1016/j.reprotox.2022.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease related to reproductive endocrine abnormalities in women of reproductive age, often accompanied by metabolic diseases such as hyperandrogenemia, insulin resistance and dyslipidemia. However, the etiology and mechanism of PCOS are still unclear. In recent years, more and more studies have found that epigenetic factors play an important role in PCOS. DNA methylation is the most widely studied epigenetic modification. At present, changes of DNA methylation have been found in serum, ovarian, hypothalamus, skeletal muscle, adipose tissue of PCOS patients, and these changes are closely related to insulin resistance, lipid metabolism and follicular development of PCOS. Although the current research on DNA methylation in PCOS is not in-depth, it indicated up a good direction for future research on the etiology and mechanism of PCOS. This review discussed the relationship between DNA methylation and PCOS. It is expected to help accelerate the application of DNA methylation in the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Yan-Nan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Yi Qin
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China
| | - Bin Wu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hui Peng
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hai Luo
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China.
| | - Lin-Lin Liu
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China.
| |
Collapse
|
11
|
Wei H, Huo P, Liu S, Huang H, Zhang S. Posttranslational modifications in pathogenesis of PCOS. Front Endocrinol (Lausanne) 2022; 13:1024320. [PMID: 36277727 PMCID: PMC9585718 DOI: 10.3389/fendo.2022.1024320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and psychiatric disorder that affects 5-18% of women, which is associated with a significantly increased lifetime risk of concomitant diseases, including type 2 diabetes, psychiatric disorders, and gynecological cancers. Posttranslational modifications (PTMs) play an important role in changes in protein function and are necessary to maintain cellular viability and biological processes, thus their maladjustment can lead to disease. Growing evidence suggests the association between PCOS and posttranslational modifications. This article mainly reviews the research status of phosphorylation, methylation, acetylation, and ubiquitination, as well as their roles and molecular mechanisms in the development of PCOS. In addition, we briefly summarize research and clinical trials of PCOS therapy to advance our understanding of agents that can be used to target phosphorylated, methylated, acetylated, and ubiquitinated PTM types. It provides not only ideas for future research on the mechanism of PCOS but also ideas for PCOS treatments with therapeutic potential.
Collapse
Affiliation(s)
- Huimei Wei
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peng Huo
- School of Public Health, Guilin Medical University, Guilin, China
| | - Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Hua Huang, ; Shun Zhang,
| |
Collapse
|
12
|
Samad N, Manzoor N, Muneer Z, Bhatti SA, Imran I. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice. Metab Brain Dis 2021; 36:2535-2552. [PMID: 34309746 DOI: 10.1007/s11011-021-00789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Thymoquinone (Tq), an active compound of Nigella sativa, has been known for its anti-inflammatory, antioxidant, and neuroprotective characteristics. The present study is aimed to evaluate the effect of Tq on reserpine (Rsp)-induced behavioral (anxiety and/or depression) and, memory deficit; hippocampal inflammatory markers, oxidative markers, antioxidant enzymes, acetylcholinesterase (AChE) activity and histopathology in male mice. Animals were injected with Rsp at a dose of 2 mg/ml/kg and doses of Tq (10 and 20 mg/ml/kg) for 28 days. After the treatment period, behavioral tests [Elevated plus maze (Epm); Light dark box test (Lda); Morris water maze (Mwm); Forced swim test (Fst); Tail suspension test (Tst)] were conducted. After analysis of behaviors, mice were decapitated and brain samples were collected, the hippocampus was removed from the whole-brain sample for biochemical analysis and histology. Administration of Tq at both doses prevent adverse effects of Rsp and increased time spent in open arm and lightbox in Lda and Epm respectively, decreased immobility period in Fst and Tst, decreased latency escape in Mwm, reduced lipid peroxidation (lpo) and inflammatory cytokines, increased defensive enzymes, reduced acetylcholinesterase (AChE) activity and corrected histological lines. It is concluded that Rsp-instigated behavioral and memory deficits were prevented by Tq possibly via its strong antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Muneer
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
13
|
Yang Y, Luan Y, Yuan RX, Luan Y. Histone Methylation Related Therapeutic Challenge in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:710053. [PMID: 34568453 PMCID: PMC8458636 DOI: 10.3389/fcvm.2021.710053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The epidemic of cardiovascular diseases (CVDs) is predicted to spread rapidly in advanced countries accompanied by the high prevalence of risk factors. In terms of pathogenesis, the pathophysiology of CVDs is featured by multiple disorders, including vascular inflammation accompanied by simultaneously perturbed pathways, such as cell death and acute/chronic inflammatory reactions. Epigenetic alteration is involved in the regulation of genome stabilization and cellular homeostasis. The association between CVD progression and histone modifications is widely known. Among the histone modifications, histone methylation is a reversible process involved in the development and homeostasis of the cardiovascular system. Abnormal methylation can promote CVD progression. This review discusses histone methylation and the enzymes involved in the cardiovascular system and determine the effects of histone methyltransferases and demethylases on the pathogenesis of CVDs. We will further demonstrate key proteins mediated by histone methylation in blood vessels and review histone methylation-mediated cardiomyocytes and cellular functions and pathways in CVDs. Finally, we will summarize the role of inhibitors of histone methylation and demethylation in CVDs and analyze their therapeutic potential, based on previous studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Malik S, Singh A, Negi P, Kapoor VK. Thymoquinone: A small molecule from nature with high therapeutic potential. Drug Discov Today 2021; 26:2716-2725. [PMID: 34303824 DOI: 10.1016/j.drudis.2021.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/23/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ; 2-isopropyl-5-methylbenzo-1, 4-quinone), the main active constituent of Nigella sativa, has been proven to have great therapeutic properties in numerous in vivo and in vitro models. Nevertheless, this molecule is not yet in clinical trials, largely because of its poor bioavailability and hydrophobicity. This review examines the different activities of TQ, as well as various combination therapies, nanotechnologies and clinical trials involving TQ. The TQ nanoparticle formulation shows better bioavailability than free TQ, and it is time for clinical trials of these formulations to realize the potential of TQ as a therapeutic.
Collapse
Affiliation(s)
- Safiya Malik
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India
| | - Amardeep Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India
| | - Vijay Kumar Kapoor
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India.
| |
Collapse
|
15
|
Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol Med 2020; 25:1825-1837. [PMID: 33369146 PMCID: PMC7882969 DOI: 10.1111/jcmm.16205] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women at reproductive age. However, the underlying pathogenic mechanisms have not been completely understood. Hyperandrogenism is an important clinic feature in patients with PCOS, suggesting its pathologic role in the development and progression of PCOS. However, the actual role of androgen and the related signals in PCOS and PCOS-related complications have not yet been clarified. In this review, we surveyed the origin and effects of androgen on PCOS and the related complications, highlighted the cellular signals affecting androgen synthesis and summarized the pathological processes caused by hyperandrogenism. Our review well reveals the important mechanisms referring the pathogenesis of PCOS and provides important clues to the clinic strategies in patients with PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
16
|
Wang L, Xu X, Teng M, Zhao G, Lei A. Coping with DNA Double-Strand Breaks via ATM Signaling Pathway in Bovine Oocytes. Int J Mol Sci 2020; 21:ijms21238892. [PMID: 33255251 PMCID: PMC7727702 DOI: 10.3390/ijms21238892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
As a common injury almost all cells face, DNA damage in oocytes—especially double-strand breaks (DSBs), which occur naturally during the first meiosis phase (meiosis I) due to synaptic complex separation—affects the fertilization ability of oocytes, instead of causing cancer (as in somatic cells). The mechanism of oocytes to effectively repair DSB damage has not yet been clearly studied, especially considering medically induced DSBs superimposed on naturally occurring DSBs in meiosis I. It was found that maturation rates decreased or increased, respectively corresponding with overexpression or interference of p21 in bovine oocytes. At the same time, the maturation rate of bovine oocytes decreased with a gradual increase in Zeocin dose, and the p21 expression in those immature oocytes changed significantly with the gradual increase in Zeocin dose (same as increased DSB intensity). Same as p21, the variation trend of ATM expression was consistent with the gradual increase in Zeocin dose. Furthermore, the oocytes demonstrated tolerance to DSBs during meiosis I, while the maturation rates decreased when the damage exceeded a certain threshold; according to which, it may be that ATM regulates the p53–p21 pathway to affect the completion of meiosis. In addition, nonhomologous recombination and cumulus cells are potentially involved in the process by which oocytes respond to DSB damage.
Collapse
Affiliation(s)
- Lili Wang
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Xiaolei Xu
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Mingming Teng
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China;
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (L.W.); (X.X.); (M.T.)
- Correspondence: ; Tel./Fax: +86-029-87080068
| |
Collapse
|
17
|
Eini F, Joharchi K, Kutenaei MA, Mousavi P. Improvement in the epigenetic modification and development competence in PCOS mice oocytes by hydro-alcoholic extract of Nigella sativa during in-vitro maturation: An experimental study. Int J Reprod Biomed 2020; 18:733-746. [PMID: 33062919 PMCID: PMC7521171 DOI: 10.18502/ijrm.v13i9.7668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Nigella Sativa (NS) and its active component, thymoquinone,
have beneficial protective effects on experimental animal models of polycystic
ovary syndrome (PCOS) and different human diseases. Objective The present study aimed to investigate the effects of NS hydro-alcoholic
extract (NSE) on the oocyte quality of PCOS mice during in vitro maturation. Materials and Methods For induction of PCOS, 40 prepubertal 21-days old female
B6D2F1 mice (18-22 g body weight) received subcutaneous
dehydroepiandrosterone daily. After validation of the model, germinal
vesicle-stage oocytes of superovulated mice were collected and placed in
the culture medium containing different concentrations (0, 1, 50, and 100 μg/ml) of
NSE. For the measurement of developmental competency, some mature oocytes were
fertilized with epididymal spermatozoa. Other mature oocytes were assessed for
oxidative stress. Also, some mRNA expression levels involved in oocyte
maturation and epigenetic modification were evaluated. Results The 50 μg/ml NSE treated group showed significantly higher r ates o f
maturation, f ertilization, and blastocyst formation in comparison with both control
and PCOS groups. A high level of glutathione concentration and glutathione
peroxidase mRNA expression, besides a low level of reactive oxygen species
content all, were observed in oocytes treated with 50 μg/ml NSE, indicating the
modification of oxidative statue. Furthermore, the oocytes in the 50 μg/ml-treated
group showed an upregulation of mRNA expression in epigenetic-related genes
(Dnmt1 and Hdac1) and maternally derived genes (Mapk and Cdk1), correspondingly
downregulation of cyclooxygenase2 mRNA expression, in comparison to other
groups. Conclusion The results of this study indicated that 50 μg/ml NSE improves oocyte
maturation, oxidative statues and epigenetic modifications. These may be the all
reasons for the developmental competency in the control and PCOS mice oocytes.
Collapse
Affiliation(s)
- Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Khojasteh Joharchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Azizi Kutenaei
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
18
|
Abizadeh M, Novin MG, Amidi F, Ziaei SA, Abdollahifar MA, Nazarian H. Potential of Auraptene in Improvement of Oocyte Maturation, Fertilization Rate, and Inflammation in Polycystic Ovary Syndrome Mouse Model. Reprod Sci 2020; 27:1742-1751. [PMID: 32124396 DOI: 10.1007/s43032-020-00168-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022]
Abstract
Polycystic ovary with poor-quality oocytes has remained problematic in polycystic ovary syndrome (PCOS) patients. It is well documented that the inflammation and production of reactive oxygen species (ROS) in PCOS ovaries are significantly higher than normal voluntaries. In this study, we hypothesized that auraptene (AUR), as a coumarin derivative with anti-inflammatory properties, may be effective in improvement of oocyte maturation and fertilization rate in PCOS patients. For this purpose, PCOS model was induced in NMRI mice and confirmed by ovarian histopathology observations and hormonal assays. PCOS-induced mice were administrated with AUR (PCOS-AUR) and metformin (PCOS-MET), and their effects on inflammation, apoptosis rate, oocyte maturation, and in vitro fertilization capacity were determined and compared with those normal and PCOS animals treated with sesame oil (PCOS-sesame oil) and no treatment (PCOS). Treatment with AUR and MET decreased the inflammation and apoptosis rates in PCOS mice compared with PCOS animals with no treatment. PCOS-AUR and PCOS-MET oocytes also showed higher intracellular glutathione and lower ROS concentrations compared with PCOS mice, indicating improved oocyte maturation rate. PCOS-AUR and PCOS-MET groups showed higher percentages of expansion rate and MII stage oocytes, and lower rate of abnormal oocytes compared with PCOS with no treatment. The rate of fertilization in the oocytes isolated from PCOS-AUR and PCOS-MET groups was higher than PCOS-sesame oil and PCOS groups. Our findings suggest that AUR can be considered as a potential candidate for improvement of oocyte maturation and fertilization capacity in PCOS patients, comparable to MET.
Collapse
Affiliation(s)
- Marzieh Abizadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Biology and Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziaei
- Department of Pharmaceutical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|