1
|
Holdsworth SJ, O'Halloran R, Setsompop K. The quest for high spatial resolution diffusion-weighted imaging of the human brain in vivo. NMR IN BIOMEDICINE 2019; 32:e4056. [PMID: 30730591 DOI: 10.1002/nbm.4056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/11/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Diffusion-weighted imaging, a contrast unique to MRI, is used for assessment of tissue microstructure in vivo. However, this exquisite sensitivity to finer scales far above imaging resolution comes at the cost of vulnerability to errors caused by sources of motion other than diffusion motion. Addressing the issue of motion has traditionally limited diffusion-weighted imaging to a few acquisition techniques and, as a consequence, to poorer spatial resolution than other MRI applications. Advances in MRI imaging methodology have allowed diffusion-weighted MRI to push to ever higher spatial resolution. In this review we focus on the pulse sequences and associated techniques under development that have pushed the limits of image quality and spatial resolution in diffusion-weighted MRI.
Collapse
Affiliation(s)
- Samantha J Holdsworth
- Department of Anatomy Medical Imaging & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Kawin Setsompop
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Lane CA, Parker TD, Cash DM, Macpherson K, Donnachie E, Murray-Smith H, Barnes A, Barker S, Beasley DG, Bras J, Brown D, Burgos N, Byford M, Jorge Cardoso M, Carvalho A, Collins J, De Vita E, Dickson JC, Epie N, Espak M, Henley SMD, Hoskote C, Hutel M, Klimova J, Malone IB, Markiewicz P, Melbourne A, Modat M, Schrag A, Shah S, Sharma N, Sudre CH, Thomas DL, Wong A, Zhang H, Hardy J, Zetterberg H, Ourselin S, Crutch SJ, Kuh D, Richards M, Fox NC, Schott JM. Study protocol: Insight 46 - a neuroscience sub-study of the MRC National Survey of Health and Development. BMC Neurol 2017; 17:75. [PMID: 28420323 PMCID: PMC5395844 DOI: 10.1186/s12883-017-0846-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increasing age is the biggest risk factor for dementia, of which Alzheimer's disease is the commonest cause. The pathological changes underpinning Alzheimer's disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment - including β-amyloid depostion, vascular disease, network breakdown and atrophy - to be assessed repeatedly and non-invasively. This enables potential determinants of dementia to be delineated earlier, and therefore opens a pre-symptomatic window where intervention may prevent the onset of cognitive symptoms. METHODS/DESIGN This paper outlines the clinical, cognitive and imaging protocol of "Insight 46", a neuroscience sub-study of the MRC National Survey of Health and Development. This is one of the oldest British birth cohort studies and has followed 5362 individuals since their birth in England, Scotland and Wales during one week in March 1946. These individuals have been tracked in 24 waves of data collection incorporating a wide range of health and functional measures, including repeat measures of cognitive function. Now aged 71 years, a small fraction have overt dementia, but estimates suggest that ~1/3 of individuals in this age group may be in the preclinical stages of Alzheimer's disease. Insight 46 is recruiting 500 study members selected at random from those who attended a clinical visit at 60-64 years and on whom relevant lifecourse data are available. We describe the sub-study design and protocol which involves a prospective two time-point (0, 24 month) data collection covering clinical, neuropsychological, β-amyloid positron emission tomography and magnetic resonance imaging, biomarker and genetic information. Data collection started in 2015 (age 69) and aims to be completed in 2019 (age 73). DISCUSSION Through the integration of data on the socioeconomic environment and on physical, psychological and cognitive function from 0 to 69 years, coupled with genetics, structural and molecular imaging, and intensive cognitive and neurological phenotyping, Insight 46 aims to identify lifetime factors which influence brain health and cognitive ageing, with particular focus on Alzheimer's disease and cerebrovascular disease. This will provide an evidence base for the rational design of disease-modifying trials.
Collapse
Affiliation(s)
- Christopher A. Lane
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Thomas D. Parker
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Dave M. Cash
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Kirsty Macpherson
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Elizabeth Donnachie
- Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Anna Barnes
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Suzie Barker
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Daniel G. Beasley
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Jose Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - David Brown
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Ninon Burgos
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - M. Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Ana Carvalho
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Jessica Collins
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Enrico De Vita
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - John C. Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Norah Epie
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Miklos Espak
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Susie M. D. Henley
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael Hutel
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Jana Klimova
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Ian B. Malone
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Pawel Markiewicz
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Andrew Melbourne
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Anette Schrag
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Nikhil Sharma
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Carole H. Sudre
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - David L. Thomas
- Leonard Wolfson Experimental Neurology Centre, Institute of Neurology, University College London, London, UK
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | | | - Nick C. Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Hoinkiss DC, Porter DA. Prospective motion correction in diffusion-weighted imaging using intermediate pseudo-trace-weighted images. Neuroimage 2017; 149:1-14. [PMID: 28011251 DOI: 10.1016/j.neuroimage.2016.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/12/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022] Open
Abstract
Subject head motion is a major challenge in diffusion-weighted imaging, which requires a precise alignment of images from different time points to allow a reliable quantification of diffusion parameters within each voxel. The technique requires long measurement times, making it highly sensitive to long-term subject motion, even when head restraint is used. Current methods of data analysis rely on retrospective motion correction, but there are potential benefits to using prospective motion correction, in which motion is tracked and compensated for during data acquisition. This technique is regularly used to enhance image quality in blood-oxygen-level dependent (BOLD) imaging, but its application to diffusion-weighted imaging has been limited by the contrast variation between images acquired with different diffusion-gradient directions. This paper describes a novel approach to this topic that exploits the rotational invariance of the trace of the diffusion tensor to reduce the effect of this contrast variation, making it possible to perform a fast image registration using a least-squares cost function. This results in an image-based motion detection algorithm that can be applied in real time during data acquisition to adapt the slice position and orientation in response to subject motion. The motion detection capabilities of the technique were evaluated in a study of ten subjects with b-values up to 3000s/mm². The resulting motion-parameter estimates were in close agreement with reference values provided by interleaved low-b-value images with a correlation coefficient of R=0.9634 for the voxel displacements measured across all subjects and b-values. The technique was also used to perform prospective motion correction on a standard clinical MRI system with b-values up to 2000s/mm². The correction was evaluated in 3 subjects using interleaved low-b-value images, retrospective image registration using the AFNI processing package and mean diffusivity histogram analysis. Compared to acquisitions without motion correction, prospective motion correction based on pseudo-trace-weighted images was found to provide a robust method for substantially reducing the level of misregistration between volumes. In most cases, misregistrations were reduced to less than 0.2mm of translation and 0.2° of rotation for an isotropic voxel size of 2mm, yielding high-quality diffusion parameter maps even in the absence of head restraint and post-acquisition image registration.
Collapse
|
4
|
Setsompop K, Feinberg DA, Polimeni JR. Rapid brain MRI acquisition techniques at ultra-high fields. NMR IN BIOMEDICINE 2016; 29:1198-221. [PMID: 26835884 PMCID: PMC5245168 DOI: 10.1002/nbm.3478] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - David A. Feinberg
- Helen Wills Institute for Neuroscience, University of California, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Benjamini D, Komlosh ME, Holtzclaw LA, Nevo U, Basser PJ. White matter microstructure from nonparametric axon diameter distribution mapping. Neuroimage 2016; 135:333-44. [PMID: 27126002 DOI: 10.1016/j.neuroimage.2016.04.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 04/21/2016] [Indexed: 12/31/2022] Open
Abstract
We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.
Collapse
Affiliation(s)
- Dan Benjamini
- Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
| | - Michal E Komlosh
- Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lynne A Holtzclaw
- Microscopy & Imaging Core, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Peter J Basser
- Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Song S, Garrido L, Nagy Z, Mohammadi S, Steel A, Driver J, Dolan RJ, Duchaine B, Furl N. Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia. Neuropsychologia 2015; 78:195-206. [PMID: 26456436 PMCID: PMC4640146 DOI: 10.1016/j.neuropsychologia.2015.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 10/25/2022]
Abstract
Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia.
Collapse
Affiliation(s)
- Sunbin Song
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lúcia Garrido
- Division of Psychology, Department of Life Sciences, Brunel University, Uxbridge UB8 3PH, United Kingdom
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research (SNS Lab), University of Zurich, Rämistr. 100, CH-8091 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam Steel
- Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jon Driver
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - Ray J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Bradley Duchaine
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Nicholas Furl
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom
| |
Collapse
|
7
|
Clayden JD, Nagy Z, Weiskopf N, Alexander DC, Clark CA. Microstructural parameter estimation in vivo using diffusion MRI and structured prior information. Magn Reson Med 2015; 75:1787-96. [PMID: 25994918 PMCID: PMC4791093 DOI: 10.1002/mrm.25723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/05/2022]
Abstract
Purpose Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging. Methods We use an optimized dual spin‐echo diffusion protocol, and a Bayesian fitting approach, to obtain reproducible contrast (histogram overlap of up to 92%) in estimated maps of axon radius index in healthy adults at a modest, widely‐available gradient strength (35 mT m
−1). A key innovation is the use of influential priors. Results We demonstrate that our priors can improve precision in axon radius estimates—a 7‐fold reduction in voxelwise coefficient of variation in vivo—without significant bias. Our results may reflect true axon radius differences between white matter regions, but this interpretation should be treated with caution due to the complexity of the tissue relative to our model. Conclusions Some sensitivity to relatively large axons (3–15 μm) may be available at clinical field and gradient strengths. Future applications at higher gradient strength will benefit from the favorable eddy current properties of the dual spin‐echo sequence, and greater precision available with suitable priors. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1787–1796, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
| | - Zoltan Nagy
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, UK.,Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, UK
| | - Chris A Clark
- UCL Institute of Child Health, University College London, London, UK
| |
Collapse
|
8
|
Holdsworth SJ, Yeom KW, Antonucci MU, Andre JB, Rosenberg J, Aksoy M, Straka M, Fischbein NJ, Bammer R, Moseley ME, Zaharchuk G, Skare S. Diffusion-weighted imaging with dual-echo echo-planar imaging for better sensitivity to acute stroke. AJNR Am J Neuroradiol 2014; 35:1293-302. [PMID: 24763417 DOI: 10.3174/ajnr.a3921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Parallel imaging facilitates the acquisition of echo-planar images with a reduced TE, enabling the incorporation of an additional image at a later TE. Here we investigated the use of a parallel imaging-enhanced dual-echo EPI sequence to improve lesion conspicuity in diffusion-weighted imaging. MATERIALS AND METHODS Parallel imaging-enhanced dual-echo DWI data were acquired in 50 consecutive patients suspected of stroke at 1.5T. The dual-echo acquisition included 2 EPI for 1 diffusion-preparation period (echo 1 [TE = 48 ms] and echo 2 [TE = 105 ms]). Three neuroradiologists independently reviewed the 2 echoes by using the routine DWI of our institution as a reference. Images were graded on lesion conspicuity, diagnostic confidence, and image quality. The apparent diffusion coefficient map from echo 1 was used to validate the presence of acute infarction. Relaxivity maps calculated from the 2 echoes were evaluated for potential complementary information. RESULTS Echo 1 and 2 DWIs were rated as better than the reference DWI. While echo 1 had better image quality overall, echo 2 was unanimously favored over both echo 1 and the reference DWI for its high sensitivity in detecting acute infarcts. CONCLUSIONS Parallel imaging-enhanced dual-echo diffusion-weighted EPI is a useful method for evaluating lesions with reduced diffusivity. The long TE of echo 2 produced DWIs that exhibited superior lesion conspicuity compared with images acquired at a shorter TE. Echo 1 provided higher SNR ADC maps for specificity to acute infarction. The relaxivity maps may serve to complement information regarding blood products and mineralization.
Collapse
Affiliation(s)
- S J Holdsworth
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - K W Yeom
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - M U Antonucci
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - J B Andre
- Department of Radiology (J.B.A.), University of Washington, Seattle, Washington
| | - J Rosenberg
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - M Aksoy
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - M Straka
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - N J Fischbein
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - R Bammer
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - M E Moseley
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - G Zaharchuk
- From the Department of Radiology (S.J.H., K.W.Y., M.U.A., J.R., M.A., M.S., N.J.F., R.B., M.E.M., G.Z.), Stanford University, Stanford, California
| | - S Skare
- Clinical Neuroscience (S.S.), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
9
|
Uğurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JLR, Behrens TEJ, Glasser MF, Van Essen DC, Yacoub E. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 2013; 80:80-104. [PMID: 23702417 PMCID: PMC3740184 DOI: 10.1016/j.neuroimage.2013.05.012] [Citation(s) in RCA: 576] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/05/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022] Open
Abstract
The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3T, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 s for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total dMRI data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 T magnetic field are also presented, targeting higher spatial resolution, enhanced specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields, and reduced power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:90-100. [PMID: 23473893 PMCID: PMC3793016 DOI: 10.1016/j.jmr.2013.02.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 05/11/2023]
Abstract
The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.
Collapse
Affiliation(s)
- David A Feinberg
- Helen Wills Institute for Neuroscience, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
11
|
Auerbach EJ, Xu J, Yacoub E, Moeller S, Uğurbil K. Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses. Magn Reson Med 2013; 69:1261-7. [PMID: 23468087 DOI: 10.1002/mrm.24719] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE To evaluate an alternative method for generating multibanded radiofrequency (RF) pulses for use in multiband slice-accelerated imaging with slice-GRAPPA unaliasing, substantially reducing the required peak power without bandwidth compromises. This allows much higher accelerations for spin-echo methods such as SE-fMRI and diffusion-weighted MRI where multibanded slice acceleration has been limited by available peak power. THEORY AND METHODS Multibanded "time-shifted" RF pulses were generated by inserting temporal shifts between the applications of RF energy for individual bands, avoiding worst-case constructive interferences. Slice profiles and images in phantoms and human subjects were acquired at 3 T. RESULTS For typical sinc pulses, time-shifted multibanded RF pulses were generated with little increase in required peak power compared to single-banded pulses. Slice profile quality was improved by allowing for higher pulse bandwidths, and image quality was improved by allowing for optimum flip angles to be achieved. CONCLUSION A simple approach has been demonstrated that significantly alleviates the restrictions imposed on achievable slice acceleration factors in multiband spin-echo imaging due to the power requirements of multibanded RF pulses. This solution will allow for increased accelerations in diffusion-weighted MRI applications where data acquisition times are normally very long and the ability to accelerate is extremely valuable.
Collapse
Affiliation(s)
- Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
12
|
Nagy Z, Thomas DL, Weiskopf N. Orthogonalizing crusher and diffusion‐encoding gradients to suppress undesired echo pathways in the twice‐refocused spin echo diffusion sequence. Magn Reson Med 2013; 71:506-15. [DOI: 10.1002/mrm.24676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zoltán Nagy
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondon UK
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUCL Institute of NeurologyUniversity College LondonLondon UK
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondon UK
| |
Collapse
|
13
|
Engström M, Bammer R, Skare S. Diffusion weighted vertical gradient and spin echo. Magn Reson Med 2012; 68:1755-63. [DOI: 10.1002/mrm.24506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 11/06/2022]
|
14
|
Mohammadi S, Hutton C, Nagy Z, Josephs O, Weiskopf N. Retrospective correction of physiological noise in DTI using an extended tensor model and peripheral measurements. Magn Reson Med 2012; 70:358-69. [PMID: 22936599 PMCID: PMC3792745 DOI: 10.1002/mrm.24467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 11/07/2022]
Abstract
Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, UK.
| | | | | | | | | |
Collapse
|
15
|
Feinberg DA, Yacoub E. The rapid development of high speed, resolution and precision in fMRI. Neuroimage 2012; 62:720-5. [PMID: 22281677 PMCID: PMC3389295 DOI: 10.1016/j.neuroimage.2012.01.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022] Open
Abstract
MRI pulse sequences designed to increase the speed and spatial resolution of fMRI have always been a hot topic. Here, we review and chronicle the history behind some of the pulse sequence ideas that have contributed not only to the enhancement of fMRI acquisition but also to diffusion imaging. (i) Partial Fourier EPI allows lengthening echo trains for higher spatial resolution while maintaining optimal TE and BOLD sensitivity. (ii) Inner-volume EPI renamed zoomed-EPI, achieves extremely high spatial resolution and has been applied to fMRI at 7Tesla to resolve cortical layer activity and columnar level fMRI. (iii) An early non-BOLD approach while unsuccessful for fMRI created a diffusion sequence of bipolar pulses called 'twice refocused spin echo' now widely used for high-resolution DTI and HARDI neuronal fiber track imaging. (iv) Multiplexed EPI shortens TR to a few hundred milliseconds, increasing sampling rates and statistical power in fMRI.
Collapse
Affiliation(s)
- David A Feinberg
- University of California, Berkeley and Advanced MRI Technologies, Berkeley, CA, USA.
| | | |
Collapse
|
16
|
Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012; 63:569-80. [PMID: 22732564 DOI: 10.1016/j.neuroimage.2012.06.033] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/10/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022] Open
Abstract
In diffusion MRI, simultaneous multi-slice single-shot EPI acquisitions have the potential to increase the number of diffusion directions obtained per unit time, allowing more diffusion encoding in high angular resolution diffusion imaging (HARDI) acquisitions. Nonetheless, unaliasing simultaneously acquired, closely spaced slices with parallel imaging methods can be difficult, leading to high g-factor penalties (i.e., lower SNR). The CAIPIRINHA technique was developed to reduce the g-factor in simultaneous multi-slice acquisitions by introducing inter-slice image shifts and thus increase the distance between aliased voxels. Because the CAIPIRINHA technique achieved this by controlling the phase of the RF excitations for each line of k-space, it is not directly applicable to single-shot EPI employed in conventional diffusion imaging. We adopt a recent gradient encoding method, which we termed "blipped-CAIPI", to create the image shifts needed to apply CAIPIRINHA to EPI. Here, we use pseudo-multiple replica SNR and bootstrapping metrics to assess the performance of the blipped-CAIPI method in 3× simultaneous multi-slice diffusion studies. Further, we introduce a novel image reconstruction method to reduce detrimental ghosting artifacts in these acquisitions. We show that data acquisition times for Q-ball and diffusion spectrum imaging (DSI) can be reduced 3-fold with a minor loss in SNR and with similar diffusion results compared to conventional acquisitions.
Collapse
Affiliation(s)
- K Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mohammadi S, Nagy Z, Hutton C, Josephs O, Weiskopf N. Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER). Magn Reson Med 2011; 68:882-9. [PMID: 22213396 PMCID: PMC3569871 DOI: 10.1002/mrm.23308] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/07/2011] [Accepted: 11/07/2011] [Indexed: 11/11/2022]
Abstract
Diffusion tensor imaging is widely used in research and clinical applications, but still suffers from substantial artifacts. Here, we focus on vibrations induced by strong diffusion gradients in diffusion tensor imaging, causing an echo shift in k-space and consequential signal-loss. We refined the model of vibration-induced echo shifts, showing that asymmetric k-space coverage in widely used Partial Fourier acquisitions results in locally differing signal loss in images acquired with reversed phase encoding direction (blip-up/blip-down). We implemented a correction of vibration artifacts in diffusion tensor imaging using phase-encoding reversal (COVIPER) by combining blip-up and blip-down images, each weighted by a function of its local tensor-fit error. COVIPER was validated against low vibration reference data, resulting in an error reduction of about 72% in fractional anisotropy maps. COVIPER can be combined with other corrections based on phase encoding reversal, providing a comprehensive correction for eddy currents, susceptibility-related distortions and vibration artifact reduction.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2011; 67:1210-24. [PMID: 21858868 DOI: 10.1002/mrm.23097] [Citation(s) in RCA: 929] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/20/2011] [Indexed: 11/07/2022]
Abstract
Simultaneous multislice Echo Planar Imaging (EPI) acquisition using parallel imaging can decrease the acquisition time for diffusion imaging and allow full-brain, high-resolution functional MRI (fMRI) acquisitions at a reduced repetition time (TR). However, the unaliasing of simultaneously acquired, closely spaced slices can be difficult, leading to a high g-factor penalty. We introduce a method to create interslice image shifts in the phase encoding direction to increase the distance between aliasing pixels. The shift between the slices is induced using sign- and amplitude-modulated slice-select gradient blips simultaneous with the EPI phase encoding blips. This achieves the desired shifts but avoids an undesired "tilted voxel" blurring artifact associated with previous methods. We validate the method in 3× slice-accelerated spin-echo and gradient-echo EPI at 3 T and 7 T using 32-channel radio frequency (RF) coil brain arrays. The Monte-Carlo simulated average g-factor penalty of the 3-fold slice-accelerated acquisition with interslice shifts is <1% at 3 T (compared with 32% without slice shift). Combining 3× slice acceleration with 2× inplane acceleration, the g-factor penalty becomes 19% at 3 T and 10% at 7 T (compared with 41% and 23% without slice shift). We demonstrate the potential of the method for accelerating diffusion imaging by comparing the fiber orientation uncertainty, where the 3-fold faster acquisition showed no noticeable degradation.
Collapse
Affiliation(s)
- Kawin Setsompop
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010; 5:e15710. [PMID: 21187930 PMCID: PMC3004955 DOI: 10.1371/journal.pone.0015710] [Citation(s) in RCA: 953] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022] Open
Abstract
Echo planar imaging (EPI) is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI) and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2–3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI) pulse sequence combines two forms of multiplexing: temporal multiplexing (m) utilizing simultaneous echo refocused (SIR) EPI and spatial multiplexing (n) with multibanded RF pulses (MB) to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2–4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information.
Collapse
Affiliation(s)
- David A Feinberg
- Advanced MRI Technologies, Sebastopol, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reese TG, Benner T, Wang R, Feinberg DA, Wedeen VJ. Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. J Magn Reson Imaging 2009; 29:517-22. [PMID: 19243032 DOI: 10.1002/jmri.21497] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To increase the efficiency of densely encoded diffusion imaging of the brain, such as diffusion spectrum imaging (DSI), we time-multiplex multiple slices within the same readout using simultaneous image refocusing echo-planar imaging (SIR-EPI). MATERIALS AND METHODS Inefficiency in total scan time results from the long time of diffusion encoding gradient pulses which must be repeated for each and every image. We present a highly efficient multiplexing method, simultaneous image refocusing (SIR), for reducing the total scan time of diffusion imaging by nearly one-half. SIR DSI is performed in 10 minutes rather than 21 minutes, acceptable for routine clinical application. RESULTS Two identical studies were completed, comparing conventional single-slice EPI DSI and SIR-EPI DSI, showing equal signal-to-noise ratio (SNR) and contrast and small differences in registration, likely due to typical subject motion. Comparison of DSI and DTI tractographs showed matching quality and detection of white matter tracts. CONCLUSION The net reduction to nearly half the number of diffusion encoding gradient pulses in SIR-EPI significantly reduces acquisition times of DSI and DTI.
Collapse
Affiliation(s)
- Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
21
|
Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imaging Clin N Am 2008; 16:585-96, vii-viii. [PMID: 18926424 DOI: 10.1016/j.mric.2008.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is currently a growing interest in applications of diffusion-weighted imaging (DWI) in the abdomen and pelvis. DWI provides original functional information where the signal and contrast are determined by the microscopic mobility of water. DWI can provide additional information over conventional MR sequences, and could potentially be used as an alternative to contrast-enhanced sequences in patients with chronic renal insufficiency at risk of nephrogenic systemic fibrosis. We provide an overview on basic physics background on DWI applied to the kidneys, and we summarize the current available data, including our recent experience.
Collapse
|
22
|
Wang JJ, Deichmann R, Hsiao I, Liu H, Wai Y, Wan Y, Turner R, Ordidge R. Selective averaging for the diffusion tensor measurement. Magn Reson Imaging 2005; 23:585-90. [PMID: 15919605 DOI: 10.1016/j.mri.2005.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 02/05/2005] [Indexed: 11/20/2022]
Abstract
The multishot echo planar imaging sequence was often used in the high-resolution diffusion measurements. However, it is susceptible to motion artifacts because of the requirements of combining the raw data from different acquisitions into one complete k-space data set. Conventional solutions used cardiac gating but greatly extended the total acquisition time. Here we propose a selective averaging algorithm based on the information in the navigator echoes. The data were sampled continuously without cardiac gating. Contributions contaminated by motion were detected by a thresholding algorithm and were discarded during postprocessing. The data were then averaged in the modulus or complex format. Diffusion tensor imaging (DTI) data with isotropic spatial resolution were acquired in phantom as well as from two normal volunteers. The information in the navigator echoes proved to be a good indicator for the extent of motion contamination. Differences were noticed between modulus and complex averaging in DTI quantification, but both showed reduced artifact and improved signal-to-noise ratio.
Collapse
Affiliation(s)
- Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, ChangGung University, TaoYuan county 333, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang JJ, Deichmann R, Turner R, Ordidge R. 3D DT-MRI using a reduced-FOV approach and saturation pulses. Magn Reson Med 2004; 51:853-7. [PMID: 15065261 DOI: 10.1002/mrm.20012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffusion tensor imaging (DTI) can provide vital insights into brain connectivity, and may become an important tool for the diagnosis and treatment of neurological disease. However, DTI's intrinsic low signal-to-noise ratio (SNR) and vulnerability to ghosting artifacts can result in poor image quality with low spatial resolution, which limits its clinical applications. In this study, a new double-shot EPI sequence (half-FOV EPI) with high spatial resolution was developed. This method enables DT measurements to be obtained with high isotropic spatial resolution and whole-brain coverage. To avoid ghosting artifacts, the data are combined in image space rather than in k-space.
Collapse
Affiliation(s)
- Jiun-Jie Wang
- School of Medical Technology, ChangGung University, TaoYuan County, Taiwan.
| | | | | | | |
Collapse
|
24
|
Theilmann RJ, Gmitro AF, Altbach MI, Trouard TP. View-ordering in radial fast spin-echo imaging. Magn Reson Med 2004; 51:768-74. [PMID: 15065250 DOI: 10.1002/mrm.20031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radial MRI sequences are frequently used to obtain images with reduced sensitivity to motion. To decrease imaging time, multiple spin-echo acquisitions can be incorporated into radial sequences. In this case, different radial lines of Fourier data have different TE times and the resulting images can contain streaking artifacts due to T(2) decay. The streaking is not only dependent on the T(2) of the object and the timing of the data acquisition, but also on the order in which radial lines are collected (view order). The view ordering can easily be controlled to minimize artifacts due to T(2) decay as well as motion. Four view-ordering techniques are presented and evaluated for the radial FSE sequence.
Collapse
Affiliation(s)
- Rebecca J Theilmann
- Department of Radiology, University of Arizona, Tucson, Arizona 85724-5084, USA
| | | | | | | |
Collapse
|
25
|
Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 2001; 221:349-58. [PMID: 11687675 DOI: 10.1148/radiol.2212001702] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To characterize the maturational changes in water diffusion within central gray matter nuclei and central white matter pathways of the human brain by using diffusion-tensor magnetic resonance (MR) imaging. MATERIALS AND METHODS Retrospective analysis of normal MR examination findings in 153 subjects (age range, 1 day to 11 years) referred for clinical neuroimaging was performed. All studies included diffusion tensor-encoded echo-planar MR imaging. Isotropic diffusion coefficient (D) and diffusion anisotropy (A(sigma)) were measured in the corpus callosum, internal capsule, caudate nucleus, lentiform nucleus, and thalamus. RESULTS exhibited biexponential decay with age in gray and white matter regions, except for monoexponential decay in the genu of the corpus callosum. There was a steep nonlinear increase of A(sigma) in white matter tracts that paralleled the time course of the decline in D. In basal ganglia, only a small linear increase in A(sigma) was observed in patients. A(sigma) changes in the thalamus were intermediate between basal ganglia and white matter structures. CONCLUSION Changes in magnitude and anisotropy of water diffusion follow stereotypical time courses during brain development that can be empirically described with multiexponential regression models, which suggests that quantitative scalar parameters derived from diffusion-tensor MR imaging may provide clinically useful developmental milestones for brain maturity.
Collapse
Affiliation(s)
- P Mukherjee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000; 44:101-9. [PMID: 10893527 DOI: 10.1002/1522-2594(200007)44:1<101::aid-mrm15>3.0.co;2-s] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Subject motion during diffusion-weighted interleaved echo-planar imaging causes k-space offsets which lead to irregular sampling in the phase-encode direction. For each image, the k-space shifts are monitored using 2D navigator echoes, and are shown to lead to a frequent violation of the Nyquist condition when an ungated sequence is used on seven subjects. Combining data from four repeat acquisitions allows the Nyquist condition to be satisfied in all but 1% of images. Reconstruction of the irregularly-sampled data can be performed using a matrix inversion technique. The repeated acquisitions make the inversion more stable and additionally improve the signal-to-noise ratio. The resultant isotropic diffusion-weighted images and average apparent diffusion coefficient (ADC) maps show high resolution and enable clear localization of a stroke lesion. Residual ADC artifacts with a slow spatial variation are observed and assumed to originate from non-rigid pulsatile brain motion. Magn Reson Med 44:101-109, 2000.
Collapse
Affiliation(s)
- D Atkinson
- Division of Radiological Sciences and Medical Engineering, The Guy's, King's, and St. Thomas' School of Medicine, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
27
|
Meyerand ME, Moritz CH, Wong EC. Single-shot, motion insensitive cardiac imaging on a standard clinical system. Magn Reson Med 1998; 40:930-3. [PMID: 9840839 DOI: 10.1002/mrm.1910400620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The overall goal of this study was the development and application of a less motion sensitive, single-shot MRI technique for use on a standard clinical system in a dynamic imaging setting, such as cardiac scanning. Time encoding, a single-shot line scanning technique, has been used to produce single-shot, small field-of-view cardiac images without the use of presaturation pulses. The major advantages of this method are: (1) as a line scanning technique, time encoding is minimally sensitive to motion when compared with 2D Fourier methods, and (2) aliasing will not occur if the object being imaged extends beyond the field of view.
Collapse
Affiliation(s)
- M E Meyerand
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, USA
| | | | | |
Collapse
|
28
|
Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. ULTRASOUND IN MEDICINE & BIOLOGY 1998; 24:1419-35. [PMID: 10385964 DOI: 10.1016/s0301-5629(98)00110-0] [Citation(s) in RCA: 879] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other approaches in elasticity imaging, the induced strain in the tissue can be highly localized, because the remotely induced shear waves are attenuated fully within a very limited area of tissue in the vicinity of the focal point of a focused ultrasound beam. SWEI may add a new quality to conventional ultrasonic imaging or magnetic resonance imaging. Adding shear elasticity data ("palpation information") by superimposing color-coded elasticity data over ultrasonic or magnetic resonance images may enable better differentiation of tissues and further enhance diagnosis. This article presents a physical and mathematical basis of SWEI with some experimental results of pilot studies proving feasibility of this new ultrasonic technology. A theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound is described. Experimental studies based on optical and magnetic resonance imaging detection of these shear waves are presented. Recorded spatial and temporal profiles of propagating shear waves fully confirm the results of mathematical modeling. Finally, the safety of the SWEI method is discussed, and it is shown that typical ultrasonic exposure of SWEI is significantly below the threshold of damaging effects of focused ultrasound.
Collapse
|
29
|
Gudbjartsson H, Maier SE, Mulkern RV, Mórocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med 1996; 36:509-19. [PMID: 8892201 DOI: 10.1002/mrm.1910360403] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel line scan diffusion imaging sequence (LSDI) is introduced. LSDI is inherently insensitive to motion artifacts and high quality diffusion maps of the brain can be obtained rapidly without the use of head restraints or cardiac gating. Results from a stroke study and abdominal diffusion images are presented. The results indicate that it is feasible to use the LSDI technique for clinical evaluation of acute ischemic stroke. In contrast to echo-planar diffusion imaging, LSDI does not require modified gradient hardware and can be implemented on conventional scanners. Thus, LSDI should dramatically increase the general availability of robust clinical diffusion imaging.
Collapse
|
30
|
Abstract
A new 2D single-shot imaging technique is introduced that uses only one dimension of Fourier encoding. The second dimension is encoded in time, rather than using phase encoding. The data is acquired in the form of a closely spaced echo train with each echo produced from a different physical line in the object. A 1D Fourier transform is applied to each echo for image reconstruction. Because only the desired lines are excited, there can be no aliasing in the time encoding direction even when the object is much larger than the field of view. This technique is also very insensitive to motion, as motion-related artifacts do not propagate in the time encoding direction.
Collapse
Affiliation(s)
- M E Meyerand
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
31
|
Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, Buxton RB, Carson PL. Biophysical Bases of Elasticity Imaging. ACOUSTICAL IMAGING 1995. [DOI: 10.1007/978-1-4615-1943-0_23] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Wendt RE, Wong WF. Nuclear magnetic resonance velocity spectra of pulsatile flow in a rigid tube. Magn Reson Med 1992; 27:214-25. [PMID: 1461109 DOI: 10.1002/mrm.1910270203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Velocity spectra can be derived from velocity-encoded nuclear magnetic resonance (NMR) images. Velocity spectra are histograms showing the amounts of fluid flowing at different velocities in the sensitive volume of the measurement. Velocity spectra may prove to be useful in characterizing the flow of blood in small vessels, for example, in detecting the presence of stenoses and in evaluating their severity. NMR velocity spectra acquired in vivo are sufficiently complicated that a model system was designed and tested to investigate the velocity spectra of pulsatile flow. This study measured the NMR velocity spectra of pulsatile flow in a rigid tube and compared them to velocity spectra derived from Doppler ultrasound measurements and to velocity spectra inferred from a theoretical model driven by the measured pressure difference function. The experimental results from each technique agree.
Collapse
Affiliation(s)
- R E Wendt
- Department of Radiology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
33
|
Crawley AP, Cohen MS, Yucel EK, Poncelet B, Brady TJ. Single-shot magnetic resonance imaging: applications to angiography. Cardiovasc Intervent Radiol 1992; 15:32-42. [PMID: 1537063 DOI: 10.1007/bf02733897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently developed technologies that allow the collection of magnetic resonance imaging (MRI) in as little as 26 msec have been explored in their application to angiography. Advantages are demonstrated in scan time reduction, insensitivity to patient motion (especially in abdominal applications), flow quantification, and temporal resolution. We demonstrate that because such single-shot techniques are inherently resistant to flow dephasing during acquisition that allow for sustained high signal intensities to be achieved when images must be combined through the cardiac cycle. Such high temporal resolution scans may be utilized for the collection of time-resolved angiograms. With these techniques we demonstrate the collection of complete MR angiograms in the course of reasonable 10-25 sec breath holds. The relative simplicity of the technique, coupled with its overall short acquisition time, allows us to incorporate angiography into other imaging protocols without adding significant time burdens. Results to date are promising for further improvements in spatial resolution, without extension of scan time.
Collapse
Affiliation(s)
- A P Crawley
- Massachusetts General Hospital NMR Center, Charlestown 02129
| | | | | | | | | |
Collapse
|
34
|
Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 1992; 34:370-80. [PMID: 1407513 DOI: 10.1007/bf00596493] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brain tissue movements were studied in axial, sagittal and coronal planes in 15 healthy volunteers, using a gated spin echo MRI sequence. All movements had characteristics different from those of perfusion and diffusion. The highest velocities occurred during systole in the basal ganglia (maximum 1.0 mm/s) and brain stem (maximum 1.5 mm/s). The movements were directed caudally, medially and posteriorly in the basal ganglia, and caudally-anteriorly in the pons. Caudad and anterior motion increased towards the foramen magnum and towards the midline. The resultant movement occurred in a funnel-shaped fashion as if the brain were pulled by the spinal cord. This may be explained by venting of brain and cerebrospinal fluid (CSF) through the tentorial notch and foramen magnum. The intracranial volume is assumed to be always constant by the Monro-Kellie doctrine. The intracranial dynamics can be viewed as an interplay between the spatial requirements of four main components: arterial blood, capillary blood (brain volume), venous blood and CSF. These components could be characterized, and the expansion of the arteries and the brain differentiated, by applying the Monro-Kellie doctrine to every moment of the cardiac cycle. The arterial expansion causes a re-moulding of the brain that enables its piston-like action. The arterial expansion creates the prerequisites for the expansion of the brain by venting CSF to the spinal canal. The expansion of the brain is, in turn, responsible for compression of the ventricular system and hence for the intraventricular flow of CSF.
Collapse
Affiliation(s)
- D Greitz
- Department of Neuroradiology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Bleier AR, Jolesz FA, Cohen MS, Weisskoff RM, Dalcanton JJ, Higuchi N, Feinberg DA, Rosen BR, McKinstry RC, Hushek SG. Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn Reson Med 1991; 21:132-7. [PMID: 1943670 DOI: 10.1002/mrm.1910210116] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We applied diffusion-sensitive echo planar (Instascan) imaging to study thermal changes caused by a Nd:YAG laser. Images of phantom materials and normal rabbit brain tissue in vivo, acquired in 150 ms, every 2s, clearly showed the dynamics of temperature-related signal intensity changes in the regions irradiated by the laser.
Collapse
Affiliation(s)
- A R Bleier
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | |
Collapse
|