1
|
Dejea H, Schlepütz CM, Méndez-Carmona N, Arnold M, Garcia-Canadilla P, Longnus SL, Stampanoni M, Bijnens B, Bonnin A. A tomographic microscopy-compatible Langendorff system for the dynamic structural characterization of the cardiac cycle. Front Cardiovasc Med 2022; 9:1023483. [PMID: 36620622 PMCID: PMC9815149 DOI: 10.3389/fcvm.2022.1023483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Cardiac architecture has been extensively investigated ex vivo using a broad spectrum of imaging techniques. Nevertheless, the heart is a dynamic system and the structural mechanisms governing the cardiac cycle can only be unveiled when investigating it as such. Methods This work presents the customization of an isolated, perfused heart system compatible with synchrotron-based X-ray phase contrast imaging (X-PCI). Results Thanks to the capabilities of the developed setup, it was possible to visualize a beating isolated, perfused rat heart for the very first time in 4D at an unprecedented 2.75 μm pixel size (10.6 μm spatial resolution), and 1 ms temporal resolution. Discussion The customized setup allows high-spatial resolution studies of heart architecture along the cardiac cycle and has thus the potential to serve as a tool for the characterization of the structural dynamics of the heart, including the effects of drugs and other substances able to modify the cardiac cycle.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institute, Villigen, Switzerland,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland,*Correspondence: Hector Dejea ✉
| | | | - Natalia Méndez-Carmona
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Patricia Garcia-Canadilla
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain,Cardiovascular Diseases and Child Development, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Villigen, Switzerland,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland
| | - Bart Bijnens
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Anne Bonnin
- Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
2
|
3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:741-755. [PMID: 33638739 PMCID: PMC8421292 DOI: 10.1007/s10334-021-00913-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/04/2022]
Abstract
Objective The aim of the study is to compare structure tensor imaging (STI) with diffusion tensor imaging (DTI) of the sheep heart (approximately the same size as the human heart). Materials and methods MRI acquisition on three sheep ex vivo hearts was performed at 9.4 T/30 cm with a seven-element RF coil. 3D FLASH with an isotropic resolution of 150 µm and 3D spin-echo DTI at 600 µm were performed. Tensor analysis, angles extraction and segments divisions were performed on both volumes. Results A 3D FLASH allows for visualization of the detailed structure of the left and right ventricles. The helix angle determined using DTI and STI exhibited a smooth transmural change from the endocardium to the epicardium. Both the helix and transverse angles were similar between techniques. Sheetlet organization exhibited the same pattern in both acquisitions, but local angle differences were seen and identified in 17 segments representation. Discussion This study demonstrated the feasibility of high-resolution MRI for studying the myocyte and myolaminar architecture of sheep hearts. We presented the results of STI on three whole sheep ex vivo hearts and demonstrated a good correspondence between DTI and STI. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-021-00913-4.
Collapse
|
3
|
Dejea H, Bonnin A, Cook AC, Garcia-Canadilla P. Cardiac multi-scale investigation of the right and left ventricle ex vivo: a review. Cardiovasc Diagn Ther 2020; 10:1701-1717. [PMID: 33224784 DOI: 10.21037/cdt-20-269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heart is a complex multi-scale system composed of components integrated at the subcellular, cellular, tissue and organ levels. The myocytes, the contractile elements of the heart, form a complex three-dimensional (3D) network which enables propagation of the electrical signal that triggers the contraction to efficiently pump blood towards the whole body. Cardiovascular diseases (CVDs), a major cause of mortality in developed countries, often lead to cardiovascular remodeling affecting cardiac structure and function at all scales, from myocytes and their surrounding collagen matrix to the 3D organization of the whole heart. As yet, there is no consensus as to how the myocytes are arranged and packed within their connective tissue matrix, nor how best to image them at multiple scales. Cardiovascular imaging is routinely used to investigate cardiac structure and function as well as for the evaluation of cardiac remodeling in CVDs. For a complete understanding of the relationship between structural remodeling and cardiac dysfunction in CVDs, multi-scale imaging approaches are necessary to achieve a detailed description of ventricular architecture along with cardiac function. In this context, ventricular architecture has been extensively studied using a wide variety of imaging techniques: ultrasound (US), optical coherence tomography (OCT), microscopy (confocal, episcopic, light sheet, polarized light), magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and, more recently, synchrotron X-ray phase contrast imaging (SR X-PCI). Each of these techniques have their own set of strengths and weaknesses, relating to sample size, preparation, resolution, 2D/3D capabilities, use of contrast agents and possibility of performing together with in vivo studies. Therefore, the combination of different imaging techniques to investigate the same sample, thus taking advantage of the strengths of each method, could help us to extract the maximum information about ventricular architecture and function. In this review, we provide an overview of available and emerging cardiovascular imaging techniques for assessing myocardial architecture ex vivo and discuss their utility in being able to quantify cardiac remodeling, in CVDs, from myocyte to whole organ.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | - Patricia Garcia-Canadilla
- Institute of Cardiovascular Science, University College London, London, UK.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Lohr D, Terekhov M, Weng AM, Schroeder A, Walles H, Schreiber LM. Spin echo based cardiac diffusion imaging at 7T: An ex vivo study of the porcine heart at 7T and 3T. PLoS One 2019; 14:e0213994. [PMID: 30908510 PMCID: PMC6433440 DOI: 10.1371/journal.pone.0213994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2019] [Indexed: 02/03/2023] Open
Abstract
Purpose of this work was to assess feasibility of cardiac diffusion tensor imaging (cDTI) at 7 T in a set of healthy, unfixed, porcine hearts using various parallel imaging acceleration factors and to compare SNR and derived cDTI metrics to a reference measured at 3 T. Magnetic resonance imaging was performed on 7T and 3T whole body systems using a spin echo diffusion encoding sequence with echo planar imaging readout. Five reference (b = 0 s/mm2) images and 30 diffusion directions (b = 700 s/mm2) were acquired at both 7 T and 3 T using a GRAPPA acceleration factor R = 1. Scans at 7 T were repeated using R = 2, R = 3, and R = 4. SNR evaluation was based on 30 reference (b = 0 s/mm2) images of 30 slices of the left ventricle and cardiac DTI metrics were compared within AHA segmentation. The number of hearts scanned at 7 T and 3 T was n = 11. No statistically significant differences were found for evaluated helix angle, secondary eigenvector angle, fractional anisotropy and apparent diffusion coefficient at the different field strengths, given sufficiently high SNR and geometrically undistorted images. R≥3 was needed to reduce susceptibility induced geometric distortions to an acceptable amount. On average SNR in myocardium of the left ventricle was increased from 29±3 to 44±6 in the reference image (b = 0 s/mm2) when switching from 3 T to 7 T. Our study demonstrates that high resolution, ex vivo cDTI is feasible at 7 T using commercial hardware.
Collapse
Affiliation(s)
- David Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Schroeder
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), Wuerzburg, Germany
| | - Laura Maria Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
6
|
Lohezic M, Teh I, Bollensdorff C, Peyronnet R, Hales PW, Grau V, Kohl P, Schneider JE. Interrogation of living myocardium in multiple static deformation states with diffusion tensor and diffusion spectrum imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:213-25. [PMID: 25117498 PMCID: PMC4210665 DOI: 10.1016/j.pbiomolbio.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/02/2014] [Indexed: 11/27/2022]
Abstract
Diffusion tensor magnetic resonance imaging (MRI) reveals valuable insights into tissue histo-anatomy and microstructure, and has steadily gained traction in the cardiac community. Its wider use in small animal cardiac imaging in vivo has been constrained by its extreme sensitivity to motion, exaggerated by the high heart rates usually seen in rodents. Imaging of the isolated heart eliminates respiratory motion and, if conducted on arrested hearts, cardiac pulsation. This serves as an important intermediate step for basic and translational studies. However, investigating the micro-structural basis of cardiac deformation in the same heart requires observations in different deformation states. Here, we illustrate the imaging of isolated rat hearts in three mechanical states mimicking diastole (cardioplegic arrest), left-ventricular (LV) volume overload (cardioplegic arrest plus LV balloon inflation), and peak systole (lithium-induced contracture). An optimised MRI-compatible Langendorff perfusion setup with the radio-frequency (RF) coil integrated into the wet chamber was developed for use in a 9.4T horizontal bore scanner. Signal-to-noise ratio improved significantly, by 75% compared to a previous design with external RF coil, and stability tests showed no significant changes in mean T1, T2 or LV wall thickness over a 170 min period. In contracture, we observed a significant reduction in mean fractional anisotropy from 0.32 ± 0.02 to 0.28 ± 0.02, as well as a significant rightward shift in helix angles with a decrease in the proportion of left-handed fibres, as referring to the locally prevailing cell orientation in the heart, from 24.9% to 23.3%, and an increase in the proportion of right-handed fibres from 25.5% to 28.4%. LV overload, in contrast, gave rise to a decrease in the proportion of left-handed fibres from 24.9% to 21.4% and an increase in the proportion of right-handed fibres from 25.5% to 26.0%. The modified perfusion and coil setup offers better performance and control over cardiac contraction states. We subsequently performed high-resolution diffusion spectrum imaging (DSI) and 3D whole heart fibre tracking in fixed ex vivo rat hearts in slack state and contracture. As a model-free method, DSI augmented the measurements of water diffusion by also informing on multiple intra-voxel diffusion orientations and non-Gaussian diffusion. This enabled us to identify the transition from right- to left-handed fibres from the subendocardium to the subepicardium, as well as voxels in apical regions that were traversed by multiple fibres. We observed that both the mean generalised fractional anisotropy and mean kurtosis were lower in hearts in contracture compared to the slack state, by 23% and 9.3%, respectively. While its heavy acquisition burden currently limits the application of DSI in vivo, ongoing work in acceleration techniques may enable its use in live animals and patients. This would provide access to the as yet unexplored dimension of non-Gaussian diffusion that could serve as a highly sensitive marker of cardiac micro-structural integrity.
Collapse
Affiliation(s)
- Maelene Lohezic
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Irvin Teh
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Bollensdorff
- National Heart and Lung Institute, Imperial College London, London, UK; Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | - Rémi Peyronnet
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patrick W Hales
- Imaging and Biophysics Unit, Institute of Child Health, University College London, London, UK
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Computer Science, University of Oxford, Oxford, UK
| | - Jürgen E Schneider
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Lohezic M, Bollensdorff C, Korn M, Lanz T, Grau V, Kohl P, Schneider JE. Optimized radiofrequency coil setup for MR examination of living isolated rat hearts in a horizontal 9.4T magnet. Magn Reson Med 2014; 73:2398-405. [PMID: 25045897 DOI: 10.1002/mrm.25369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE (i) To optimize an MR-compatible organ perfusion setup for the nondestructive investigation of isolated rat hearts by placing the radiofrequency (RF) coil inside the perfusion chamber; (ii) to characterize the benefit of this system for diffusion tensor imaging and proton ((1) H-) MR spectroscopy. METHODS Coil quality assessment was conducted both on the bench, and in the magnet. The benefit of the new RF-coil was quantified by measuring signal-to-noise ratio (SNR), accuracy, and precision of diffusion tensor imaging/error in metabolite amplitude estimation, and compared to an RF-coil placed externally to the perfusion chamber. RESULTS The new design provided a 59% gain in signal-to-noise ratio on a fixed rat heart compared to using an external resonator, which found reflection in an improvement of living heart data quality, compared to previous external resonator studies. This resulted in 14-29% improvement in accuracy and precision of diffusion tensor imaging. The Cramer-Rao lower bounds for metabolite amplitude estimations were up to 5-fold smaller. CONCLUSION Optimization of MR-compatible perfusion equipment advances the study of rat hearts with improved signal-to-noise ratio performance, and thus improved accuracy/precision.
Collapse
Affiliation(s)
- Maelene Lohezic
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Bollensdorff
- National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | | | | | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Computer Science, University of Oxford, Oxford, UK
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Blondiaux E, Pidial L, Vilar J, Autret G, Balvay D, Audureau E, Bruneval P, Bel A, Cuenod CA, Silvestre JS, Clément O. Evaluation of Rat Heart Microvasculature with High-Spatial-Resolution Susceptibility-weighted MR Imaging. Radiology 2013; 269:277-82. [DOI: 10.1148/radiol.13122152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Duyn J. MR susceptibility imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:198-207. [PMID: 23273840 PMCID: PMC3602381 DOI: 10.1016/j.jmr.2012.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 05/23/2023]
Abstract
This work reviews recent developments in the use of magnetic susceptibility contrast for human MRI, with a focus on the study of brain anatomy. The increase in susceptibility contrast with modern high field scanners has led to novel applications and insights into the sources and mechanism contributing to this contrast in brain tissues. Dedicated experiments have demonstrated that in most of healthy brain, iron and myelin dominate tissue susceptibility variations, although their relative contribution varies substantially. Local variations in these compounds can affect both amplitude and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic susceptibility that has distinct effects on the water compartments inside the axons, between the myelin sheath, and the axonal space, and renders their signals dependent on the angle between the axon and the magnetic field. This offers opportunities to derive tissue properties specific to these cellular compartments.
Collapse
Affiliation(s)
- Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Bouhrara M, Lehallier B, Clerjon S, Damez JL, Bonny JM. Mapping of muscle deformation during heating: in situ dynamic MRI and nonlinear registration. Magn Reson Imaging 2012; 30:422-30. [DOI: 10.1016/j.mri.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 12/31/2022]
|
11
|
Gilbert SH, Benoist D, Benson AP, White E, Tanner SF, Holden AV, Dobrzynski H, Bernus O, Radjenovic A. Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI. Am J Physiol Heart Circ Physiol 2011; 302:H287-98. [PMID: 22021329 DOI: 10.1152/ajpheart.00824.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown by histology that cardiac myocytes are organized into laminae and this structure is important in function, both influencing the spread of electrical activation and enabling myocardial thickening in systole by laminar sliding. We have carried out high-spatial resolution three-dimensional MRI of the ventricular myolaminae of the entire volume of the isolated rat heart after contrast perfusion [dimeglumine gadopentate (Gd-DTPA)]. Four ex vivo rat hearts were perfused with Gd-DTPA and fixative and high-spatial resolution MRI was performed on a 9.4T MRI system. After MRI, cryosectioning followed by histology was performed. Images from MRI and histology were aligned, described, and quantitatively compared. In the three-dimensional MR images we directly show the presence of laminae and demonstrate that these are highly branching and are absent from much of the subepicardium. We visualized these MRI volumes to demonstrate laminar architecture and quantitatively demonstrated that the structural features observed are similar to those imaged in histology. We showed qualitatively and quantitatively that laminar architecture is similar in the four hearts. MRI can be used to image the laminar architecture of ex vivo hearts in three dimensions, and the images produced are qualitatively and quantitatively comparable with histology. We have demonstrated in the rat that: 1) laminar architecture is consistent between hearts; 2) myolaminae are absent from much of the subepicardium; and 3) although localized orthotropy is present throughout the myocardium, tracked myolaminae are branching structures and do not have a discrete identity.
Collapse
Affiliation(s)
- Stephen H Gilbert
- Institute of Membrane and Systems Biology, University of Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Price AN, Cheung KK, Cleary JO, Campbell AE, Riegler J, Lythgoe MF. Cardiovascular magnetic resonance imaging in experimental models. Open Cardiovasc Med J 2010; 4:278-92. [PMID: 21331311 PMCID: PMC3040459 DOI: 10.2174/1874192401004010278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the modality of choice for clinical studies of the heart and vasculature, offering detailed images of both structure and function with high temporal resolution. Small animals are increasingly used for genetic and translational research, in conjunction with models of common pathologies such as myocardial infarction. In all cases, effective methods for characterising a wide range of functional and anatomical parameters are crucial for robust studies. CMR is the gold-standard for the non-invasive examination of these models, although physiological differences, such as rapid heart rate, make this a greater challenge than conventional clinical imaging. However, with the help of specialised magnetic resonance (MR) systems, novel gating strategies and optimised pulse sequences, high-quality images can be obtained in these animals despite their small size. In this review, we provide an overview of the principal CMR techniques for small animals for example cine, angiography and perfusion imaging, which can provide measures such as ejection fraction, vessel anatomy and local blood flow, respectively. In combination with MR contrast agents, regional dysfunction in the heart can also be identified and assessed. We also discuss optimal methods for analysing CMR data, particularly the use of semi-automated tools for parameter measurement to reduce analysis time. Finally, we describe current and emerging methods for imaging the developing heart, aiding characterisation of congenital cardiovascular defects. Advanced small animal CMR now offers an unparalleled range of cardiovascular assessments. Employing these methods should allow new insights into the structural, functional and molecular basis of the cardiovascular system.
Collapse
Affiliation(s)
- Anthony N Price
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Duyn J, Koretsky AP. Magnetic resonance imaging of neural circuits. NATURE CLINICAL PRACTICE. CARDIOVASCULAR MEDICINE 2008; 5 Suppl 2:S71-8. [PMID: 18641610 PMCID: PMC3529508 DOI: 10.1038/ncpcardio1248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/28/2008] [Indexed: 12/27/2022]
Abstract
A major goal of modern MRI research is to be able to image neural circuits in the central nervous system. Critical to this mission is the ability to describe a number of important parameters associated with neural circuits. These parameters include neural architecture, functional activation of neural circuits, anatomical and functional connectivity of neural circuits, and factors that might alter neural circuits, such as trafficking of immune cells and brain precursor cells in the brain. Remarkably, a variety of work in human and animal brains has demonstrated that all these features of neural circuits can be visualized with MRI. In this Article we provide a brief summary of the new directions in neural imaging research, which should prove useful in future analyses of normal and pathological human brains and in studies of animal models of neurological and psychiatric disorders. At present, few MRI data characterizing the neural circuits in the heart are available, but in this Article we discuss the applicable present developments and the prospects for the future.
Collapse
Affiliation(s)
- Jeff Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Wu EX, Wu Y, Nicholls JM, Wang J, Liao S, Zhu S, Lau CP, Tse HF. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med 2008; 58:687-95. [PMID: 17899595 DOI: 10.1002/mrm.21350] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study aimed to investigate postinfarct left ventricular (LV) fiber structural alterations by ex vivo diffusion tensor imaging (DTI) in a porcine heart model. In vivo cardiac MR imaging was first performed to measure ventricular function in six adult pigs with septal infarction near apex induced by the LAD ligation 13 weeks earlier. Hearts were then excised from the infarct pigs (n = 6) and six intact controls (n = 6) and fixed in formalin. High-resolution DTI was employed to examine changes in fractional anisotropy (FA), apparent diffusion coefficient (ADC), and transmural helix angle distribution in the infarct, adjacent and remote regions as compared to the sham regions in the controls. FA values were found to decrease in the infarct and differ between the adjacent and remote regions. ADC increase in the infarct region was substantial, while changes in the adjacent and remote regions were insignificant. Structurally, the double-helix myocardial structure shifted toward more left-handed around the infarcted myocardium. Accordingly, the histological analysis revealed clear fiber structural degradation in the adjacent region. These findings confirmed the subtle alterations in the myocardial fiber quality and structure not only in the infarcted but also in the surrounding noninfarcted myocardium or borderzone.
Collapse
Affiliation(s)
- Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Franconi F, Mowat P, Lemaire L, Richomme P, Le Jeune JJ. Single-scan quantitative T2* methods with susceptibility artifact reduction. NMR IN BIOMEDICINE 2006; 19:527-34. [PMID: 16598696 DOI: 10.1002/nbm.1014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two imaging methods, MSSAVE (Multiple echo SubSlice AVEraging imaging), based on sub-slice averaging and MGESEPI (Multiple echo Gradient-Echo Slice-Excitation Profile Imaging), based on over-sampling in the slice direction, are proposed for single-scan quantitative T(2)* evaluation with susceptibility artifact compensation. Their potentials in terms of sensitivity, minimum performance time, susceptibility artifact reduction and T(2)* quantitation quality, were compared with existing single-scan methods such as classical FLASH two- or three-dimensional or z-shimmed methods both in vitro and in vivo in normal rat brain. MGESEPI offered good quality T(2)* maps nearly free of artifacts but required a long acquisition time. MSSAVE was faster, but at the expense of reduced artifact compensation and the achievable T(2)* quantitation quality.
Collapse
Affiliation(s)
- Florence Franconi
- Service Commun d'Analyses Spectroscopiques, UFR Sciences, 2 boulevard Lavoisier, 49045 Angers cedex, France.
| | | | | | | | | |
Collapse
|
16
|
Hiller KH, Waller C, Nahrendorf M, Bauer WR, Jakob PM. Assessment of Cardiovascular Apoptosis in the Isolated Rat Heart by Magnetic Resonance Molecular Imaging. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Christiane Waller
- Medizinische Klinik und Poliklinik I/Herzkreislaufzentrum, Wuerzburg, Germany
| | | | - Wolfgang R. Bauer
- Medizinische Klinik und Poliklinik I/Herzkreislaufzentrum, Wuerzburg, Germany
| | | |
Collapse
|
17
|
Gulani V, Weber T, Neuberger T, Webb AG. Improved time efficiency and accuracy in diffusion tensor microimaging with multiple-echo acquisition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 177:329-35. [PMID: 16185903 DOI: 10.1016/j.jmr.2005.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 08/19/2005] [Accepted: 08/21/2005] [Indexed: 05/04/2023]
Abstract
In high-field NMR microscopy rapid single-shot imaging methods, for example, echo planar imaging, cannot be used for determination of the apparent diffusion tensor (ADT) due to large magnetic susceptibility effects. We propose a pulse sequence in which a diffusion-weighted spin-echo is followed by multiple gradient-echoes with additional diffusion weighting. These additional echoes can be used to calculate the ADT and T*2 maps. We show here that this results in modest but consistent improvements in the accuracy of ADT determination within a given total data acquisition time. The method is tested on excised, chemically fixed rat spinal cords.
Collapse
Affiliation(s)
- Vikas Gulani
- Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
18
|
Vallée JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M. Current status of cardiac MRI in small animals. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:149-56. [PMID: 15605278 DOI: 10.1007/s10334-004-0066-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/27/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
Cardiac magnetic resonance imaging (MRI) on small animals is possible but remains challenging and not well standardized. This publication aims to provide an overview of the current techniques, applications and challenges of cardiac MRI in small animals for researchers interested in moving into this field. Solutions have been developed to obtain a reliable cardiac trigger in both the rat and the mouse. Techniques to measure ventricular function and mass have been well validated and are used by several research groups. More advanced techniques like perfusion imaging, delayed enhancement or tag imaging are emerging. Regarding cardiac applications, not only coronary ischemic disease but several other pathologies or conditions including cardiopathies in transgenic animals have already benefited from these new developments. Therefore, cardiac MRI has a bright future for research in small animals.
Collapse
Affiliation(s)
- J-P Vallée
- Digital Imaging Unit, Radiology and Medical Informatics Department, Geneva University Hospitals, CH-1211, Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|