1
|
George AK, Derbyshire JA, Saybasili H, Saikus CE, Kocaturk O, Guttman MA, McVeigh ER, Lederman RJ, Faranesh AZ. Visualization of active devices and automatic slice repositioning ("SnapTo") for MRI-guided interventions. Magn Reson Med 2010; 63:1070-9. [PMID: 20373408 DOI: 10.1002/mrm.22307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The accurate visualization of interventional devices is crucial for the safety and effectiveness of MRI-guided interventional procedures. In this paper, we introduce an improvement to the visualization of active devices. The key component is a fast, robust method ("CurveFind") that reconstructs the three-dimensional trajectory of the device from projection images in a fraction of a second. CurveFind is an iterative prediction-correction algorithm that acts on a product of orthogonal projection images. By varying step size and search direction, it is robust to signal inhomogeneities. At the touch of a key, the imaged slice is repositioned to contain the relevant section of the device ("SnapTo"), the curve of the device is plotted in a three-dimensional display, and the point on a target slice, which the device will intersect, is displayed. These features have been incorporated into a real-time MRI system. Experiments in vitro and in vivo (in a pig) have produced successful results using a variety of single- and multichannel devices designed to produce both spatially continuous and discrete signals. CurveFind is typically able to reconstruct the device curve, with an average error of approximately 2 mm, even in the case of complex geometries.
Collapse
Affiliation(s)
- Ashvin K George
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Linte CA, White J, Eagleson R, Guiraudon GM, Peters TM. Virtual and Augmented Medical Imaging Environments: Enabling Technology for Minimally Invasive Cardiac Interventional Guidance. IEEE Rev Biomed Eng 2010; 3:25-47. [DOI: 10.1109/rbme.2010.2082522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 2008; 10:62. [PMID: 19114017 PMCID: PMC2637847 DOI: 10.1186/1532-429x-10-62] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/29/2008] [Indexed: 12/30/2022] Open
Abstract
The often touted advantages of MR guidance remain largely unrealized for cardiovascular interventional procedures in patients. Many procedures have been simulated in animal models. We argue these opportunities for clinical interventional MR will be met in the near future. This paper reviews technical and clinical considerations and offers advice on how to implement a clinical-grade interventional cardiovascular MR (iCMR) laboratory. We caution that this reflects our personal view of the "state of the art."
Collapse
Affiliation(s)
- Kanishka Ratnayaka
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cardiology Division, Children's National Medical Center, Washington, DC, USA
| | - Anthony Z Faranesh
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Guttman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozgur Kocaturk
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Qiu B, Gao F, Karmarkar P, Atalar E, Yang X. Intracoronary MR imaging using a 0.014-inch MR imaging-guidewire: Toward MRI-guided coronary interventions. J Magn Reson Imaging 2008; 28:515-8. [DOI: 10.1002/jmri.21424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
5
|
Real-time MR imaging-guided laser atrial septal puncture in swine. J Vasc Interv Radiol 2008; 19:1347-53. [PMID: 18725098 DOI: 10.1016/j.jvir.2008.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 05/05/2008] [Accepted: 05/12/2008] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The authors performed this study to report their initial preclinical experience with real-time magnetic resonance (MR) imaging-guided atrial septal puncture by using a MR imaging-conspicuous blunt laser catheter that perforates only when energized. MATERIALS AND METHODS The authors customized a 0.9-mm clinical excimer laser catheter with a receiver coil to impart MR imaging visibility at 1.5 T. Seven swine underwent laser transseptal puncture under real-time MR imaging. MR imaging signal-to-noise ratio profiles of the device were obtained in vitro. Tissue traversal force was tested with a calibrated meter. Position was corroborated with pressure measurements, oximetry, angiography, and necropsy. Intentional non-target perforation simulated serious complication. RESULTS Embedded MR imaging antennae accurately reflected the position of the laser catheter tip and profile in vitro and in vivo. Despite having an increased profile from the microcoil, the 0.9-mm laser catheter traversed in vitro targets with similar force (0.22 N +/- 0.03) compared with the unmodified laser. Laser puncture of the atrial septum was successful and accurate in all animals. The laser was activated an average of 3.8 seconds +/- 0.4 before traversal. There were no sequelae after 6 hours of observation. Necropsy revealed 0.9-mm holes in the fossa ovalis in all animals. Intentional perforation of the aorta and atrial free wall was evident immediately. CONCLUSIONS MR imaging-guided laser puncture of the interatrial septum is feasible in swine and offers controlled delivery of perforation energy by using an otherwise blunt catheter. Instantaneous soft tissue imaging provides immediate feedback on safety.
Collapse
|
6
|
Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, DeSilva R, Karmarkar P, Lederman RJ, McVeigh ER. Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging 2008; 26:1429-35. [PMID: 17968897 DOI: 10.1002/jmri.21199] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop and test a novel interactive real-time MRI environment that facilitates image-guided cardiovascular interventions. MATERIALS AND METHODS Color highlighting of device-mounted receiver coils, accelerated imaging of multiple slices, adaptive projection modes, live three-dimensional (3D) renderings and other interactive features were utilized to enhance navigation of devices and targeting of tissue. RESULTS Images are shown from several catheter-based interventional procedures performed in swine that benefit from this custom interventional MRI interface. These include endograft repair of aortic aneurysm, balloon septostomy of the cardiac interatrial septum, angioplasty and stenting, and endomyocardial cell injection, all using active catheters containing MRI receiver coils. CONCLUSION Interactive features not available on standard clinical scanners enhance real-time MRI for guiding cardiovascular interventional procedures.
Collapse
Affiliation(s)
- Michael A Guttman
- Laboratory of Cardiac Energetics, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1061, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Celik H, Ulutürk A, Tali T, Atalar E. A catheter tracking method using reverse polarization for MR-guided interventions. Magn Reson Med 2008; 58:1224-31. [PMID: 18046701 DOI: 10.1002/mrm.21419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To conduct interventional procedures in MRI, reliable visualization of interventional devices such as catheters is necessary. For this purpose, the use of inductively-coupled radio frequency (ICRF) coils has been proposed. Without a wired connection, the signal around the ICRF coil is amplified, enabling catheters to be visualized. The wireless connection allows easy handling of catheters, in some pulse sequences, however, it might be difficult to differentiate the catheters from anatomical background information. In this work, a novel ICRF coil visualization method, which allows separation of the catheter and the anatomical information by using the reverse and forward polarization modes of a coil, is proposed. This method allows images of the anatomy and the catheter to be combined into a color-coded image. First, an ICRF coil with decoupling diodes was constructed; we call this a receive-coupled RF (RCRF) coil. The RF safety profile of the RCRF coil is shown to be better than the ICRF coil. Second, to demonstrate the feasibility of this method, a receive-only birdcage coil without a hybrid coupler was constructed and then connected to a scanner as a two-channel phased-array coil. MR signals acquired from two channels were added after phase adjustments to create the reverse and forward polarization mode images. The reverse polarization mode image contained signal only from the RCRF coil, but the forward polarization mode displayed both anatomical information and the RCRF coil. The performance of this novel tracking method was tested in phantom and animal experiments. Color-coded images demonstrate the feasibility of the method to track catheters using RCRF coils.
Collapse
Affiliation(s)
- Haydar Celik
- Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | | | | | | |
Collapse
|
8
|
Tsao J, Boesiger P, Pruessmann KP. Lattice permutation for reducing motion artifacts in radial and spiral dynamic imaging. Magn Reson Med 2006; 55:116-25. [PMID: 16323156 DOI: 10.1002/mrm.20743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Radial and spiral trajectories exhibit favorable characteristics for dynamic imaging. Nevertheless, changes in image contents during acquisition lead to inconsistencies in the k-space data, which are manifested as streaks or spiral artifacts, respectively. This work proposes the concept of lattice permutation to reorder the data segments for artifact suppression. This acts to reshuffle the alias pattern along the temporal frequency axis. The proposed approach is well suited to sliding window reconstruction, although more sophisticated methods are also possible. For typical image series where the signal energies are concentrated in the low temporal frequencies, the permutation displaces most of the aliased signals from the low temporal frequencies to the high temporal frequencies, where they are attenuated by sliding window reconstruction, while the signals in the low temporal frequencies are mostly contaminated by aliasing from the much weaker signals in the higher temporal frequencies. This results in considerably reduced artifacts without any increase in scan time. In practice, lattice permutation achieves similar artifact suppression as the bit-reversed order, but with a less stringent restriction on the number of segments. At the same time, it provides a more powerful approach to controlling the alias pattern exactly. Results from real-time cardiac imaging are demonstrated.
Collapse
Affiliation(s)
- Jeffrey Tsao
- Novartis Institutes for BioMedical Research, Inc., Central Technologies, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
9
|
Abstract
Magnetic resonance imaging (MRI), which provides superior soft-tissue imaging and no known harmful effects, has the potential as an alternative modality to guide various medical interventions. This review will focus on MR-guided endovascular interventions and present its current state and future outlook. In the first technical part, enabling technologies such as developments in fast imaging, catheter devices, and visualization techniques are examined. This is followed by a clinical survey that includes proof-of-concept procedures in animals and initial experience in human subjects. In preclinical experiments, MRI has already proven to be valuable. For example, MRI has been used to guide and track targeted cell delivery into or around myocardial infarctions, to guide atrial septal puncture, and to guide the connection of portal and systemic venous circulations. Several investigational MR-guided procedures have already been reported in patients, such as MR-guided cardiac catheterization, invasive imaging of peripheral artery atheromata, selective intraarterial MR angiography, and preliminary angioplasty and stent placement. In addition, MR-assisted transjugular intrahepatic portosystemic shunt procedures in patients have been shown in a novel hybrid double-doughnut x-ray/MRI system. Numerous additional investigational human MR-guided endovascular procedures are now underway in several medical centers around the world. There are also significant hurdles: availability of clinical-grade devices, device-related safety issues, challenges to patient monitoring, and acoustic noise during imaging. The potential of endovascular interventional MRI is great because as a single modality, it combines 3-dimensional anatomic imaging, device localization, hemodynamics, tissue composition, and function.
Collapse
Affiliation(s)
- Cengizhan Ozturk
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
10
|
McVeigh ER, Guttman MA, Kellman P, Raval AN, Lederman RJ. Real-time, Interactive MRI for cardiovascular interventions. Acad Radiol 2005; 12:1121-7. [PMID: 16112512 PMCID: PMC2169205 DOI: 10.1016/j.acra.2005.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 05/29/2005] [Accepted: 02/15/2005] [Indexed: 11/25/2022]
Affiliation(s)
- Elliot R McVeigh
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room B1D416, Bethesda, MD 20892-106, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
In magnetic resonance imaging (MRI), there is always a drive toward reducing the acquisition time. In volume imaging, time is often spent in acquiring data where there exists no signal because the imaging volume is larger than the object. In this paper, a method is presented for scan time reduction using an adaptive field of view (FOV). Multislice images are acquired with the FOV in the phase encoding direction of each slice determined by measurements made on the initial localization survey scan. Depending on the region of interest, an optimized FOV is also determined so that scan time is reduced in comparison to a normal scan while improving image resolution. The method is simple to implement and requires no additional hardware. Typical reductions in scan time are on the order 9-14%.
Collapse
Affiliation(s)
- Kate McLeish
- Departmento de Ingenieria Electrica, Pontificia Universidad Catolica de Chile, Santiago 6904411, Chile.
| | | |
Collapse
|
12
|
Peters DC, Guttman MA, Dick AJ, Raman VK, Lederman RJ, McVeigh ER. Reduced field of view and undersampled PR combined for interventional imaging of a fully dynamic field of view. Magn Reson Med 2004; 51:761-7. [PMID: 15065249 PMCID: PMC2034278 DOI: 10.1002/mrm.20037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active catheter imaging was investigated using real-time undersampled projection reconstruction (PR) combined with the temporal filtering technique of reduced field of view (rFOV). Real-time rFOV processing was interactively enabled during highly undersampled catheter imaging, resulting in improved artifact suppression with better temporal resolution than that obtained by view-sharing. Imaging with 64 to 32 projections provided a resolution of 2 x 2 x 8 mm, and four to eight true frames per second. Image artifacts were reduced when rFOV processing was applied to the undersampled images. A comparison with Cartesian rFOV showed that PR image quality is less susceptible to aliasing that results from rFOV imaging with a wholly dynamic outer FOV. Simulations and MRI experiments demonstrated that PR rFOV provides significant artifact suppression, even for a fully dynamic FOV. The near doubling of temporal resolution that is possible with PR rFOV permits accurate monitoring of highly dynamic events, such as catheter movements, and arrhythmias, such as ventricular ectopy.
Collapse
Affiliation(s)
- Dana C Peters
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Tsekos NV, Atalar E, Li D, Omary RA, Serfaty JM, Woodard PK. Magnetic resonance imaging-guided coronary interventions. J Magn Reson Imaging 2004; 19:734-49. [PMID: 15170780 DOI: 10.1002/jmri.20071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Magnetic resonance imaging (MRI) guidance for coronary interventions offers potential advantages over conventional x-ray angiography. Advantages include the use of nonionizing radiation, combined assessment of anatomy and function, and three-dimensional assessment of the coronary arteries leading to the myocardium. These advantages have prompted a series of recent studies in this field. Real-time coronary MR angiography, with low-dose catheter-directed intraarterial (IA) infusion of contrast media, has achieved in-plane spatial resolution as low as 0.8 x 0.8 mm2 and temporal resolution as short as 130 msec per image. Catheter-based IA injection of contrast agent has proven useful in the collection of multislice and three-dimensional images, not only for coronary intervention guidance, but also in the assessment of regional myocardial perfusion fed by the affected vessel. Actively visible guidewires and guiding catheters, based on the loopless antenna concept, have been effectively used to negotiate tortuous coronary vessels during catheterization, permitting placement of coronary angioplasty balloon catheters. Passive tracking approaches have been used to image contrast agent-filled coronary catheters and to place susceptibility-based endovascular stents. Although the field is in its infancy, these early results demonstrate the feasibility for performing MRI-guided coronary interventions. Although further methodological and technical developments are required before these methods become clinically applicable, we anticipate that MRI someday will be included in the armamentarium of techniques used to diagnose and treat coronary artery disease.
Collapse
Affiliation(s)
- Nikolaos V Tsekos
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER. Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med 2003; 50:315-21. [PMID: 12876708 PMCID: PMC2034320 DOI: 10.1002/mrm.10504] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reduced field-of-view (FOV) acceleration using time-adaptive sensitivity encoding (TSENSE) or unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD) can improve the depiction of motion in real-time MRI. However, increased computational resources are required to maintain a high frame rate and low latency in image reconstruction and display. A high-performance software system has been implemented to perform TSENSE and UNFOLD reconstructions for real-time MRI with interactive, on-line display. Images were displayed in the scanner room to investigate image-guided procedures. Examples are shown for normal volunteers and cardiac interventional experiments in animals using a steady-state free precession (SSFP) sequence. In order to maintain adequate image quality for interventional procedures, the imaging rate was limited to seven frames per second after an acceleration factor of 2 with a voxel size of 1.8 x 3.5 x 8 mm. Initial experiences suggest that TSENSE and UNFOLD can each improve the compromise between spatial and temporal resolution in real-time imaging, and can function well in interactive imaging. UNFOLD places no additional constraints on receiver coils, and is therefore more flexible than SENSE methods; however, the temporal image filtering can blur motion and reduce the effective acceleration. Methods are proposed to overcome the challenges presented by the use of TSENSE in interactive imaging. TSENSE may be temporarily disabled after changing the imaging plane to avoid transient artifacts as the sensitivity coefficients adapt. For imaging with a combination of surface and interventional coils, a hybrid reconstruction approach is proposed whereby UNFOLD is used for the interventional coils, and TSENSE with or without UNFOLD is used for the surface coils.
Collapse
Affiliation(s)
- Michael A Guttman
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.
Collapse
Affiliation(s)
- L W Bartels
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room E.01.335, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
16
|
Serfaty JM, Yang X, Foo TK, Kumar A, Derbyshire A, Atalar E. MRI-guided coronary catheterization and PTCA: A feasibility study on a dog model. Magn Reson Med 2003; 49:258-63. [PMID: 12541245 DOI: 10.1002/mrm.10393] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this work was to demonstrate the feasibility of MRI-guided coronary artery catheterization and intervention in a dog model. Experiments were performed on 10 healthy dogs. A 9F introducer sheath was placed through a right carotid artery cutdown. A prototype 0.014-inch coronary MRI guidewire, a prototype 7 French MRI-guiding catheter, and two flexible surface coils were connected to a GE 1.5 T CV/i scanner for simultaneous visualization of the guidewire, guiding catheter, and chest anatomy. Images were displayed in real time on an in-room monitor. A nongated, single-slice fast gradient-echo sequence was used to obtain real-time images of the catheters and background anatomy during the intervention. Fifteen selective catheterizations were attempted in the coronary arteries, and all were successful. Selective injection of diluted gadolinium into the MRI-guiding catheter provided dynamic 2D projection coronary angiography in all cases, confirming successful catheterization. Percutaneous transluminal coronary angioplasty (PTCA) was attempted after two catheterizations, and all attempts were successful. Inflation of the balloon angioplasty catheter was performed successfully in the left anterior and circumflex arteries. Our results indicate that coronary artery catheterization and intracoronary balloon angioplasty are feasible with MRI guidance only. MRI guidance may be used as an alternative to X-ray guidance in coronary artery interventions in the future.
Collapse
|
17
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2002; 15:305-312. [PMID: 12112613 DOI: 10.1002/nbm.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|