1
|
Lammers A, Hsu HH, Sundaram S, Gagnon KA, Kim S, Lee JH, Tung YC, Eyckmans J, Chen CS. Rapid Tissue Perfusion Using Sacrificial Percolation of Anisotropic Networks. MATTER 2024; 7:2184-2204. [PMID: 39221109 PMCID: PMC11360881 DOI: 10.1016/j.matt.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.
Collapse
Affiliation(s)
- Alex Lammers
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Subramanian Sundaram
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Keith A. Gagnon
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sudong Kim
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua H. Lee
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jeroen Eyckmans
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
2
|
Božić‐Iven M, Rapacchi S, Tao Q, Pierce I, Thornton G, Nitsche C, Treibel TA, Schad LR, Weingärtner S. Improved reproducibility for myocardial ASL: Impact of physiological and acquisition parameters. Magn Reson Med 2024; 91:118-132. [PMID: 37667643 PMCID: PMC10962577 DOI: 10.1002/mrm.29834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and bloodT 1 $$ {\mathrm{T}}_1 $$ relaxation time (T 1 , B $$ {\mathrm{T}}_{1,B} $$ ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specificT 1 , B $$ {\mathrm{T}}_{1,B} $$ values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS Simulated and phantom experiments showed a strong dependence on AMS and FA (R 2 $$ {R}^2 $$ >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence (R 2 $$ {R}^2 $$ >0.59) was observed which was reduced when calculating MBF with individualT 1 , B $$ {\mathrm{T}}_{1,B} $$ . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individualT 1 , B $$ {\mathrm{T}}_{1,B} $$ and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters.
Collapse
Affiliation(s)
- Maša Božić‐Iven
- Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | | | - Qian Tao
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Iain Pierce
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
| | - George Thornton
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
| | - Christian Nitsche
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- Division of CardiologyMedical University of ViennaViennaAustria
| | - Thomas A. Treibel
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
| | - Lothar R. Schad
- Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | |
Collapse
|
3
|
Colbert CM, Hollowed JJ, Nguyen DN, Duarte-Vogel S, Dahlbom M, Hu P, Nguyen KL. Fractional myocardial blood volume by ferumoxytol-enhanced MRI: Estimation of ischemic burden. Magn Reson Med 2023; 89:1557-1566. [PMID: 36382769 PMCID: PMC10166270 DOI: 10.1002/mrm.29530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate model-fitted fractional myocardial blood volume (fMBV) derived from ferumoxytol-enhanced MRI as a measure of myocardial tissue hypoperfusion at rest. METHODS We artificially induced moderate to severe focal coronary stenosis in the left anterior descending artery of 19 swine by percutaneous delivery of a 3D-printed coronary implant. Using the MOLLI pulse sequence, we acquired T1 maps at 3 T after multiple incremental ferumoxytol doses (0.0-4.0 mg/kg). We computed pixel-wise fMBV using a multi-compartmental modeling approach in 19 ischemic swine and 4 healthy swine. RESULTS Ischemic myocardial segments showed a mean MRI-fMBV of 11.72 ± 3.00%, compared with 8.23 ± 2.12% in remote segments and 8.38 ± 2.23% in normal segments. Ischemic segments showed a restricted transvascular water-exchange rate (ki = 15.32 ± 8.69 s-1 ) relative to remote segments (ki = 17.78 [11.60, 26.36] s-1 ). A mixed-effects model found significant difference in fMBV (p = 0.002) and water-exchange rate (p < 0.001) between ischemic and remote myocardial regions after adjusting for biological sex and slice location. Analysis of fMBV as a predictor of impaired myocardial contractility using receiver operating characteristics showed an area under the curve of 0.89 (95% confidence interval [CI] 0.80, 0.95). An MRI-fMBV threshold of 9.60% has a specificity of 90.0% (95% CI 76.3, 97.2) and a sensitivity of 72.5% (95% CI 56.1, 83.4) for prediction of impaired myocardial contractility. CONCLUSIONS Model-fitted fMBV derived from ferumoxytol-enhanced MRI can distinguish regions of ischemia from remote myocardium in a swine model of myocardial hypoperfusion.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - John J. Hollowed
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - Dylan N. Nguyen
- Department of Computer Science and Engineering, Samueli School of Engineering at UCLA
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine at UCLA
| | - Magnus Dahlbom
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
4
|
Bengs S, Warnock GI, Portmann A, Mikail N, Rossi A, Ahmed H, Etter D, Treyer V, Gisler L, Pfister SK, Jie CVML, Meisel A, Keller C, Liang SH, Schibli R, Mu L, Buechel RR, Kaufmann PA, Ametamey SM, Gebhard C, Haider A. Rest/stress myocardial perfusion imaging by positron emission tomography with 18F-Flurpiridaz: A feasibility study in mice. J Nucl Cardiol 2023; 30:62-73. [PMID: 35484467 PMCID: PMC9984310 DOI: 10.1007/s12350-022-02968-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myocardial perfusion imaging by positron emission tomography (PET-MPI) is the current gold standard for quantification of myocardial blood flow. 18F-flurpiridaz was recently introduced as a valid alternative to currently used PET-MPI probes. Nonetheless, optimum scan duration and time interval for image analysis are currently unknown. Further, it is unclear whether rest/stress PET-MPI with 18F-flurpiridaz is feasible in mice. METHODS Rest/stress PET-MPI was performed with 18F-flurpiridaz (0.6-3.0 MBq) in 27 mice aged 7-8 months. Regadenoson (0.1 µg/g) was used for induction of vasodilator stress. Kinetic modeling was performed using a metabolite-corrected arterial input function. Image-derived myocardial 18F-flurpiridaz uptake was assessed for different time intervals by placing a volume of interest in the left ventricular myocardium. RESULTS Tracer kinetics were best described by a two-tissue compartment model. K1 ranged from 6.7 to 20.0 mL·cm-3·min-1, while myocardial volumes of distribution (VT) were between 34.6 and 83.6 mL·cm-3. Of note, myocardial 18F-flurpiridaz uptake (%ID/g) was significantly correlated with K1 at rest and following pharmacological vasodilation for all time intervals assessed. However, while Spearman's coefficients (rs) ranged between 0.478 and 0.681, R2 values were generally low. In contrast, an excellent correlation of myocardial 18F-flurpiridaz uptake with VT was obtained, particularly when employing the averaged myocardial uptake from 20 to 40 min post tracer injection (R2 ≥ 0.98). Notably, K1 and VT were similarly sensitive to pharmacological vasodilation induction. Further, mean stress-to-rest ratios of K1, VT, and %ID/g 18F-flurpiridaz were virtually identical, suggesting that %ID/g 18F-flurpiridaz can be used to estimate coronary flow reserve (CFR) in mice. CONCLUSION Our findings suggest that a simplified assessment of relative myocardial perfusion and CFR, based on image-derived tracer uptake, is feasible with 18F-flurpiridaz in mice, enabling high-throughput mechanistic CFR studies in rodents.
Collapse
Affiliation(s)
- Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefanie K Pfister
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Caitlin V M L Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Roger Schibli
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Grkovski M, Zanzonico PB, Modak S, Humm JL, Narula J, Pandit-Taskar N. F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation. J Nucl Cardiol 2022; 29:3179-3188. [PMID: 34993893 PMCID: PMC10155237 DOI: 10.1007/s12350-021-02813-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND I-123 meta-iodobenzylguanidine (MIBG) imaging has long been employed to noninvasively assess the integrity of human norepinephrine transporter-1 and, hence, myocardial sympathetic innervation. Positron-emitting F-18 meta-fluorobenzylguanidine (MFBG) has recently been developed for potentially superior quantitative characterization. We assessed the feasibility of MFBG imaging of myocardial sympathetic innervation. METHODS 16 patients were imaged with MFBG PET (30-minute dynamic imaging of chest, followed by 3 whole-body acquisitions between 30 minutes and 4-hour post-injection). Blood kinetics were assessed from multiple samples. Pharmacokinetic modeling with reversible 1- and 2-compartment models was performed. Kinetic rate constants were re-calculated from truncated datasets. All patients underwent concurrent MIBG SPECT. RESULTS MFBG myocardial uptake was rapid and sustained; the mean standardized uptake value (SUV (mean ± standard deviation)) was 5.1 ± 2.2 and 3.4 ± 1.9 at 1 hour and 3-4-hour post-injection, respectively. The mean K1 and distribution volume (VT) were 1.1 ± 0.6 mL/min/g and 34 ± 22 mL/cm3, respectively. Both were reproducible when re-calculated from truncated 1-hour datasets (Intraclass Correlation Coefficient of 0.99 and 0.91, respectively). Spearman's ϱ = 0.86 between MFBG SUV and VT and 0.80 between MFBG PET-derived VT and MIBG SPECT-derived heart-to-mediastinum activity concentration ratio. CONCLUSION MFBG is a promising PET radiotracer for the assessment of myocardial sympathetic innervation.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jagat Narula
- Mount Sinai Heart, The Mount Sinai Hospital, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Liu H, Soares JS, Walmsley J, Li DS, Raut S, Avazmohammadi R, Iaizzo P, Palmer M, Gorman JH, Gorman RC, Sacks MS. The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart. Sci Rep 2021; 11:13466. [PMID: 34188138 PMCID: PMC8242073 DOI: 10.1038/s41598-021-92810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Myocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocardial mechanics. While substantial tissue volume reductions of 15-20% during systole have been reported, myocardium is commonly modeled as incompressible. We developed a myocardial model to simulate experimentally-observed systolic volume reductions in an ovine model of MI. Sheep-specific simulations of the cardiac cycle were performed using both incompressible and compressible tissue material models, and with synchronous or measurement-guided contraction. The compressible tissue model with measurement-guided contraction gave best agreement with experimentally measured reductions in tissue volume at peak systole, ventricular kinematics, and wall thickness changes. The incompressible model predicted myofiber peak contractile stresses approximately double the compressible model (182.8 kPa, 107.4 kPa respectively). Compensatory changes in remaining normal myocardium with MI present required less increase of contractile stress in the compressible model than the incompressible model (32.1%, 53.5%, respectively). The compressible model therefore provided more accurate representation of ventricular kinematics and potentially more realistic computed active contraction levels in the simulated infarcted heart. Our findings suggest that myocardial compressibility should be incorporated into future cardiac models for improved accuracy.
Collapse
Affiliation(s)
- Hao Liu
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - João S Soares
- Engineered Tissue Multiscale Mechanics and Modeling Laboratory, Virginia Commonwealth University, Richmond, VA, USA
| | - John Walmsley
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - Samarth Raut
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - Reza Avazmohammadi
- Computational Cardiovascular Bioengineering Lab, Texas A&M University, College Station, TX, USA
| | - Paul Iaizzo
- Visible Heart Lab, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Mark Palmer
- Corporate Core Technologies, Medtronic, Inc., Minneapolis, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Colbert CM, Thomas MA, Yan R, Radjenovic A, Finn JP, Hu P, Nguyen KL. Estimation of fractional myocardial blood volume and water exchange using ferumoxytol-enhanced magnetic resonance imaging. J Magn Reson Imaging 2021; 53:1699-1709. [PMID: 33382176 PMCID: PMC8297410 DOI: 10.1002/jmri.27494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Fractional myocardial blood volume (fMBV) estimated using ferumoxytol-enhanced magnetic resonance imaging (MRI) (FE-MRI) has the potential to capture a hemodynamic response to myocardial hypoperfusion during contrast steady state without reliance on gadolinium chelates. Ferumoxytol has a long intravascular half-life and its use for steady-state MRI is off-label. The aim of this prospective study was to optimize and evaluate a two-compartment model for estimation of fMBV based on FE-MRI. Nine healthy swine and one swine with artificially induced single-vessel coronary stenosis underwent MRI on a 3.0 T clinical magnet. Myocardial longitudinal spin-lattice relaxation rate (R1) was measured using the 5(3)3(3)3 modified Look-Locker inversion recovery (MOLLI) sequence before and at contrast steady state following seven ferumoxytol infusions (0.125-4.0 mg/kg). fMBV and water exchange were estimated using a two-compartment model. Model-fitted fMBV was compared to simple fast-exchange fMBV approximation and percent change in pre- and postferumoxytol R1. Dose undersampling schemes were investigated to reduce acquisition duration. Variation in fMBV was assessed using one-way analysis of variance. Fast-exchange fMBV and ferumoxytol dose undersampling were evaluated using Bland-Altman analysis. Healthy normal swine showed a mean mid-ventricular fMBV of 7.2 ± 1.4% and water exchange rate of 11.3 ± 5.1 s-1 . There was intersubject variation in fMBV (p < 0.05) without segmental variation (p = 0.387). fMBV derived from eight-dose and four-dose sampling schemes had no significant bias (mean difference = 0.07, p = 0.541, limits of agreement -1.04% [-1.45, -0.62%] to 1.18% [0.77, 1.59%]). Pixel-wise fMBV in one swine model with coronary artery stenosis showed elevated fMBV in ischemic segments (apical anterior: 11.90 ± 4.00%, apical septum: 16.10 ± 5.71%) relative to remote segments (apical inferior: 9.59 ± 3.35%, apical lateral: 9.38 ± 2.35%). A two-compartment model based on FE-MRI using the MOLLI sequence may enable estimation of fMBV in studies of ischemic heart disease. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
| | - Michael A. Thomas
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Ran Yan
- Bioengineering Graduate Program, Henry Samueli School of
Engineering and Applied Science at UCLA
| | - Aleksandra Radjenovic
- Institute of Cardiovascular & Medical Sciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Bioengineering Graduate Program, Henry Samueli School of
Engineering and Applied Science at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
8
|
Avazmohammadi R, Soares JS, Li DS, Eperjesi T, Pilla J, Gorman RC, Sacks MS. On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart. J Biomech 2020; 107:109767. [PMID: 32386714 PMCID: PMC7433024 DOI: 10.1016/j.jbiomech.2020.109767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 01/01/2023]
Abstract
Although studied for many years, there remain continued gaps in our fundamental understanding of cardiac kinematics, such as the nature and extent of heart wall volumetric changes that occur over the cardiac cycle. Such knowledge is especially important for accurate in silico simulations of cardiac pathologies and in the development of novel therapies for their treatment. A prime example is myocardial infarction (MI), which induces profound, regionally variant maladaptive remodeling of the left ventricle (LV) wall. To address this problem, we conducted an in vivo fiduciary marker-based study in an established ovine model of MI to generate detailed, time-evolving transmural in vivo volumetric measurements of LV free wall deformations in the normal state, as well as up to 12 h post-MI. This was accomplished using a transmural array of sonomicrometry crystals that acquired fiducial positions at ∼250 Hz with a positional accuracy of ∼0.1 mm, covering the entire infarct, border, and remote zones. A convex-hull method was used to directly calculate the Jacobian J(t)=Δv(t)/ΔVED from sonocrystal positions over the entire cardiac cycle, where ΔV is the volume of each convex polyhedral at end diastole (ED) (typically ∼1 cc). We demonstrated significant in vivo compressibility in normal functioning LV free wall myocardium, with JES=0.85±0.07 at end systole (ES). We also observed substantial regional variations, with the largest reduction in local myocardial tissue volume during systole in the base region accompanied by substantial transmural gradients. These patterns changed profoundly following loss of perfusion post-MI, with the apical region showing the greatest loss of volume reduction at ES. To verify that the sonocrystals did not affect local volumetric measurements, JES measures were also verified by non-invasive magnetic resonance imaging, exhibiting very similar changes in regional volume. We note that while our estimates of regional compressibility were in close agreement with the values previously reported for large animals, ranging from 5% to 20%, the direct, comprehensive measurements of wall compressibility presented herein improved on the limitations of previous reports. These limitations included dependency on the small local volumes used for analysis and often indirect measurement of compressibility. Our novel findings suggest that proper accounting for the myocardial effective compressibility at the ∼1 cc volume scale can improve the accuracy of existing kinematic indices, such as wall thickening and axial shortening, and simulations of LV remodeling following MI.
Collapse
Affiliation(s)
- Reza Avazmohammadi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joao S Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonweath University, Richmond VA 23284, USA
| | - David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Eperjesi
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Pilla
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
CPMG relaxation rate dispersion in dipole fields around capillaries. Magn Reson Imaging 2016; 34:875-88. [DOI: 10.1016/j.mri.2016.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 11/22/2022]
|
10
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
11
|
Bane O, Lee DC, Benefield BC, Harris KR, Chatterjee NR, Carr JC, Carroll TJ. Leakage and water exchange characterization of gadofosveset in the myocardium. Magn Reson Imaging 2013; 32:224-35. [PMID: 24418327 DOI: 10.1016/j.mri.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 08/02/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022]
Abstract
PURPOSE To determine the compartmentalization of the blood pool agent gadofosveset and the effect of its transient binding to albumin on the quantification of steady-state fractional myocardial blood volume (fMBV). METHODS Myocardial vascular fraction measurements were simulated assuming the limiting cases (slow or fast) of two-compartment water exchange for different contrast agent injection concentrations, binding fractions, bound and free relaxivities, and true cardiac vascular fractions. fMBV was measured in five healthy volunteers (4 males, 1 female, average age 33) at 1.5T after administration of five injections of gadofosveset. The measurements in the volunteers were retrospectively compared to measurements of fMBV after three serial injections of the ultra-small, paramagnetic iron oxide (USPIO) blood pool agent ferumoxytol in an experimental animal. The true fMBV and exchange rate of water protons in both human and animal data sets was determined by chi square minimization. RESULTS Simulations showed an error in the measurement of fMBV due to partial binding of gadofosveset of less than 30%. Measured fMBV values over-estimate simulation predictions, and approach cardiac extracellular volume (22%), which suggests that the intravascular assumption may not be appropriate for the myocardium, although it may apply to more distal perfusion beds. In comparison, fMBV measured with ferumoxytol (5%, with slow water proton exchange across vascular wall) agree with published values of myocardial vascular fraction. Further comparison between myocardium relaxation rates induced by gadofosveset and by other extracellular and intravascular contrast agents showed that gadofosveset behaves like an extracellular contrast agent. CONCLUSIONS The distribution of the volunteer data indicates that a three-compartment model, with slow water exchange of gadofosveset and water protons between the vascular and interstitial compartments, and fast water exchange between the interstitium and the myocytes, is appropriate. The ferumoxytol measurements indicate that this USPIO is an intravascular contrast agent that can be used to quantify myocardial blood volume, with the appropriate correction for water exchange using a two-compartment water exchange model.
Collapse
Affiliation(s)
- Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Daniel C Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kathleen R Harris
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neil R Chatterjee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA
| | - James C Carr
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Timothy J Carroll
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Kampf T, Helluy X, Gutjahr FT, Winter P, Meyer CB, Jakob PM, Bauer WR, Ziener CH. Myocardial perfusion quantification using the T
1
-based FAIR-ASL method: The influence of heart anatomy, cardiopulmonary blood flow and look-locker readout. Magn Reson Med 2013; 71:1784-97. [DOI: 10.1002/mrm.24843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Kampf
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Xavier Helluy
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Fabian T. Gutjahr
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Patrick Winter
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Cord B. Meyer
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Peter M. Jakob
- Universität Würzburg; Lehrstuhl für Experimentelle Physik 5 Am Hubland Würzburg Germany
| | - Wolfgang R. Bauer
- Universität Würzburg, Medizinische Klinik und Poliklinik I; Oberdürrbacher Straße 6 Würzburg Germany
| | - Christian H. Ziener
- German Cancer Research Center DKFZ; Im Neuenheimer Feld 280 Heidelberg Germany
| |
Collapse
|
13
|
Campbell‐Washburn AE, Zhang H, Siow BM, Price AN, Lythgoe MF, Ordidge RJ, Thomas DL. Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function. Magn Reson Med 2012; 70:1125-36. [DOI: 10.1002/mrm.24545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 10/06/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Adrienne E. Campbell‐Washburn
- Centre for Advanced Biomedical ImagingDivision of Medicine and Institute of Child HealthUniversity College LondonUK
- Department of Medical Physics and BioengineeringUniversity College LondonUK
| | - Hui Zhang
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonUK
| | - Bernard M. Siow
- Centre for Advanced Biomedical ImagingDivision of Medicine and Institute of Child HealthUniversity College LondonUK
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonKing's Health PartnersSt. Thomas' HospitalLondonUK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical ImagingDivision of Medicine and Institute of Child HealthUniversity College LondonUK
| | - Roger J. Ordidge
- Centre for NeuroscienceUniversity of MelbourneMelbourneAustralia
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUniversity College LondonInstitute of NeurologyQueen SquareLondonUK
| |
Collapse
|
14
|
Ureña JRS, Olmos S, Kiselev VG. Tissue-blood exchange of extravascular longitudinal magnetization with account of intracompartmental diffusion. Magn Reson Med 2011; 66:1445-55. [DOI: 10.1002/mrm.22919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 12/20/2022]
|
15
|
Gambarota G, van Laarhoven HWM, Philippens M, Peeters WJM, Rijken P, van der Kogel A, Punt CJA, Heerschap A. Assessment of Blood Hemodynamics by USPIO-Induced R(1) Changes in MRI of Murine Colon Carcinoma. APPLIED MAGNETIC RESONANCE 2010; 38:349-360. [PMID: 20502507 PMCID: PMC2866959 DOI: 10.1007/s00723-010-0124-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/01/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study is to assess whether ultrasmall superparamagnetic iron oxide (USPIO)-induced changes of the water proton longitudinal relaxation rate (R(1)) provide a means to assess blood hemodynamics of tumors. Two types of murine colon tumors (C26a and C38) were investigated prior to and following administration of USPIO blood-pool contrast agent with fast R(1) measurements. In a subpopulation of mice, R(1) was measured following administration of hydralazine, a well-known blood hemodynamic modifier. USPIO-induced R(1) increase in C38 tumors (DeltaR(1) = 0.072 +/- 0.0081 s(-1)) was significantly larger than in C26a tumors (DeltaR(1) = 0.032 +/- 0.0018 s(-1), N = 9, t test, P < 0.001). This was in agreement with the immunohistochemical data that showed higher values of relative vascular area (RVA) in C38 tumors than in C26a tumors (RVA = 0.059 +/- 0.015 vs. 0.020 +/- 0.011; P < 0.05). Following administration of hydralazine, a decrease in R(1) value was observed. This was consistent with the vasoconstriction induced by the steal effect mechanism. In conclusion, R(1) changes induced by USPIO are sensitive to tumor vascular morphology and to blood hemodynamics. Thus, R(1) measurements following USPIO administration can give novel insight into the effects of blood hemodynamic modifiers, non-invasively and with a high temporal resolution.
Collapse
Affiliation(s)
- Giulio Gambarota
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Present Address: GSK Clinical Imaging Centre, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - H. W. M. van Laarhoven
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - M. Philippens
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - W. J. M. Peeters
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P. Rijken
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A. van der Kogel
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C. J. A. Punt
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A. Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Li X, Springer CS, Jerosch-Herold M. First-pass dynamic contrast-enhanced MRI with extravasating contrast reagent: evidence for human myocardial capillary recruitment in adenosine-induced hyperemia. NMR IN BIOMEDICINE 2009; 22:148-157. [PMID: 18727151 DOI: 10.1002/nbm.1293] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human myocardial (1)H(2)O T(1)-weighted dynamic contrast-enhanced MRI data were acquired during the brief first-pass period after injection of a very small gadolinium diethylenetriaminepenta-acetate (GdDTPA(2-)) dose. The shutter-speed pharmacokinetic effects of both transendothelial and transcytolemmal equilibrium water exchange processes were investigated. Our results indicate that even for such a short acquisition window and relatively large pseudo-first-order rate constant (K(trans)) for plasma/interstitium contrast reagent (CR) transfer the kinetics of these water exchange processes cannot be treated as infinitely fast or slow. However, neither the intracellular water molecule lifetime (tau(i)) nor its intravascular counterpart (tau(b)) are among the parameters most influential in analysis of the noisy data typically associated with the cardiac perfusion application. Thus, the actual values of water exchange kinetic rate constants are relatively indeterminate as this experiment is usually conducted. Combining the K(trans) evaluations with independently determined flow (F) values allows us to estimate CR permeability coefficient surface area product (P(CR)S) values. The fact that the P(CR)S magnitudes almost equal the K(trans) values confirms that GdDTPA(2-) extravasation in resting human myocardial muscle is indeed permeation-limited and supports the validity of the K(trans) and P(CR)S estimations. Nevertheless the model analysis is most consistent with the results if P(CR)S is not assumed to be constant with changing flow. The capillary blood volume fraction (v(b)) is a sensitive parameter in the analysis. We also compared resting and hyperemic cardiac conditions, the latter resulting from the volume flow increase induced by adenosine arteriolar vasodilation. We found that the P(CR)S value increases with flow probably mostly because of an S increase associated with capillary recruitment. The v(b) values also increased in hyperemia and showed a flow-dependence with a clearly identifiable component due to capillary recruitment.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
17
|
Buckley DL, Kershaw LE, Stanisz GJ. Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: Dynamic contrast-enhanced MRI of human internal obturator muscle. Magn Reson Med 2008; 60:1011-9. [DOI: 10.1002/mrm.21748] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Pack NA, Dibella EVR, Wilson BD, McGann CJ. Quantitative myocardial distribution volume from dynamic contrast-enhanced MRI. Magn Reson Imaging 2008; 26:532-42. [PMID: 18068931 DOI: 10.1016/j.mri.2007.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 08/29/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
The objective of this study was to investigate if dynamic contrast-enhanced magnetic resonance imaging (MRI) can be used to quantitate the distribution volume (v(e)) in regions of normal and infarcted myocardium. v(e) reflects the volume of the extracellular, extravascular space within the myocardial tissue. In regions of the heart where an infarct has occurred, the loss of viable cardiac cells results in an elevated v(e) compared to normal regions. A quantitative estimate of the magnitude and spatial distribution of v(e) is significant because it may provide information complementary to delayed enhancement MRI alone. Using a hybrid gradient echo-echoplanar imaging pulse sequence on a 1.5T MRI scanner, 12 normal subjects and four infarct patients were imaged dynamically, during the injection of a contrast agent, to measure the regional blood and tissue enhancement in the left ventricular (LV) myocardium. Seven of the normal subjects and all of the infarct patients were also imaged at steady-state contrast enhancement to estimate the steady-state ratio of contrast agent in the tissue and blood (Ct/Cb) - a validated measure of v(e). Normal and infarct regions of the LV were manually selected, and the blood and tissue enhancement curves were fit to a compartment model to estimate v(e). Also, the effect of the vascular blood signal on estimates of v(e) was evaluated using simulations and in the dynamic and steady-state studies. Aggregate estimates of v(e) were 23.6+/-6.3% in normal myocardium and 45.7+/-3.4% in regions of infarct. These results were not significantly different from the reference standards of Ct/Cb (22.9+/-6.8% and 42.6+/-6.3%, P=.073). From the dynamic contrast-enhanced studies, approximately 1 min of scan time was necessary to estimate v(e) in the normal myocardium to within 10% of the steady-state estimate. In regions of infarct, up to 3 min of dynamic data were required to estimate v(e) to within 10% of the steady-state v(e) value. By measuring the kinetics of blood and tissue enhancement in the myocardium during an extended dynamic contrast enhanced MRI study, v(e) may be estimated using compartment modeling.
Collapse
Affiliation(s)
- Nathan A Pack
- Department of Bioengineering, University of Utah, SLC, UT, USA
| | | | | | | |
Collapse
|
19
|
Qi XL, Burns P, Hong J, Stainsby J, Wright G. Characterizing blood volume fraction (BVF) in a VX2 tumor. Magn Reson Imaging 2008; 26:206-14. [PMID: 17683893 DOI: 10.1016/j.mri.2007.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Neovascular proliferation of a tumor's blood supply is an important precursor of malignant growth. Evaluation of blood volume may provide useful information for the characterization, prognosis and response of tumors to therapy. The purpose of this study was to determine and compare the blood volume of tumor tissue measured noninvasively by MRI and microbubble contrast ultrasound imaging. MATERIALS AND METHODS Twenty-two rabbits injected with VX2 tumors were studied. The blood volume fraction in tumor and muscle tissue was obtained from MRI T(1)-weighted images using a blood-pool agent, Clariscan, and by ultrasound using Definity and pulse inversion imaging. RESULTS AND CONCLUSIONS Similar results were obtained from MRI and ultrasound. Estimation of the blood volume in tissue in the rim of a VX2 tumor 1.5 to 5.0 cm in diameter relative to that in the surrounding muscle was (mean+/-S.D.) 3.31+/-1.43 by MRI and 2.99+/-1.83 by ultrasound. The blood volume in the tissue relative to the total tissue volume (relative blood volume fraction) measured by MRI was 13+/-4.1% in tumor versus 4+/-1.4% in muscle (P<.01). Our data also suggested that, compared to the distribution volume of an extracellular contrast agent, Gd-DTPA, Clariscan as an intravascular agent demonstrated high-quality depictions of vascular structure of the tumor.
Collapse
Affiliation(s)
- Xiu-Ling Qi
- Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Canada M4N 3M5
| | | | | | | | | |
Collapse
|
20
|
Kiss P, Suranyi P, Simor T, Saab-Ismail NH, Elgavish A, Hejjel L, Elgavish GA. In vivo R1-enhancement mapping of canine myocardium using ceMRI with Gd(ABE-DTTA) in an acute ischemia-reperfusion model. J Magn Reson Imaging 2007; 24:571-9. [PMID: 16892191 DOI: 10.1002/jmri.20661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To demonstrate the usefulness of normalized DeltaR1 (DeltaR1(n)) mapping in myocardial tissue following the administration of the contrast agent (CA) Gd(ABE-DTTA). MATERIALS AND METHODS Ischemia-reperfusion experiments were carried out in 11 dogs. The method exploited the relatively long tissue lifetime of Gd(ABE-DTTA), and thus no fast R1 measurement technique was needed. Myocardial perfusion was determined with colored microspheres (MP). RESULTS With varying extent of ischemia, impaired wall motion (WM) and lower DeltaR1(n) values were detected in the ischemic sectors, as opposed to the nonischemic sectors where normal WM and higher DeltaR1(n) were observed. Based on the DeltaR1(n), data from the myocardial perfusion assay and the DeltaR1(n) maps were compared in the ischemic sectors. A correlation analysis of these two parameters demonstrated a significant correlation (R = 0.694, P < 0.005), validating the DeltaR1(n)-mapping method for the quantitation of ischemia. Similarly, pairwise correlations were found for the MP, DeltaR1(n), and wall thickening (WT) values in the same areas. Based on the correlation between DeltaR1(n) and MP, DeltaR1(n) maps calculated with a pixel-by-pixel resolution can be converted to similarly high-resolution myocardial perfusion maps. CONCLUSION These results suggest that the extent of the severity of ischemia can be quantitatively represented by DeltaR1(n) maps obtained in the presence of our CA.
Collapse
Affiliation(s)
- P Kiss
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hedström E, Arheden H, Eriksson R, Johansson L, Ahlstrom H, Bjerner T. Importance of perfusion in myocardial viability studies using delayed contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2006; 24:77-83. [PMID: 16755547 DOI: 10.1002/jmri.20604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate whether an extracellular gadolinium-(Gd)-based contrast agent (CA) enters nonperfused myocardium during acute coronary occlusion, and whether nonperfused myocardium presents as hyperintense in delayed contrast-enhanced (DE) MR images in the absence of CA in that region. MATERIALS AND METHODS The left anterior descending coronary artery (LAD) was occluded for 200 minutes in six pigs. The longitudinal relaxation rate (R(1)) in blood, perfused myocardium, and nonperfused myocardium was repeatedly measured using a Look-Locker sequence before and during the first hour after administration of Gd-DTPA-BMA. RESULTS While blood and perfused myocardium showed a major increase in R(1) after CA administration, nonperfused myocardium did not. R(1) in nonperfused myocardium was significantly lower than in blood and perfused myocardium during the first hour after CA administration. When the signal from perfused myocardium was nulled, demarcation of the hyperintense nonperfused myocardium was achieved in all of the study animals. CONCLUSION Gd-DTPA-BMA does not enter ischemic myocardium within one hour after administration during acute coronary occlusion. The ischemic region with complete absence of CA still appears bright when the signal from perfused myocardium is nulled using inversion-recovery DE-MRI. This finding is important for understanding the basic pathophysiology of inversion-recovery viability imaging, as well as for imaging of acute coronary syndromes.
Collapse
Affiliation(s)
- Erik Hedström
- Department of Clinical Physiology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Streif JUG, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR. In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 2005; 53:584-92. [PMID: 15723416 DOI: 10.1002/mrm.20327] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The absolute perfusion and the intracapillary or regional blood volume (RBV) in murine myocardium were assessed in vivo by spin labeling magnetic resonance imaging. Pixel-based perfusion and RBV maps were calculated at a pixel resolution of 469 x 469 mum and a slice thickness of 2 mm. The T(1) imaging module was a segmented inversion recovery snapshot fast low angle shot sequence with velocity compensation in all three gradient directions. The group average myocardial perfusion at baseline was determined to be 701 +/- 53 mL (100 g . min)(-1) for anesthesia with isoflurane (N = 11) at a mean heart rate (HR) of 455 +/- 10 beats per minute (bpm). This value is in good agreement with perfusion values determined by invasive microspheres examinations. For i.v. administration of the anesthetic Propofol, the baseline perfusion decreased to 383 +/- 40 mL (100 g . min)(-1) (N = 17, P < 0.05 versus. isoflurane) at a mean heart rate of 261 +/- 13 bpm (P < 0.05 versus isoflurane). In addition, six mice with myocardial infarction were studied under isoflurane anesthesia (HR 397 +/- 7 bpm). The perfusion maps showed a clear decrease of the perfusion in the infarcted area. The perfusion in the remote myocardium decreased significantly to 476 +/- 81 mL (100 g . min)(-1) (P < 0.05 versus sham). Regarding the regional blood volume, a mean value of 11.8 +/- 0.8 vol % was determined for healthy murine myocardium under anesthesia with Propofol (N = 4, HR 233 +/- 17 bpm). In total, the presented techniques provide noninvasive in vivo assessment of the perfusion and the regional blood volume in the murine myocardium for the first time and seem to be promising tools for the characterization of mouse models in cardiovascular research.
Collapse
Affiliation(s)
- Jörg U G Streif
- Physikalisches Institut, Lehrstuhl für Experimentelle Physik V (Biophysik), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bjørnerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR IN BIOMEDICINE 2004; 17:465-477. [PMID: 15526351 DOI: 10.1002/nbm.904] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review will discuss the in vivo physical chemical relaxation properties of superparamagnetic iron oxide particles. Various parameters such as size, magnetization, compartmentalization and water exchange effects and how these alter the behavior of the iron oxide particles in an in vitro vs an in vivo situation with special reference to the cardiovascular system will be exemplified. Furthermore, applications using iron oxide particles for vascular, perfusion and viability imaging as well as assessment of the inflammatory status of a given tissue will be discussed.
Collapse
Affiliation(s)
- Atle Bjørnerud
- Department of Radiology, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | |
Collapse
|
24
|
Bjerner T, Johansson L, Wikström G, Ericsson A, Briley-Soebo K, Bjørnerud A, Ahlström H. In and Ex Vivo MR Evaluation of Acute Myocardial Ischemia in Pigs by Determining R1 in Steady State After the Administration of the Intravascular Contrast Agent NC100150 Injection. Invest Radiol 2004; 39:479-86. [PMID: 15257209 DOI: 10.1097/01.rli.0000128658.63611.b3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES To study the dose response in perfused and nonperfused myocardium by measuring relaxation rate (R1) in a steady-state situation after injection of the intravascular contrast agent NC100150 Injection in pigs and whether the dose response differs in vivo and ex vivo. MATERIALS AND METHODS The left anterior descending artery was occluded. R1 was measured using a Look-Locker sequence for 2 dose groups (2 mg Fe/kg bw, n = 4, and 5 mg Fe/kg bw, n = 5) and a control group (n = 3). RESULTS A significant increase in R1 was found in perfused myocardium after contrast agent injection, in contrast to nonperfused myocardium. There was a significantly larger difference in R1 between perfused and nonperfused myocardium in the 5 mg Fe/kg bw dose group compared with the other 2 groups. The difference in R1 between perfused and nonperfused myocardium was significantly higher in vivo than ex vivo. CONCLUSION A nearly linear R1 dose response was found in perfused myocardium in vivo. The dose response ex vivo was less steep possibly due to larger water exchange limitations.
Collapse
Affiliation(s)
- Tomas Bjerner
- Department of Radiology, University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wu EX, Tang H, Wong KK, Wang J. Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J Magn Reson Imaging 2004; 19:50-8. [PMID: 14696220 DOI: 10.1002/jmri.10426] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To demonstrate an in vivo magnetic resonance imaging (MRI) technique that maps the cyclic change of regional myocardial blood volume (MBV) during the cardiac cycle. MATERIALS AND METHODS The method is based on the dominant T(2)* shortening effect of iron oxide nanoparticle-induced magnetic susceptibility perturbation in myocardium in the steady state. The technique was demonstrated in vivo with normal mouse hearts at 9.4 T. The regional MBV maps in left ventricular myocardium were computed from the steady-state pre- and post-monocrystalline iron oxide nanoparticle (MION) gradient echo (GE) cine images. Cyclic changes of MBV in normal mice were analyzed quantitatively in different transmural and angular locations. RESULTS High-resolution MBV maps at various cardiac points were obtained. The study showed a general regional MBV decrease from end-diastole (ED) to end-systole (ES). Percentage reductions were 18.2 +/- 6.6%, P < 0.03 in the lateral wall and 24.7 +/- 3.1%, P < 0.0002 in the interventricular septum. The heterogeneous characteristics of MBV transmural distribution were also reported. CONCLUSION The steady-state susceptibility effect of intravascular superparamagnetic contrast agent (CA) can be used to map the cyclic change of regional MBV. This imaging approach is relatively simple and may provide a new perspective for functional assessment of the microvasculature in myocardium.
Collapse
Affiliation(s)
- Ed X Wu
- Department of Radiology, College of Physicians & Surgeons, Columbia University, New York, New York, USA.
| | | | | | | |
Collapse
|
26
|
Wacker CM, Fidler F, Dueren C, Hirn S, Jakob PM, Ertl G, Haase A, Bauer WR. Quantitative assessment of myocardial perfusion with a spin-labeling technique: preliminary results in patients with coronary artery disease. J Magn Reson Imaging 2004; 18:555-60. [PMID: 14579398 DOI: 10.1002/jmri.10386] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine perfusion and coronary reserve in human myocardium without contrast agent using a spin labeling technique. MATERIALS AND METHODS Assessment of myocardial perfusion is based on T1 measurements after global and slice-selective spin preparation. This magnetic resonance imaging (MRI) technique was applied to 12 healthy volunteers and 16 patients with suspected coronary artery disease under resting conditions and adenosine-induced vasodilatation. RESULTS In volunteers, quantitative perfusion was calculated as 2.4 +/- 1.2 mL/g/minute (rest) and 3.9 +/- 1.3 mL/g/minute (adenosine), respectively. Perfusion reserve was 2.1 +/- 0.6. In patients, when comparing perfusion reserve in the anterior and posterior myocardium, reduced values according to a stenotic supplying vessel could be seen in seven of 11 patients who underwent stress testing. In these patients, the relative difference of coronary reserve was 44% +/- 18%. Two patients without stenosis of coronary arteries showed no differences in coronary reserve (with a relative change of 2 +/- 2%). CONCLUSION In patients with single-vessel coronary artery disease, differences in coronary reserve were clearly detectable when comparing anterior and posterior myocardium. The spin labeling method is noninvasive and easily repeatable, and it could therefore become an important tool to study changes in myocardial perfusion.
Collapse
|
27
|
Zheng J, Wang J, Nolte M, Li D, Gropler RJ, Woodard PK. Dynamic estimation of the myocardial oxygen extraction ratio during dipyridamole stress by MRI: A preliminary study in canines. Magn Reson Med 2004; 51:718-26. [PMID: 15065244 DOI: 10.1002/mrm.20025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The myocardial oxygen extraction fraction (OEF) reflects the balance between myocardial oxygen supply and demand. The feasibility of quantifying myocardial OEF was demonstrated with MRI during pharmacologic vasodilation in dogs. Dipyridamole was infused intravenously to increase blood flow and change in myocardial oxygen content. Arterial and coronary sinus blood sampling was performed during dipyridamole-induced vasodilation to measure the myocardial blood oxygen content. Myocardial T(2) was measured dynamically during the vasodilation, and quantified with a simplified diffusion model as a function of myocardial OEF and blood volume. The results showed a strong correlation (R(2) = 0.89) between myocardial OEF values measured by MRI and those measured by blood sampling. Regional differences in the OEF were demonstrated by direct infusion of dipyridamole into coronary arteries in dogs. Combined with vasodilator stress, dynamic assessments of the OEF may provide a putative measurement of myocardial flow reserve and allow consecutive monitoring of myocardial dose and response.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Callot V, Bennett E, Decking UKM, Balaban RS, Wen H. In vivo study of microcirculation in canine myocardium using the IVIM method. Magn Reson Med 2003; 50:531-40. [PMID: 12939761 PMCID: PMC2881595 DOI: 10.1002/mrm.10568] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intravoxel incoherent motion (IVIM) method was implemented in closed-chest dogs to obtain measurements on microcirculation in the left ventricular wall in vivo. Specifically, it enabled us to measure the mean microflow velocity (400 +/- 40 microm/s) and the vascular volume fraction (VVF) (11.1% +/- 2.2%), and observe the directional preference of capillary orientation. The apparent diffusion coefficients (ADCs) of water along and perpendicular to myofibers were also measured. With vasodilatation by adenosine infusion, a 25% increase in the VVF and a 7% increase in the mean microflow velocity were observed, while no change in the ADC was detected. A 28.5% decrease of the ADC was observed postmortem.
Collapse
Affiliation(s)
- Virginie Callot
- Laboratory of Cardiac Energetics, NHLBI, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Bjørnerud A, Bjerner T, Johansson LO, Ahlström HK. Assessment of myocardial blood volume and water exchange: theoretical considerations and in vivo results. Magn Reson Med 2003; 49:828-37. [PMID: 12704765 DOI: 10.1002/mrm.10430] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The measured signal response in contrast-enhanced myocardial perfusion imaging has been shown to be affected by the rate of water exchange between the intravascular and extravascular compartments, the effect being particularly significant when intravascular contrast agents are used. In the present study, the T(1) relaxation rates were measured in eight pigs in blood and myocardium using a Look-Locker sequence after repeated injections of the intravascular contrast agent NC100150. The selection of myocardial region of interest was automated based on a minimum chi-square method. The intra- and extravascular water exchange rates and the myocardial blood volume were calculated from the measured relaxation rates by applying a two-compartment water exchange limited model that accounts for biexponential longitudinal relaxation. The following (mean +/- SD) values were obtained for the exchange frequency (f), the extravascular residence time (tau(e)), the intravascular residence time (tau(i)) and blood volume (BV), respectively: f = 1.39 +/- 0.52 s(-1), tau(e) = 708 +/- 264 ms, tau(i) = 107 +/- 63 ms, and BV = 11.2 +/- 2.1 mL/100 g. The mean value of f was found to be about 15% higher if biexponential relaxation was not accounted for, supporting the hypothesis that significant biexponential relaxation in tissues with large blood volume can lead to an overestimation of water exchange rates unless corrected for.
Collapse
Affiliation(s)
- Atle Bjørnerud
- Department of Diagnostic Radiology, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | |
Collapse
|