1
|
Pang Y. Deciphering adiabatic rotating frame relaxometry in biological tissues. Magn Reson Med 2024; 92:2670-2682. [PMID: 39099141 DOI: 10.1002/mrm.30240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE This work aims to unravel the intricacies of adiabatic rotating frame relaxometry in biological tissues. THEORY AND METHODS The classical formalisms of dipolar relaxationR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ were systematically analyzed for water molecules reorienting on "fast" and "slow" timescales. These two timescales are, respectively, responsible for the absence and presence ofR 1 ρ $$ {R}_{1\rho } $$ dispersion. A time-averagedR 1 ρ $$ {R}_{1\rho } $$ orR 2 ρ $$ {R}_{2\rho } $$ over an adiabatic pulse duration was recast into a sum ofR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ , but with different weightings. These weightings depend on the specific modulations of adiabatic pulse waveforms. In this context, stretched hyperbolic secant (HSn $$ HSn $$ ) pulses were characterized. Previously publishedH S 1 $$ HS1 $$ R 1 ρ $$ {R}_{1\rho } $$ , continuous-wave (CW)R 1 ρ $$ {R}_{1\rho } $$ , andR 1 $$ {R}_1 $$ measures from 12 agarose phantoms were used to validate the theoretical predictions. A similar validation was also performed on previously publishedHSn $$ HSn $$ R 1 ρ $$ {R}_{1\rho } $$ (n $$ n $$ =1, 4, 8) andHS 1 $$ HS1 $$ R 2 ρ $$ {R}_{2\rho } $$ from bovine cartilage specimens. RESULTS Longitudinal relaxation weighting decreases forHSn $$ HSn $$ pulses asn $$ n $$ increases. Predicted CWR 1 ρ cal $$ {R}_{1\rho}^{cal} $$ values from agarose phantoms align well with the measured CWR 1 ρ exp $$ {R}_{1\rho}^{exp} $$ values, as indicated by a linear regression function:R 1 ρ cal = 1.04 * R 1 ρ exp - 1.96 $$ {R}_{1\rho}^{cal}={1.04}^{\ast }{R}_{1\rho}^{exp}-1.96 $$ . The predicted adiabaticR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ from cartilage specimens are consistent with those previously measured, as quantified by:R 1 ρ , 2 ρ cal = 1.10 * R 1 ρ , 2 ρ exp - 0.41 $$ {R}_{1\rho, 2\rho}^{cal}={1.10}^{\ast }{R}_{1\rho, 2\rho}^{exp}-0.41 $$ . CONCLUSION This work has theoretically and experimentally demonstrated that adiabaticR 1 ρ $$ {R}_{1\rho } $$ andR 2 ρ $$ {R}_{2\rho } $$ can be recast into a sum ofR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ , with varying weightings. Therefore, any suggestions that adiabatic rotating frame relaxometry in biological tissues could provide more information than the standardR 1 $$ {R}_1 $$ andR 2 $$ {R}_2 $$ warrant closer scrutiny.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Schache D, Peddi A, Nahardani A, Faber C, Hoerr V. Corrections for Rabi oscillations in cardiac chemical exchange saturation transfer MRI under the influence of very short preparation pulses. NMR IN BIOMEDICINE 2024; 37:e5081. [PMID: 38113906 DOI: 10.1002/nbm.5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Very short chemical exchange saturation transfer (CEST) pulses are beneficial in cardiac continuous wave (cw) CEST MRI, especially in small animals because of their rapid heartbeat; however, they result in signal modulations caused by Rabi oscillations. Therefore, we implemented two different filter techniques, DOwnsampling by SEparation of CEST spectrum into two parts (DOSE) and time domain (TD)-based filtering, to correct for these signal corruptions, allowing a reliable quantification of glucose-weighted CEST (glucoCEST) MRI contrast. In our study, cw CEST measurements were performed on a 9.4-T small animal BioSpec system using CEST pulses in the range of 10 to 200 ms. Experimental dependencies of Rabi oscillations on key MRI parameters were validated by Bloch-McConnell (BM) simulations. Filter efficiency was explored in a glucose concentration series as well as in the myocardium of healthy mice (n = 8), and glucoCEST contrast was subsequently quantified. The experimental results showed that the impact of Rabi oscillations on CEST spectra increased with decreasing CEST pulse length, optimized B0 homogeneity, and shorter T2 relaxation time, in accordance with results from BM simulations. Both investigated filter techniques reduced these signal modulations significantly, with DOSE filtering preserving the amplitude and TD filtering the spectral information of CEST data more accurately. Upon filter application, a significant decrease in glucoCEST contrast in the myocardium of healthy mice was observed after glucose infusion (pTD = 0.0079, pDOSE = 0.0044). To conclude, this study offers comprehensive experimental insights into Rabi oscillations within CEST MRI data along with methodological considerations that could be further advanced into a robust and precise cardiac cw CEST protocol by integrating DOSE and TD filtering into the standard CEST analysis pipeline.
Collapse
Affiliation(s)
- Daniel Schache
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
| | - Ajay Peddi
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
| | - Ali Nahardani
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Wu Q, Qi Y, Gong P, Huang B, Cheng G, Liang D, Zheng H, Sun PZ, Wu Y. Fast and robust pulsed chemical exchange saturation transfer (CEST) MRI using a quasi-steady-state (QUASS) algorithm at 3 T. Magn Reson Imaging 2024; 105:29-36. [PMID: 37898416 DOI: 10.1016/j.mri.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Chemical exchange saturation transfer (CEST) has emerged as a powerful technique to image dilute labile protons. However, its measurement depends on the RF saturation duration (Tsat) and relaxation delay (Trec). Although the recently developed quasi-steady-state (QUASS) solution can reconstruct equilibrium CEST effects under continuous-wave RF saturation, it does not apply to pulsed-CEST MRI on clinical scanners with restricted hardware or specific absorption rate limits. This study proposed a QUASS algorithm for pulsed-CEST MRI and evaluated its performance in muscle CEST measurement. An approximated expression of a steady-state pulsed-CEST signal was incorporated in the off-resonance spin-lock model, from which the QUASS pulsed-CEST effect was derived. Numerical simulation, creatine phantom, and healthy volunteer scans were conducted at 3 T. The CEST effect was quantified with asymmetry analysis in the simulation and phantom experiments. CEST effects of creatine, amide proton transfer, phosphocreatine, and combined magnetization transfer and nuclear Overhauser effects were isolated from a multi-pool Lorentzian model in muscles. Apparent and QUASS CEST measurements were compared under different Tsat/Trec and duty cycles. Paired Student's t-test was employed with P < 0.05 as statistically significant. The simulation, phantom, and human studies showed the strong impact of Tsat/Trec on apparent CEST measurements, which were significantly smaller than the corresponding QUASS CEST measures, especially under short Tsat/Trec times. In comparison, the QUASS algorithm mitigates such impact and enables accurate CEST measurements under short Tsat/Trec times. In conclusion, the QUASS algorithm can accelerate robust pulsed-CEST MRI, promising the efficient detection and evaluation of muscle diseases in clinical settings.
Collapse
Affiliation(s)
- Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yulong Qi
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Wu L, Carchi C, Michaeli S, Mangia S, Idiyatullin D. Alternating Look-Locker for quantitative T 1 , T 1ρ and B 1 3D MRI mapping. Magn Reson Med 2024; 91:149-161. [PMID: 37582198 PMCID: PMC10651079 DOI: 10.1002/mrm.29839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE To develop a new MRI method, entitled alternating Look-Locker (aLL), for quantitativeT 1 $$ {T}_1 $$ ,T 1 ρ $$ {T}_{1\uprho} $$ , andB 1 $$ {B}_1 $$ 3D mapping. METHODS A Look-Locker scheme that alternates magnetization from +Z and -Z axes of the laboratory frame is utilized in combination with a 3D Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT) readout. The analytical solution describing the spin evolution during aLL, as well as the correction required for segmented acquisition were derived. The simultaneousB 1 $$ {B}_1 $$ andT 1 $$ {T}_1 $$ mapping are demonstrated on an agar/saline phantom and on an in-vivo rat head.T 1 ρ $$ {T}_{1\uprho} $$ relaxation was achieved by cyclically applying magnetization preparation (MP) modules consisting of two adiabatic pulses.T 1 ρ $$ {T}_{1\uprho} $$ values in the rat brain in-vivo and in a gadobenate dimeglumine (Gd-DTPA) phantom were compared to those obtained with a previously introduced steady-state (SS) method. RESULTS The accuracy and precision of the analytical solution was tested by Bloch simulations. With the application of MP modules, the aLL method provides simultaneousT 1 $$ {T}_1 $$ andT 1 ρ $$ {T}_{1\uprho} $$ maps. Conversely, without it, the method can be used for simultaneousT 1 $$ {T}_1 $$ andB 1 $$ {B}_1 $$ mapping.T 1 ρ $$ {T}_{1\uprho} $$ values were similar with both aLL and SS techniques. However, the aLL method resulted in more robust quantitative mapping compared to the SS method. Unlike the SS method, the aLL method does not require additional scans for generatingT 1 $$ {T}_1 $$ maps. CONCLUSION The proposed method offers a new flexible tool for quantitative mapping ofT 1 $$ {T}_1 $$ ,T 1 ρ $$ {T}_{1\uprho} $$ , andB 1 $$ {B}_1 $$ . The aLL method can also be used with readout schemes different from MB-SWIFT.
Collapse
Affiliation(s)
- Lin Wu
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Chris Carchi
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Bustin A, Witschey WRT, van Heeswijk RB, Cochet H, Stuber M. Magnetic resonance myocardial T1ρ mapping : Technical overview, challenges, emerging developments, and clinical applications. J Cardiovasc Magn Reson 2023; 25:34. [PMID: 37331930 DOI: 10.1186/s12968-023-00940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The potential of cardiac magnetic resonance to improve cardiovascular care and patient management is considerable. Myocardial T1-rho (T1ρ) mapping, in particular, has emerged as a promising biomarker for quantifying myocardial injuries without exogenous contrast agents. Its potential as a contrast-agent-free ("needle-free") and cost-effective diagnostic marker promises high impact both in terms of clinical outcomes and patient comfort. However, myocardial T1ρ mapping is still at a nascent stage of development and the evidence supporting its diagnostic performance and clinical effectiveness is scant, though likely to change with technological improvements. The present review aims at providing a primer on the essentials of myocardial T1ρ mapping, and to describe the current range of clinical applications of the technique to detect and quantify myocardial injuries. We also delineate the important limitations and challenges for clinical deployment, including the urgent need for standardization, the evaluation of bias, and the critical importance of clinical testing. We conclude by outlining technical developments to be expected in the future. If needle-free myocardial T1ρ mapping is shown to improve patient diagnosis and prognosis, and can be effectively integrated in cardiovascular practice, it will fulfill its potential as an essential component of a cardiac magnetic resonance examination.
Collapse
Affiliation(s)
- Aurelien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France.
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
6
|
Yang Y, Wang C, Liu Y, Chen Z, Liu X, Zheng H, Liang D, Zhu Y. A robust adiabatic constant amplitude spin-lock preparation module for myocardial T 1ρ quantification at 3 T. NMR IN BIOMEDICINE 2023; 36:e4830. [PMID: 36093600 DOI: 10.1002/nbm.4830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
T1ρ quantification has the potential to assess myocardial fibrosis without contrast agent. However, its preparation spin-lock pulse is sensitive to B1 and B0 inhomogeneities, resulting in severe banding artifacts in the heart region, especially at high magnetic field such as 3 T. We aimed to design a robust spin-lock (SL) preparation module that can be used in myocardial T1ρ quantification at 3 T. We used the tan/tanh pulse to tip up and tip down the magnetization in the spin-lock preparation module (tan/tanh-SL). Bloch simulation was used to optimize pulse shape parameters of the tan/tanh with a pulse duration (Tp ) of 8, 4, and 2 ms, respectively. The designed tan/tanh-SL modules were implemented on a 3-T MR scanner. They were evaluated in phantom studies under three different cases of B0 and B1 inhomogeneities, and tested in cardiac T1ρ quantification of healthy volunteers. The performance of the tan/tanh-SL was compared with the composite SL preparation pulses and the commonly used hyperbolic secant pulse for spin-lock (HS-SL). Feasible pulse shape parameters were obtained using Bloch simulation. Compared with HS-SL, the quantification error of tan/tanh-SL was reduced by 27.7% for Tp = 8 ms (mean ∆Q = 126.15 vs. 174.42) and 75.6% for Tp = 4 ms (mean ∆Q = 136.65 vs. 559.53). In the phantom study, tan/tanh-SL was less sensitive to B1 and B0 inhomogeneity compared with composite SL pulses and HS-SL. In cardiac T1ρ quantification, the T1ρ maps using tan/tanh-SL showed fewer banding artifacts than using composite SL pulses and HS-SL. The proposed tan/tanh-SL preparation module greatly improves the robustness to B0 and B1 field inhomogeneities and can be used in cardiac T1ρ quantification at 3 T.
Collapse
Affiliation(s)
- Yuxin Yang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Che Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhongmin Chen
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Xin Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Zaiss M, Jin T, Kim SG, Gochberg DF. Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields. NMR IN BIOMEDICINE 2022; 35:e4789. [PMID: 35704180 DOI: 10.1002/nbm.4789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a versatile MRI method that provides contrast based on the level of molecular and metabolic activity. This contrast arises from indirect measurement of protons in low concentration molecules that are exchanging with the abundant water proton pool. The indirect measurement is based on magnetization transfer of radio frequency (rf)-prepared magnetization from the small pool to the water pool. The signal can be modeled by the Bloch-McConnell equations combining standard magnetization dynamics and chemical exchange processes. In this article, we review analytical solutions of the Bloch-McConnell equations and especially the derived CEST signal equations and their implications. The analytical solutions give direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and concentration of the solute pools, but also on the system parameters such as the rf irradiation field B1 , as well as the static magnetic field B0 . These theoretical field-strength dependencies and their influence on sequence design are highlighted herein. In vivo results of different groups making use of these field-strength benefits/dependencies are reviewed and discussed.
Collapse
Affiliation(s)
- Moritz Zaiss
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tao Jin
- NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Peng Q, Wu C, Kim J, Li X. Efficient phase-cycling strategy for high-resolution 3D gradient-echo quantitative parameter mapping. NMR IN BIOMEDICINE 2022; 35:e4700. [PMID: 35068007 DOI: 10.1002/nbm.4700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/05/2023]
Abstract
Magnetization-prepared (MP) gradient-echo (GRE) sequences suffer from signal contaminations from T1 recovery during the readout train, which can be eliminated by paired RF phase cycling (PC) at the cost of doubling the scan time. The objective of this study was to develop and validate a novel unpaired PC strategy to eliminate the time penalty for high-resolution quantitative parameter mapping in 3D MP-GRE sequences. Based on the observation that the contaminating T1 recovery signal along the GRE readout train is independent of magnetization preparation, its impact can be eliminated using a novel curve-fitting approach with complex-valued data without needing paired PC acquisitions. Four new unpaired PC schemes were compared with two traditional paired PC schemes in both phantom and in vivo human knee studies at 3 T using a MP angle-modulated partitioned k-space spoiled gradient-echo snapshots (MAPSS) T1ρ mapping sequence. In the phantom study, all methods resulted in consistent T1ρ measurements (∆T1ρ < 0.5%) at the center slice when B0 /B1 values were uniform. Results were not consistent when off-center slices with nonideal B0 /B1 were included. Two unpaired PC schemes had comparable or significantly improved quantitative accuracy and scan-rescan reproducibility compared with the paired PC schemes. There was no significant T1ρ quantitative variability increase or spatial fidelity loss using the new unpaired PC schemes. Unpaired PC schemes also had different T1ρ spectral responses at different B0 frequency offsets, which can potentially be exploited to reduce sensitivity to B0 field inhomogeneities. The human knee study results were consistent with the phantom study findings. In conclusion, an unpaired PC strategy potentially allows more accurate quantitative parameter mapping with halved scan time compared with the paired PC approach to eliminate signal contaminations from T1 recovery. It therefore offers additional flexibility in SNR optimization, spatial resolution improvement, and choice of imaging sampling points to obtain more accurate quantitative parameter mapping.
Collapse
Affiliation(s)
- Qi Peng
- GRUSS Magnetic Resonance Research Center (MRRC), Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeehun Kim
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Kim H, Krishnamurthy LC, Sun PZ. Demonstration of fast multi-slice quasi-steady-state chemical exchange saturation transfer (QUASS CEST) human brain imaging at 3T. Magn Reson Med 2021; 87:810-819. [PMID: 34590726 DOI: 10.1002/mrm.29028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To combine multi-slice chemical exchange saturation transfer (CEST) imaging with quasi-steady-state (QUASS) processing and demonstrate the feasibility of fast QUASS CEST MRI at 3T. METHODS Fast multi-slice echo planar imaging (EPI) CEST imaging was developed with concatenated slice acquisition after single radiofrequency irradiation. The multi-slice CEST signal evolution was described by the spin-lock relaxation during saturation duration (Ts ) and longitudinal relaxation during the relaxation delay time (Td ) and post-label delay (PLD), from which the QUASS CEST was generalized to fast multi-slice acquisition. In addition, numerical simulations, phantom, and normal human subjects scans were performed to compare the conventional apparent and QUASS CEST measurements with different Ts , Td, and PLD. RESULTS The numerical simulation showed that the apparent CEST effect strongly depends on Ts , Td , and PLD, while the QUASS CEST algorithm minimizes such dependences. In the L-carnosine gel phantom, the proposed QUASS CEST effects (2.68 ± 0.12% [mean ± SD]) were higher than the apparent CEST effects (1.85 ± 0.26%, p < 5e-4). In the human brain imaging, Bland-Altman analysis bias of the proposed QUASS CEST effects was much smaller than the PLD-corrected apparent CEST effects (0.03% vs. -0.54%), indicating the proposed fast multi-slice CEST imaging is robust and accurate. CONCLUSIONS The QUASS processing enables fast multi-slice CEST imaging with minimal loss in the measurement of the CEST effect.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA, Decatur, Georgia, USA.,Department of Physics & Astronomy, Georgia State University, Atlanta, Georgia, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Wang Q, Xiao H, Yu X, Lin H, Yang B, Zhang Y, Feng D, Yan F, Wang H. R1ρ at high spin-lock frequency could be a complementary imaging biomarker for liver iron overload quantification. Magn Reson Imaging 2020; 75:141-148. [PMID: 33129937 DOI: 10.1016/j.mri.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE To compare the correlations among the R1ρ, R2, and R2* relaxation rates with liver iron concentration (LIC) in the assessment of rat liver iron content and explore the application potential of R1ρ in assessing liver iron content. METHODS Iron dextran (dosage of 0, 25, 50, 100, and 200 mg/kg body weight) was injected into 35 male rats to increase the amount of iron storage in the liver. After one week, all rats were euthanized with isoflurane. A portion of the largest hepatic lobe was extracted to quantify the LIC by inductively coupled plasma, and the remaining liver tissue was stored in 4% buffered paraformaldehyde for 24 h before MRI. Spin-lock preparation with a RARE (rapid acquisition with relaxation enhancement) readout (9 different spin-lock times and 7 different spin-lock frequencies (FSLs)) and multi-echo UTE (ultrashort TE) pulses were developed to quantify R1ρ and R2 * on a Bruker 11.7 T MR system. For comparisons with R1ρ and R2*, R2 was acquired using the CPMG sequence. RESULTS Mean R1ρ values displayed dispersion, with decrease in R1ρ at higher FSLs. Spearman's correlation analysis (two-tailed) indicated that the R1ρ values were significantly associated with LIC at FSL = 2000, 2500, and 3000 Hz (r = 0.365 and P = 0.031, r = 0.608 and P < 0.001, and r = 0.764 and P < 0.001, respectively), and were not significantly associated with LIC at FSL = 500, 1000, 1250, and 1500 Hz (all P > 0.05). R2 and R2* showed significant linear correlations with LIC (r = 0.787 and P < 0.001, and r = 0.859 and P < 0.001, respectively). Correlation analysis across R1ρ, R2, and R* also suggested that the correlation strength between R1ρ and R2 and between R1ρ and R* showed an increasing trend with increase in FSL. CONCLUSION In this study, a strong association was observed between R1ρ and LIC at high FSLs further confirming previous findings. The results demonstrated that R1ρ at high FSL might serve as a complementary imaging biomarker for liver iron overload quantification.
Collapse
Affiliation(s)
- Qianfeng Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hong Xiao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Danyang Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.
| |
Collapse
|
11
|
Demetriou E, Kujawa A, Golay X. Pulse sequences for measuring exchange rates between proton species: From unlocalised NMR spectroscopy to chemical exchange saturation transfer imaging. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:25-71. [PMID: 33198968 DOI: 10.1016/j.pnmrs.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Within the field of NMR spectroscopy, the study of chemical exchange processes through saturation transfer techniques has a long history. In the context of MRI, chemical exchange techniques have been adapted to increase the sensitivity of imaging to small fractions of exchangeable protons, including the labile protons of amines, amides and hydroxyls. The MR contrast is generated by frequency-selective irradiation of the labile protons, which results in a reduction of the water signal associated with transfer of the labile protons' saturated magnetization to the protons of the surrounding free water. The signal intensity depends on the rate of chemical exchange and the concentration of labile protons as well as on the properties of the irradiation field. This methodology is referred to as CEST (chemical exchange saturation transfer) imaging. Applications of CEST include imaging of molecules with short transverse relaxation times and mapping of physiological parameters such as pH, temperature, buffer concentration and chemical composition due to the dependency of this chemical exchange effect on all these parameters. This article aims to describe these effects both theoretically and experimentally. In depth analysis and mathematical modelling are provided for all pulse sequences designed to date to measure the chemical exchange rate. Importantly, it has become clear that the background signal from semi-solid protons and the presence of the Nuclear Overhauser Effect (NOE), either through direct dipole-dipole mechanisms or through exchange-relayed signals, complicates the analysis of CEST effects. Therefore, advanced methods to suppress these confounding factors have been developed, and these are also reviewed. Finally, the experimental work conducted both in vitro and in vivo is discussed and the progress of CEST imaging towards clinical practice is presented.
Collapse
Affiliation(s)
- Eleni Demetriou
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Aaron Kujawa
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| |
Collapse
|
12
|
Chen W, Karampinos DC. Chemical-shift encoding-based water-fat separation with multifrequency fat spectrum modeling in spin-lock MRI. Magn Reson Med 2019; 83:1608-1624. [PMID: 31592557 DOI: 10.1002/mrm.28026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE Chemical exchange saturation transfer is used commonly to generate MRI contrast based on the chemical exchange effect. The spin-lock techniques can also be used to probe the chemical exchange and other molecular motion processes in tissues. The presence of fat can cause errors in spin-lock MRI. Signals from fat are typically suppressed based on spectral selectivity or T1 nulling approaches in spin-lock imaging. However, these methods cannot be used to suppress fat signals from multiple fat peaks. To address this problem, we report chemical-shift encoding-based water-fat separation approaches with multifrequency fat spectrum modeling. METHODS Both the conventional spin-lock and the adiabatic continuous-wave constant-amplitude spin lock (ACCSL) with multi-echo acquisitions are investigated for chemical-shift encoding-based water-fat separation in spin-lock imaging. A comparison is made of reconstructions based on 3 models: a single-peak fat spectrum model, a standard precalibrated proton density 6-peak fat spectrum model, and the self-calibrated relaxation-dependent 3-peak fat spectrum model. Comparisons were performed using Bloch simulations, phantom, and in vivo experiments at 3 T. RESULTS Conventional spin-lock acquisitions cannot be used for reliable water-fat separation with a multipeak fat spectrum model. Water-fat separation based on ACCSL acquisitions achieves superior performance compared with the use of conventional spin-lock acquisitions. The best result is achieved from ACCSL acquisition with self-calibrated relaxation-dependent multipeak fat spectrum modeling. CONCLUSION The ACCSL acquisition can be used for chemical-shift encoding-based water-fat separation with multipeak fat spectrum modeling. This approach has the potential to improve quantitative analysis using spin-lock MRI for assessing the biochemical properties of tissues.
Collapse
Affiliation(s)
- Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Stabinska J, Neudecker P, Ljimani A, Wittsack H, Lanzman RS, Müller‐Lutz A. Proton exchange in aqueous urea solutions measured by water‐exchange (WEX) NMR spectroscopy and chemical exchange saturation transfer (CEST) imaging in vitro. Magn Reson Med 2019; 82:935-947. [DOI: 10.1002/mrm.27778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Philipp Neudecker
- Institute of Physical Biology Heinrich Heine University Düsseldorf Dusseldorf Germany
- Institute of Complex Systems: Structural Biochemistry (ICS‐6), Forschungszentrum Jülich Julich Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Hans‐Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Rotem Shlomo Lanzman
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Anja Müller‐Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| |
Collapse
|
14
|
Herz K, Gandhi C, Schuppert M, Deshmane A, Scheffler K, Zaiss M. CEST imaging at 9.4 T using adjusted adiabatic spin-lock pulses for on- and off-resonant T1⍴-dominated Z-spectrum acquisition. Magn Reson Med 2018; 81:275-290. [DOI: 10.1002/mrm.27380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/08/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- IMPRS for Cognitive and Systems Neuroscience; University of Tuebingen; Tuebingen Germany
| | - Chirayu Gandhi
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics; Tuebingen Germany
| | - Mark Schuppert
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics; Tuebingen Germany
| | - Anagha Deshmane
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics; Tuebingen Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- Department of Biomedical Magnetic Resonance; University of Tuebingen; Tuebingen Germany
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics; Tuebingen Germany
| |
Collapse
|
15
|
Jiang B, Chen W. On-resonance and off-resonance continuous wave constant amplitude spin-lock and T 1ρ quantification in the presence of B 1 and B 0 inhomogeneities. NMR IN BIOMEDICINE 2018; 31:e3928. [PMID: 29693744 DOI: 10.1002/nbm.3928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Spin-lock MRI is a valuable diagnostic imaging technology, as it can be used to probe the macromolecule environment of tissues. Quantitative T1ρ imaging is one application of spin-lock MRI that is reported to be promising for a number of clinical applications. Spin-lock is often performed with a continuous RF wave at a constant RF amplitude either on resonance or off resonance. However, both on- and off-resonance spin-lock approaches are susceptible to B1 and B0 inhomogeneities, which results in image artifacts and quantification errors. In this work, we report a continuous wave constant amplitude spin-lock approach that can achieve negligible image artifacts in the presence of B1 and B0 inhomogeneities for both on- and off-resonance spin-lock. Under the adiabatic condition, by setting the maximum B1 amplitude of the adiabatic pulses equal to the B1 amplitude of spin-lock RF pulse, the spins are ensured to align along the effective field throughout the spin-lock process. We show that this results in simultaneous compensation of B1 and B0 inhomogeneities for both on- and off-resonance spin-lock. The relaxation effect during the entire adiabatic half passage (AHP) and reverse AHP, and the stationary solution of the Bloch-McConnell equation present at off-resonance frequency offset, are considered in the revised relaxation model. We demonstrate that these factors create a direct current component to the conventional relaxation model. In contrast to the previously reported dual-acquisition method, the revised relaxation model just requires one acquisition to perform quantification. The simulation, phantom, and in vivo experiments demonstrate that the proposed approach achieves superior image quality compared with the existing methods, and the revised relaxation model can perform T1ρ quantification with one acquisition instead of two.
Collapse
Affiliation(s)
- Baiyan Jiang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
16
|
Gochberg DF, Does MD, Zu Z, Lankford CL. Towards an analytic solution for pulsed CEST. NMR IN BIOMEDICINE 2018; 31:e3903. [PMID: 29460973 PMCID: PMC5935132 DOI: 10.1002/nbm.3903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 05/10/2023]
Abstract
Chemical exchange saturation transfer (CEST) is an imaging method based on magnetization exchange between solutes and water. This exchange generates changes in the measured signal after off-resonance radiofrequency irradiation. Although the analytic solution for CEST with continuous wave (CW) irradiation has been determined, most studies are performed using pulsed irradiation. In this work, we derive an analytic solution for the CEST signal after pulsed irradiation that includes both short-time rotation effects and long-time saturation effects in a two-pool system corresponding to water and a low-concentration exchanging solute pool. Several approximations are made to balance the accuracy and simplicity of the resulting analytic form, which is tested against numerical solutions of the coupled Bloch equations and is found to be largely accurate for amides at high fields, but less accurate at the higher exchange rates, lower offsets and typically higher irradiation powers of amines.
Collapse
Affiliation(s)
- Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Christopher L Lankford
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Chen W. Artifacts correction for T1rho imaging with constant amplitude spin-lock. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 274:13-23. [PMID: 27842257 DOI: 10.1016/j.jmr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/16/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.
Collapse
Affiliation(s)
- Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Schuenke P, Koehler C, Korzowski A, Windschuh J, Bachert P, Ladd ME, Mundiyanapurath S, Paech D, Bickelhaupt S, Bonekamp D, Schlemmer HP, Radbruch A, Zaiss M. Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med 2016; 78:215-225. [DOI: 10.1002/mrm.26370] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Patrick Schuenke
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Christina Koehler
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | - Andreas Korzowski
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Johannes Windschuh
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | | | - Daniel Paech
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | | | - David Bonekamp
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | | | - Alexander Radbruch
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | - Moritz Zaiss
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
- Max-Planck-Institute for Biological Cybernetics; Tübingen Baden-Württemberg Germany
| |
Collapse
|
19
|
Müller-Lutz A, Cronenberg T, Schleich C, Wickrath F, Zaiss M, Boos J, Wittsack HJ. Comparison of glycosaminoglycan chemical exchange saturation transfer using Gaussian-shaped and off-resonant spin-lock radiofrequency pulses in intervertebral disks. Magn Reson Med 2016; 78:280-284. [PMID: 27484469 DOI: 10.1002/mrm.26362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate, if a train of spin-lock pulses (chemical exchange saturation transfer with spin-lock pulses = CESL) improves biochemical glycosaminoglycan imaging compared with conventional chemical exchange saturation transfer with Gaussian-shaped pulses (CEST) in lumbar intervertebral discs. METHODS T2 , CEST, and CESL imaging was performed in lumbar intervertebral discs of 15 healthy volunteers at 3 Tesla. Mean and standard deviation of the asymmetric magnetization transfer ratio (MTRasym ), the asymmetric spin-lock ratio (SLRasym ) and T2 values were calculated for nucleus pulposus (NP) and annulus fibrosus (AF). Wilcoxon test was used to analyze differences between MTRasym and SLRasym . Pearson correlation was used to determine the relationship between MTRasym , SLRasym and T2 . RESULTS Data showed no significant difference between MTRasym and SLRasym (NP: P = 0.35; AF: P = 0.34). MTRasym and SLRasym values differed significantly between NP and AF (MTRasym : P = 0.014, SLRasym : P = 0.005). T2 values correlated significantly with MTRasym (NP: ρ = 0.76, P < 0.001; AF: ρ = 0.60, P < 0.001) and SLRasym (NP: ρ = 0.73, P < 0.001; AF: ρ = 0.47, P < 0.001). CONCLUSION CESL does not improve the chemical exchange asymmetry effect compared with conventional CEST, but leads to comparable results. Magn Reson Med 78:280-284, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Anja Müller-Lutz
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Tom Cronenberg
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Christoph Schleich
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Frithjof Wickrath
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Moritz Zaiss
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Boos
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Hans-Jörg Wittsack
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| |
Collapse
|
20
|
Zhang J, Nissi MJ, Idiyatullin D, Michaeli S, Garwood M, Ellermann J. Capturing fast relaxing spins with SWIFT adiabatic rotating frame spin-lattice relaxation (T1ρ) mapping. NMR IN BIOMEDICINE 2016; 29:420-30. [PMID: 26811973 PMCID: PMC4805510 DOI: 10.1002/nbm.3474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 05/18/2023]
Abstract
Rotating frame spin-lattice relaxation, with the characteristic time constant T1ρ, provides a means to access motion-restricted (slow) spin dynamics in MRI. As a result of their restricted motion, these spins are sometimes characterized by a short transverse relaxation time constant T2 and thus can be difficult to detect directly with conventional image acquisition techniques. Here, we introduce an approach for three-dimensional adiabatic T1ρ mapping based on a magnetization-prepared sweep imaging with Fourier transformation (MP-SWIFT) sequence, which captures signal from almost all water spin populations, including the extremely fast relaxing pool. A semi-analytical procedure for T1ρ mapping is described. Experiments on phantoms and musculoskeletal tissue specimens (tendon, articular and epiphyseal cartilages) were performed at 9.4 T for both the MP-SWIFT and fast spin echo (FSE) read outs. In the phantom with liquids having fast molecular tumbling and a single-valued T1ρ time constant, the measured T1ρ values obtained with MP-SWIFT and FSE were similar. Conversely, in normal musculoskeletal tissues, T1ρ values measured with MP-SWIFT were much shorter than the values obtained with FSE. Studies of biological tissue specimens demonstrated that T1ρ-weighted SWIFT provides higher contrast between normal and diseased tissues relative to conventional acquisitions. Adiabatic T1ρ mapping with SWIFT readout captures contributions from the otherwise undetected fast relaxing spins, allowing more informative T1ρ measurements of normal and diseased states.
Collapse
Affiliation(s)
- J Zhang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - M J Nissi
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - D Idiyatullin
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - S Michaeli
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - M Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - J Ellermann
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Meissner JE, Goerke S, Rerich E, Klika KD, Radbruch A, Ladd ME, Bachert P, Zaiss M. Quantitative pulsed CEST-MRI using Ω-plots. NMR IN BIOMEDICINE 2015; 28:1196-208. [PMID: 26278686 DOI: 10.1002/nbm.3362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 05/24/2023]
Abstract
Chemical exchange saturation transfer (CEST) allows the indirect detection of dilute metabolites in living tissue via MRI of the tissue water signal. Selective radio frequency (RF) with amplitude B1 is used to saturate the magnetization of protons of exchanging groups, which transfer the saturation to the abundant water pool. In a clinical setup, the saturation scheme is limited to a series of short pulses to follow regulation of the specific absorption rate (SAR). Pulsed saturation is difficult to describe theoretically, thus rendering quantitative CEST a challenging task. In this study, we propose a new analytical treatment of pulsed CEST by extending a former interleaved saturation-relaxation approach. Analytical integration of the continuous wave (cw) eigenvalue as a function of the RF pulse shape leads to a formula for pulsed CEST that has the same structure as that for cw CEST, but incorporates two form factors that are determined by the pulse shape. This enables analytical Z-spectrum calculations and permits deeper insight into pulsed CEST. Furthermore, it extends Dixon's Ω-plot method to the case of pulsed saturation, yielding separately, and independently, the exchange rate and the relative proton concentration. Consequently, knowledge of the form factors allows a direct comparison of the effect of the strength and B1 dispersion of pulsed CEST experiments with the ideal case of cw saturation. The extended pulsed CEST quantification approach was verified using creatine phantoms measured on a 7 T whole-body MR tomograph, and its range of validity was assessed by simulations.
Collapse
Affiliation(s)
- Jan-Eric Meissner
- Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
- Division of Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| | - Eugenia Rerich
- Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| | - Alexander Radbruch
- Division of Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
- Department of Neuroradiology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| | - Moritz Zaiss
- Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany
| |
Collapse
|
22
|
Roeloffs V, Meyer C, Bachert P, Zaiss M. Towards quantification of pulsed spinlock and CEST at clinical MR scanners: an analytical interleaved saturation-relaxation (ISAR) approach. NMR IN BIOMEDICINE 2015; 28:40-53. [PMID: 25328046 DOI: 10.1002/nbm.3192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 05/24/2023]
Abstract
Off-resonant spinlock (SL) enables an NMR imaging technique that can detect dilute metabolites similar to chemical exchange saturation transfer. However, in clinical MR scanners, RF pulse widths are restricted due to recommended specific absorption rate limits. Therefore, trains of short RF pulses that provide effective saturation during the required irradiation period are commonly employed. Quantitative evaluation of spectra obtained by pulsed saturation schemes is harder to achieve, since the theory of continuous wave saturation cannot be applied directly. In this paper we demonstrate the general feasibility of quantifying proton exchange rates from data obtained in pulsed SL experiments on a clinical 3 T MR scanner. We also propose a theoretical treatment of pulsed SL in the presence of chemical exchange using an interleaved saturation-relaxation approach. We show that modeling magnetization transfer during the pauses between the RF pulses is crucial, especially in the case of exchange rates that are small with respect to the delay times. The dynamics is still governed by a monoexponential decay towards steady state, for which we give the effective rate constant. The derived analytical model agrees well with the full numerical simulation of the Bloch-McConnell equations for a broad range of values of the system parameters.
Collapse
Affiliation(s)
- Volkert Roeloffs
- Deutsches Krebsforschungszentrum (DKFZ), German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany; Biomedizinische NMR Forschungs GmbH, am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | | | |
Collapse
|
23
|
Moonen RPM, van der Tol P, Hectors SJCG, Starmans LWE, Nicolay K, Strijkers GJ. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles. Magn Reson Med 2014; 74:1740-9. [PMID: 25470118 DOI: 10.1002/mrm.25544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. METHODS In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements (B0 = 1.41T) of agar (2%) with concentration ranges of three different iron oxide nanoparticles (IONs) (Sinerem, Resovist, and ION-Micelle) and microparticles of iron oxide (MPIO). T1ρ dispersion was measured for a range of spin-lock amplitudes (γB1 = 6.5-91 kHz). Under relevant in vivo conditions (B0 = 9.4T; γB1 = 100-1500 Hz), T1ρ and T2 mapping of the liver was performed in seven mice pre- and 24 h postinjection of Sinerem. RESULTS Addition of iron oxide nanoparticles decreased T1ρ as well as the native T1ρ dispersion of agar, leading to increased contrast at high spin-lock amplitudes. Changes of T1ρ were highly linear with iron concentration and much larger than T2 changes. MPIO did not show this effect. In vivo, a decrease of T1ρ was observed with no clear influence on T1ρ dispersion. CONCLUSION By suppression of T1ρ dispersion, iron oxide nanoparticles cause enhanced T1ρ contrast compared to T2 . The underlying mechanism appears to be loss of lock. Spin-lock MR is therefore a promising technique for sensitive detection of iron oxide contrast agents.
Collapse
Affiliation(s)
- Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieternel van der Tol
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefanie J C G Hectors
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lucas W E Starmans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Jin T, Kim SG. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies. NMR IN BIOMEDICINE 2014; 27:1313-24. [PMID: 25199631 PMCID: PMC4201909 DOI: 10.1002/nbm.3191] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 05/03/2023]
Abstract
The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons.
Collapse
Affiliation(s)
- Tao Jin
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Departments of Global Biomedical Engineering and Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
25
|
Kauppinen RA. Multiparametric magnetic resonance imaging of acute experimental brain ischaemia. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:12-25. [PMID: 24924265 DOI: 10.1016/j.pnmrs.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Ischaemia is a condition in which blood flow either drops to zero or proceeds at severely decreased levels that cannot supply sufficient oxidizable substrates to maintain energy metabolism in vivo. Brain, a highly oxidative organ, is particularly susceptible to ischaemia. Ischaemia leads to loss of consciousness in seconds and, if prolonged, permanent tissue damage is inevitable. Ischaemia primarily results in a collapse of cerebral energy state, followed by a series of subtle changes in anaerobic metabolism, ion and water homeostasis that eventually initiate destructive internal and external processes in brain tissue. (31)P and (1)H NMR spectroscopy were initially used to evaluate anaerobic metabolism in brain. However, since the early 1990s (1)H Magnetic Resonance Imaging (MRI), exploiting the nuclear magnetism of tissue water, has become the key method for assessment of ischaemic brain tissue. This article summarises multi-parametric (1)H MRI work that has exploited diffusion, relaxation and magnetisation transfer as 'contrasts' to image ischaemic brain in preclinical models for the first few hours, with a view to assessing evolution of ischaemia and tissue viability in a non-invasive manner.
Collapse
Affiliation(s)
- Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Centre, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| |
Collapse
|
26
|
Goerke S, Zaiss M, Bachert P. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro. NMR IN BIOMEDICINE 2014; 27:507-18. [PMID: 24535718 DOI: 10.1002/nbm.3086] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 05/17/2023]
Abstract
Chemical exchange saturation transfer (CEST) enables indirect detection of small metabolites in tissue by MR imaging. To optimize and interpret creatine-CEST imaging we characterized the dependence of the exchange-rate constant k(sw) of creatine guanidinium protons in aqueous creatine solutions as a function of pH and temperature T in vitro. Model solutions in the low pH range (pH = 5-6.4) were measured by means of water-exchange (WEX)-filtered ¹H NMR spectroscopy on a 3 T whole-body MR tomograph. An extension of the Arrhenius equation with effective base-catalyzed Arrhenius parameters yielded a general expression for k(sw) (pH, T). The defining parameters were identified as the effective base-catalyzed rate constant k(b,eff) (298.15 K) = (3.009 ± 0.16) × 10⁹ Hz l/mol and the effective activation energy E(A,b,eff) = (32.27 ± 7.43) kJ/mol at a buffer concentration of c(buffer) = (1/15) M. As expected, a strong dependence of k(sw) on temperature was observed. The extrapolation of the exchange-rate constant to in vivo conditions (pH = 7.1, T = 37 °C) led to the value of the exchange-rate constant k(sw) = 1499 Hz. With the explicit function k(sw) (pH, T) available, absolute-pH CEST imaging could be realized and experimentally verified in vitro. By means of our calibration method it is possible to adjust the guanidinium proton exchange-rate constant k(sw) to any desired value by preparing creatine model solutions with a specific pH and temperature.
Collapse
Affiliation(s)
- Steffen Goerke
- Deutsches Krebsforschungszentrum [German Cancer Research Center] (DKFZ), Department of Medical Physics in Radiology, Heidelberg, Germany
| | | | | |
Collapse
|
27
|
Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, Gochberg DF, Bachert P. Inverse Z-spectrum analysis for spillover-, MT-, and T1 -corrected steady-state pulsed CEST-MRI--application to pH-weighted MRI of acute stroke. NMR IN BIOMEDICINE 2014; 27:240-52. [PMID: 24395553 PMCID: PMC4520220 DOI: 10.1002/nbm.3054] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/08/2013] [Accepted: 10/30/2013] [Indexed: 05/03/2023]
Abstract
Endogenous chemical exchange saturation transfer (CEST) effects are always diluted by competing effects, such as direct water proton saturation (spillover) and semi-solid macromolecular magnetization transfer (MT). This leads to unwanted T2 and MT signal contributions that lessen the CEST signal specificity to the underlying biochemical exchange processes. A spillover correction is of special interest for clinical static field strengths and protons resonating near the water peak. This is the case for all endogenous CEST agents, such as amide proton transfer, -OH-CEST of glycosaminoglycans, glucose or myo-inositol, and amine exchange of creatine or glutamate. All CEST effects also appear to be scaled by the T1 relaxation time of water, as they are mediated by the water pool. This forms the motivation for simple metrics that correct the CEST signal. Based on eigenspace theory, we propose a novel magnetization transfer ratio (MTRRex ), employing the inverse Z-spectrum, which eliminates spillover and semi-solid MT effects. This metric can be simply related to Rex , the exchange-dependent relaxation rate in the rotating frame, and ka , the inherent exchange rate. Furthermore, it can be scaled by the duty cycle, allowing for simple translation to clinical protocols. For verification, the amine proton exchange of creatine in solutions with different agar concentrations was studied experimentally at a clinical field strength of 3 T, where spillover effects are large. We demonstrate that spillover can be properly corrected and that quantitative evaluation of pH and creatine concentration is possible. This proves that MTRRex is a quantitative and biophysically specific CEST-MRI metric. Applied to acute stroke induced in rat brain, the corrected CEST signal shows significantly higher contrast between the stroke area and normal tissue, as well as less B1 dependence, than conventional approaches.
Collapse
Affiliation(s)
- Moritz Zaiss
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Heidelberg, Germany
- Correspondence to: M. Zaiss, German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Heidelberg, Germany
| | - Imad S. Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Robert J. Singer
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel F. Gochberg
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Peter Bachert
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Heidelberg, Germany
| |
Collapse
|
28
|
Zaiss M, Bachert P. Chemical exchange saturation transfer (CEST) and MRZ-spectroscopyin vivo: a review of theoretical approaches and methods. Phys Med Biol 2013; 58:R221-69. [DOI: 10.1088/0031-9155/58/22/r221] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Nieminen MT, Nissi MJ, Mattila L, Kiviranta I. Evaluation of chondral repair using quantitative MRI. J Magn Reson Imaging 2013; 36:1287-99. [PMID: 23165732 DOI: 10.1002/jmri.23644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/17/2012] [Indexed: 01/30/2023] Open
Abstract
Various quantitative magnetic resonance imaging (qMRI) biomarkers, including but not limited to parametric MRI mapping, semiquantitative evaluation, and morphological assessment, have been successfully applied to assess cartilage repair in both animal and human studies. Through the interaction between interstitial water and constituent macromolecules the compositional and structural properties of cartilage can be evaluated. In this review a comprehensive view of a variety of quantitative techniques, particularly those involving parametric mapping, and their relationship to the properties of cartilage repair is presented. Some techniques, such as T2 relaxation time mapping and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), are well established, while the full potential of more recently introduced techniques remain to be demonstrated. A combination of several MRI techniques is necessary for a comprehensive characterization of chondral repair.
Collapse
Affiliation(s)
- Miika T Nieminen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | | | | | | |
Collapse
|
30
|
Zaiss M, Bachert P. Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange -- modeling off-resonant spin-lock and chemical exchange saturation transfer. NMR IN BIOMEDICINE 2013; 26:507-18. [PMID: 23281186 DOI: 10.1002/nbm.2887] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 05/17/2023]
Abstract
Chemical exchange observed by NMR saturation transfer (CEST) and spin-lock (SL) experiments provide an MRI contrast by indirect detection of exchanging protons. The determination of the relative concentrations and exchange rates is commonly achieved by numerical integration of the Bloch-McConnell equations. We derive an analytical solution of the Bloch-McConnell equations that describes the magnetization of coupled spin populations under radiofrequency irradiation. As CEST and off-resonant SL are equivalent, their steady-state magnetization and dynamics can be predicted by the same single eigenvalue: the longitudinal relaxation rate in the rotating frame R1ρ . For the case of slowly exchanging systems, e.g. amide protons, the saturation of the small proton pool is affected by transverse relaxation (R2b ). It turns out, that R2b is also significant for intermediate exchange, such as amine- or hydroxyl-exchange or paramagnetic CEST agents, if pools are only partially saturated. We propose a solution for R1ρ that includes R2 of the exchanging pool by extending existing approaches, and verify it by numerical simulations. With the appropriate projection factors, we obtain an analytical solution for CEST and SL for nonzero R2 of the exchanging pool, exchange rates in the range 1-10(4) Hz, B1 from 0.1 to 20 μT and arbitrary chemical shift differences between the exchanging pools, whilst considering the dilution by direct water saturation across the entire Z-spectra. This allows the optimization of irradiation parameters and the quantification of pH-dependent exchange rates and metabolite concentrations. In addition, we propose evaluation methods that correct for concomitant direct saturation effects. It is shown that existing theoretical treatments for CEST are special cases of this approach.
Collapse
Affiliation(s)
- Moritz Zaiss
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | |
Collapse
|
31
|
Wang YXJ, Zhao F, Yuan J, Mok GS, Ahuja AT, Griffith JF. Accelerated T1rho relaxation quantification in intervertebral disc using limited spin-lock times. Quant Imaging Med Surg 2013; 3:54-8. [PMID: 23482987 DOI: 10.3978/j.issn.2223-4292.2013.02.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/24/2013] [Indexed: 11/14/2022]
Abstract
OBJECTIVE T1rho relaxation measurement has the potential to identify early biochemical changes in the intervertebral disc. Traditionally, multiple spin-lock times (SLT), often ~5 SLTs, are used to ensure the accuracy and robustness of T1rho mapping. It will be advantageous to use fewer SLT points if comparable accuracy of T1rho mapping can be achieved. In this study, the feasibility of using 3 SLT points to measure intervertebral disc T1rho relaxation time is explored. MATERIALS AND METHODS The lumbar spine of 12 subjects (age range: 30-75 years, disc =60) were studied on 3-T MRI. For T1rho measurement, a rotary echo spin-lock pulse was implemented in a 3D balanced fast field echo (b-FFE) sequence. Spin-lock frequency was set as 500 Hz and the SLTs of 1, 10, 20, 40, and 60 ms were acquired. T1rho maps were generated by fitting each pixel's intensity as a function of SLT using a non-negative least-square fitting algorithm. Images were analysed in the mid-sagittal section. T1rho maps were re-constructed using all 5 SLT points of 1, 10, 20, 40, and 60 ms, and three SLT points of 1, 20, and 60 ms respectively. ROIs included nucleus pulposus (NP), anterior annulus fibrosus (AF) and posterior annulus fibrosus. Values of anterior AF and posterior AF were averaged as the value for AF. Agreement of T1rho measurements using different SLT points was assessed using intra-class correlation coefficient (ICC) on absolute agreement as well as Bland and Altman plot. RESULTS There was no significant difference for T1rho values by 5-SLT measurement and 3-SLT measurement in both NP (P=0.63) and AF (P=0.31). The ICC for 5-SLT T1rho measurement vs. 3-SLT T1rho measurement was 0.991 and 0.981 respectively for NP and AF T1rho time. The Bland and Altman plots for the comparison showed a mean difference of 3.14 and 1.83 for NP and AF respectively. Polling the T1rho values for NP and AF in 60 discs together, the ICC for 5-SLT T1rho measurement vs. 3-SLT T1rho measurement was 0.993, and the Bland and Altman analysis showed a mean difference of 2.56. CONCLUSIONS This study suggests that adopting 3 SLTs of 1, 20, and 60 ms can be an acceptable alternative for the disc T1rho measurement.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
32
|
Shapiro L, Harish M, Hargreaves B, Staroswiecki E, Gold G. Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging 2013; 36:775-87. [PMID: 22987756 DOI: 10.1002/jmri.23629] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The technology of musculoskeletal magnetic resonance imaging (MRI) is advancing at a dramatic rate. MRI is now done at medium and higher field strengths with more specialized surface coils and with more variable pulse sequences and postprocessing techniques than ever before. These innumerable technical advances are advantageous as they lead to an increased signal-to-noise ratio and increased variety of soft-tissue contrast options. However, at the same time they potentially produce more imaging artifacts when compared with past techniques. Substantial technical advances have considerable clinical challenges in musculoskeletal radiology such as postoperative patient imaging, cartilage mapping, and molecular imaging. In this review we consider technical advances in hardware and software of musculoskeletal MRI along with their clinical applications.
Collapse
Affiliation(s)
- Lauren Shapiro
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
33
|
Zhao F, Deng M, Yuan J, Teng GJ, Ahuja AT, Wang YXJ. Experimental evaluation of accelerated T1rho relaxation quantification in human liver using limited spin-lock times. Korean J Radiol 2012; 13:736-42. [PMID: 23118572 PMCID: PMC3484294 DOI: 10.3348/kjr.2012.13.6.736] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/15/2012] [Indexed: 12/17/2022] Open
Abstract
Objective It was reported lately that to obtain consistent liver T1rho measurement, at 3T MRI using six spin-lock times (SLTs), is feasible. In this study, the feasibility of using three or two SLT points to measure liver T1rho relaxation time was explored. Materials and Methods Seventeen healthy volunteers underwent 36 examinations. Three representative axial slices were selected to cut through the upper, middle, and lower liver. A rotary echo spin-lock pulse was implemented in a 2D fast field echo sequence. Spin-lock frequency was 500 Hz and the spin-lock times of 1, 10, 20, 30, 40, and 50 milliseconds (ms) were used for T1rho mapping. T1rho maps were constructed by using all 6 SLT points, three SLT points of 1, 20, and 50 ms, or two SLTs of 1 and 50 ms, respectively. Intra-class correlation coefficient (ICC) and Bland and Altman plot were used to assess the measurement agreement. Results Two examinations were excluded, due to motion artifact at the SLT of 50 ms. With the remaining 34 examinations, the ICC for 6-SLT vs. 3-SLT T1rho measurements was 0.922, while the ICC for 6-SLT vs. 2-SLT T1rho measurement was 0.756. The Bland and Altman analysis showed a mean difference of 0.19 (95% limits of agreement: -1.34, 1.73) for 6-SLT vs. 3-SLT T1rho measurement, and the mean difference of 0.89 (95% limits of agreement: -1.67, 3.45) for 6-SLT vs. 2-SLT T1rho measurement. The scan re-scan reproducibility ICC (n = 11 subjects) was 0.755, 0.727, and 0.528 for 6-SLT measurement, 3-SLT measurement, and 2-SLT measurement, respectively. Conclusion Adopting 3 SLTs of 1, 20, and 50 ms can be an acceptable alternative for the liver T1rho measurement, while 2 SLTs of 1 and 50 ms do not provide reliable measurement.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
34
|
Jin T, Kim SG. Quantitative chemical exchange sensitive MRI using irradiation with toggling inversion preparation. Magn Reson Med 2012; 68:1056-64. [PMID: 22887701 DOI: 10.1002/mrm.24449] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 11/07/2022]
Abstract
Chemical exchange (CE) sensitive MRI contrast acquired with an off-resonance irradiation pulse is affected by other relaxation mechanisms, such as longitudinal and transverse relaxations. In particular, for intermediate CEs, the effect of transverse relaxation often dominates CE contrast. Since water relaxation rates can change significantly in many pathological conditions or during physiological challenge, it is crucial to separate these relaxation effects in order to obtain pure CE contrast. Here we proposed a novel acquisition scheme in which a toggling inversion pulse is applied prior to the off-resonance irradiation. By combined acquisition of irradiation images with and without an inversion pulse at both the labile proton frequency and the reference frequency, longitudinal and transverse relaxation contributions are cancelled, and the quantification of CE parameters, such as the exchange rate and the labile proton concentration, can be simplified. Furthermore, the CE-mediated relaxation rate can be readily determined with a relatively short irradiation pulse and without approaching the steady state, therefore, reducing the limitations on hardware and specific absorption rate requirements. The signal characteristics of the proposed method are evaluated by numerical simulations and phantom experiments.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.
| | | |
Collapse
|
35
|
Abstract
The technology of musculoskeletal magnetic resonance imaging is advancing at a dramatic rate. Magnetic resonance imaging is now done at medium and higher field strengths with more specialized surface coils and with more variable pulse sequences and postprocessing techniques than ever before. These numerable technical advances are advantageous because they lead to an increased signal-to-noise ratio and increased variety of soft tissue contrast options. However, at the same time, they potentially produce more imaging artifacts when compared with past techniques. Substantial technical advances have considerable clinical challenges in musculoskeletal radiology such as postoperative patient imaging, cartilage mapping, and molecular imaging. In this review, we consider technical advances in hardware and software of musculoskeletal magnetic resonance imaging along with their clinical applications.
Collapse
|
36
|
Yuan J, Zhao F, Griffith JF, Chan Q, Wang YXJ. Optimized efficient liverT1ρmapping using limited spin lock times. Phys Med Biol 2012; 57:1631-40. [DOI: 10.1088/0031-9155/57/6/1631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Richardson OC, Scott MLJ, Tanner SF, Waterton JC, Buckley DL. Overcoming the low relaxivity of gadofosveset at high field with spin locking. Magn Reson Med 2011; 68:1234-8. [PMID: 22161901 PMCID: PMC3666098 DOI: 10.1002/mrm.23316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/10/2011] [Accepted: 11/12/2011] [Indexed: 01/13/2023]
Abstract
The contrast agent gadofosveset, which binds reversibly to serum albumin, has a high longitudinal relaxivity at lower magnetic fields (≤3.0 T) but a much lower relaxivity at high fields. Spin locking is sensitive to macromolecular content; it is hypothesized that combining this technique with the albumin-binding properties of gadofosveset may enable increased relaxivity at high fields. In vitro measurements at 4.7 T found significantly higher spin-lock relaxation rates, R1ρ (1/T1ρ), when gadofosveset was serum albumin-bound than when unbound. R1ρ values for a nonbinding contrast agent (gadopentetate dimeglumine) in serum albumin were similar to those for unbound gadofosveset. R2 (1/T2) values were also significantly higher at 4.7 T for serum albumin-bound gadofosveset than for unbound. Spin locking at high field generates significantly higher relaxation rates for gadofosveset than conventional contrast agents and may provide a method for differentiating free and bound molecules at these field strengths.
Collapse
Affiliation(s)
- O C Richardson
- Division of Medical Physics, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
38
|
Abstract
Musculoskeletal MRI is advancing rapidly, with innovative technology and significant potential for immediate clinical impact. In particular, cartilage imaging has become a topic of increasing interest as our aging population develops diseases such as osteoarthritis. Advances in MRI hardware and software have led to increased image quality and tissue contrast. Additional developments have allowed the assessment of cartilage macromolecular content, which may be crucial to the early detection of musculoskeletal diseases. This comprehensive article considers current morphological and physiological cartilage imaging techniques, their clinical applications, and their potential to contribute to future improvements in the imaging of cartilage.
Collapse
|
39
|
Jin T, Wang P, Zong X, Kim SG. Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast. Neuroimage 2011; 59:1218-27. [PMID: 21871570 DOI: 10.1016/j.neuroimage.2011.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/03/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022] Open
Abstract
Chemical exchange between water and labile protons from amino-acids, proteins and other molecules can be exploited to provide tissue contrast with magnetic resonance imaging (MRI) techniques. Using an off-resonance Spin-Locking (SL) scheme for signal preparation is advantageous because the image contrast can be tuned to specific exchange rates by adjusting SL pulse parameters. While the amide-proton transfer (APT) contrast is obtained optimally with steady-state preparation, using a low power and long irradiation pulse, image contrast from the faster amine-water proton exchange (APEX) is optimized in the transient state with a higher power and a shorter SL pulse. Our phantom experiments show that the APEX contrast is sensitive to protein and amino acid concentration, as well as pH. In vivo 9.4-T SL MRI data of rat brains with irradiation parameters optimized to slow exchange rates have a sharp peak at 3.5 ppm and also broad peak at -2 to -5 ppm, inducing negative contrast in APT-weighted images, while the APEX image has large positive signal resulting from a weighted summation of many different amine-groups. Brain ischemia induced by cardiac arrest decreases pure APT signal from ~1.7% to ~0%, and increases the APEX signal from ~8% to ~16%. In the middle cerebral artery occlusion (MCAO) model, the APEX signal shows different spatial and temporal patterns with large inter-animal variations compared to APT and water diffusion maps. Because of the similarity between the chemical exchange saturation transfer (CEST) and SL techniques, APEX contrast can also be obtained by a CEST approach using similar irradiation parameters. APEX may provide useful information for many diseases involving a change in levels of proteins, peptides, amino-acids, or pH, and may serve as a sensitive neuroimaging biomarker.
Collapse
Affiliation(s)
- Tao Jin
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.
| | | | | | | |
Collapse
|
40
|
Witschey WRT, Borthakur A, Elliott MA, Fenty M, Sochor MA, Wang C, Reddy R. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging 2008; 28:744-54. [PMID: 18777535 DOI: 10.1002/jmri.21444] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop a T1rho-prepared, balanced gradient echo (b-GRE) pulse sequence for rapid three-dimensional (3D) T1rho relaxation mapping within the time constraints of a clinical exam (<10 minutes), examine the effect of acquisition on the measured T1rho relaxation time and optimize 3D T1rho pulse sequences for the knee joint and spine. MATERIALS AND METHODS A pulse sequence consisting of inversion recovery-prepared, fat saturation, T1rho-preparation, and b-GRE image acquisition was used to obtain 3D volume coverage of the patellofemoral and tibiofemoral cartilage and lower lumbar spine. Multiple T1rho-weighted images at various contrast times (spin-lock pulse duration [TSL]) were used to construct a T1rho relaxation map in both phantoms and in the knee joint and spine in vivo. The transient signal decay during b-GRE image acquisition was corrected using a k-space filter. The T1rho-prepared b-GRE sequence was compared to a standard T1rho-prepared spin echo (SE) sequence and pulse sequence parameters were optimized numerically using the Bloch equations. RESULTS The b-GRE transient signal decay was found to depend on the initial T1rho-preparation and the corresponding T1rho map was altered by variations in the point spread function with TSL. In a two compartment phantom, the steady state response was found to elevate T1rho from 91.4+/-6.5 to 293.8+/-31 and 66.9+/-3.5 to 661+/-207 with no change in the goodness-of-fit parameter R2. Phase encoding along the longest cartilage dimension and a transient signal decay k-space filter retained T1rho contrast. Measurement of T1rho using the T1rho-prepared b-GRE sequence matches standard T1rho-prepared SE in the medial patellar and lateral patellar cartilage compartments. T1rho-preparedb-GRE T1rho was found to have low interscan variability between four separate scans. Mean patellar cartilage T1rho was elevated compared to femoral and tibial cartilage T1rho. CONCLUSION The T1rho-prepared b-GRE acquisition rapidly and reliably accelerates T1rho quantification of tissues offset partially by a TSL-dependent point spread function.
Collapse
Affiliation(s)
- Walter R T Witschey
- Metabolic Magnetic Resonance Research and Computing Center, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Regatte RR, Schweitzer ME. Novel contrast mechanisms at 3 Tesla and 7 Tesla. Semin Musculoskelet Radiol 2008; 12:266-80. [PMID: 18850506 DOI: 10.1055/s-0028-1083109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal degenerative disease, affecting millions of people. Although OA has been considered primarily a cartilage disorder associated with focal cartilage degeneration, it is accompanied by well-known changes in subchondral and trabecular bone, including sclerosis and osteophyte formation. The exact cause of OA initiation and progression remains under debate, but OA typically first affects weightbearing joints such as the knee. Magnetic resonance imaging (MRI) has been recognized as a potential tool for quantitative assessment of cartilage abnormalities due to its excellent soft tissue contrast. Over the last two decades, several new MR biochemical imaging methods have been developed to characterize the disease process and possibly predict the progression of knee OA. These new MR biochemical methods play an important role not only for diagnosis of disease at an early stage, but also for their potential use in monitoring outcome of various drug therapies (success or failure). Recent advances in multicoil radiofrequency technology and high field systems (3 T and above) significantly improve the sensitivity and specificity of imaging studies for the diagnosis of musculoskeletal disorders. The current state-of-the-art MR imaging methods are briefly reviewed for the quantitative biochemical and functional imaging assessment of musculoskeletal systems.
Collapse
Affiliation(s)
- Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10003, USA.
| | | |
Collapse
|
42
|
Martirosian P, Rommel E, Schick F, Deimling M. Control of susceptibility-related image contrast by spin-lock techniques. Magn Reson Imaging 2008; 26:1381-7. [PMID: 18586432 DOI: 10.1016/j.mri.2008.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/22/2008] [Accepted: 04/26/2008] [Indexed: 11/24/2022]
Abstract
Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T(2)() relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90 degrees pulses in a 90 degrees (x)-tau-90 degrees (-x) magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90 degrees pulse and the 180 degrees pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B(1) amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.
Collapse
Affiliation(s)
- Petros Martirosian
- Section on Experimental Radiology, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
43
|
Witschey WRT, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wallman DJ, Wang C, Reddy R. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 186:75-85. [PMID: 17291799 PMCID: PMC1995435 DOI: 10.1016/j.jmr.2007.01.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 05/13/2023]
Abstract
The origin of spin locking image artifacts in the presence of B(0) and B(1) magnetic field imperfections is shown theoretically using the Bloch equations and experimentally at low (omega(1) << Delta omega(0)), intermediate (omega(1) approximately Delta omega(0)) and high (omega(1) >> Delta omega(0)) spin locking field strengths. At low spin locking fields, the magnetization is shown to oscillate about an effective field in the rotating frame causing signature banding artifacts in the image. At high spin lock fields, the effect of the resonance offset Deltao mega(0) is quenched, but imperfections in the flip angle cause oscillations about the omega(1) field. A new pulse sequence is presented that consists of an integrated spin echo and spin lock experiment followed by magnetization storage along the -z-axis. It is shown that this sequence almost entirely eliminates banding artifacts from both types of field inhomogeneities at all spin locking field strengths. The sequence was used to obtain artifact free images of agarose in inhomogeneous B(0) and B(1) fields, off-resonance spins in fat and in vivo human brain images at 3 T. The new pulse sequence can be used to probe very low frequency (0-400 Hz) dynamic and static interactions in tissues without contaminating B(0) and B(1) field artifacts.
Collapse
Affiliation(s)
- Walter R T Witschey
- Graduate Group in Biochemistry and Molecular Biophysics and MMRRCC, University of Pennsylvania, B1 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6100, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Witschey WRT, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wang C, Reddy R. Compensation for spin-lock artifacts using an off-resonance rotary echo in T1rhooff-weighted imaging. Magn Reson Med 2007; 57:2-7. [PMID: 17191245 PMCID: PMC2877388 DOI: 10.1002/mrm.21134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of image artifacts in an off-resonance spin-locking experiment is shown to be imperfections in the excitation flip angle. A pulse sequence for off-resonance spin locking is implemented that compensates for imperfections in the excitation flip angle through an off-resonance rotary echo. The off-resonance rotary echo alternates the frequency offset and phase of the RF transmitter during two spin-locking pulses of equal duration. The underlying theory is detailed, and MR images demonstrate the effectiveness of the technique in agarose gel phantoms and in in vivo human brain at 3T.
Collapse
Affiliation(s)
- Walter R T Witschey
- Department of Biochemistry & Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR IN BIOMEDICINE 2006; 19:781-821. [PMID: 17075961 PMCID: PMC2896046 DOI: 10.1002/nbm.1102] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this article, both sodium magnetic resonance (MR) and T1rho relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1rho, a brief description of (i) principles of measuring T1rho relaxation, (ii) pulse sequences for computing T1rho relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1rho in biological tissues and (v) effects of exchange and dipolar interaction on T1rho dispersion are discussed. Correlation of T1rho relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1rho data from osteoarthritic specimens, animal models, healthy human subjects and as well from osteoarthritic patients are provided. The current status of T1rho relaxation mapping of cartilage and future directions is also discussed.
Collapse
Affiliation(s)
- Arijitt Borthakur
- MMRRCC, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Eric Mellon
- MMRRCC, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Sampreet Niyogi
- MMRRCC, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Walter Witschey
- MMRRCC, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - J. Bruce Kneeland
- MMRRCC, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Ravinder Reddy
- MMRRCC, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| |
Collapse
|
46
|
Michaeli S, Sorce DJ, Springer CS, Ugurbil K, Garwood M. T1rho MRI contrast in the human brain: modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 181:135-47. [PMID: 16675277 DOI: 10.1016/j.jmr.2006.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 03/06/2006] [Accepted: 04/01/2006] [Indexed: 05/09/2023]
Abstract
Longitudinal relaxation in the rotating frame (T1rho) is the dominant mechanism during a train of adiabatic full passage (AFP) RF pulses with no interpulse intervals, placed prior to an excitation pulse. Asymptotic apparent time constants (T1rho') were measured for human occipital lobe 1H2O at 4T using brief imaging readouts following such pulse trains. Two members of the hyperbolic secant (HSn) AFP pulse family (n=1 or 4; i.e., arising from different amplitude- and frequency-modulation functions) were used. These produced two different non-monoexponential signal decays during the pulse trains. Thus, there are differing contrasts in asymptotic T1rho' maps derived from these data. This behavior is quite different than that of 1H2O signals from an aqueous protein solution of roughly the same macromolecular volume fraction as tissue. The ROI-averaged decays from the two acquisitions can be simultaneously accommodated by a two-site-exchange model for an equilibrium isochronous process whose exchange condition is modulated during the pulse. The model employs a two-spin description of dipolar interaction fluctuations in each site. The intrinsic site R1rho(identical with T1rho(-1)) value is sensitive to fluctuations at the effective Larmor frequency (omegaeff) in the rotating frame, and this is modulated differently during the two types of AFP pulses. Agreement with the data is quite good for site orientation correlation time constants characteristic of macromolecule-interacting water (site A) and bulk-like water (site B). Since R1rhoA is significantly modulated while R1rhoB is not, the intrinsic relaxographic shutter-speed for the process (identical with /R1rhoA-R1rhoB/), and thus the exchange condition, is modulated. However, the mean residence time (67 ms) and intrinsic population fraction (0.2) values found for site A are each rather larger than might be expected, suggesting a disproportionate role for the water molecules known to be "buried" within the large and concentrated macromolecules of in vivo tissue.
Collapse
Affiliation(s)
- Shalom Michaeli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
47
|
Regatte RR, Akella SVS, Borthakur A, Reddy R. Proton spin-lock ratio imaging for quantitation of glycosaminoglycans in articular cartilage. J Magn Reson Imaging 2003; 17:114-21. [PMID: 12500280 DOI: 10.1002/jmri.10228] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To quantify glycosaminoglycans (GAG) in intact bovine patellar cartilage using the proton spin-lock ratio imaging method. This approach exploits spin-lattice relaxation time in the rotating frame (T(1rho)) imaging and T(1rho) relaxivity (R(1rho)). MATERIALS AND METHODS All the magnetic resonance imaging (MRI) experiments were performed on a 4-T whole-body GE Signa scanner (GEMS, Milwaukee, WI), and spectroscopy experiments of chondroitin sulfate (CS) phantoms were done on a 2-T custom-built spectrometer. A custom-built 11-cm-diameter transmit-receive birdcage coil, which was tuned to a proton frequency of 170 MHz, was employed for the imaging experiments. T(1rho) measurements were made using a fast spin echo (FSE) sequence pre-encoded with a three-pulse cluster consisting of two 90 degrees hard pulses separated by a low-power rectangle pulse for spin-locking. RESULTS The methodology is first validated on CS phantoms and then used to quantify GAG content in intact bovine cartilage (N = 5). There is a good agreement between the GAG map calculated from the T(1rho) ratio imaging method (71 +/- 4%) and GAG measured from spectrophotometric assay (75 +/- 5%) in intact bovine tissue. CONCLUSION We have demonstrated a proton spin-lock ratio imaging method to quantify absolute GAG distribution in the cartilage in a noninvasive and nondestructive manner.
Collapse
Affiliation(s)
- Ravinder Reddy Regatte
- MMRRCC, Department of Radiology, Stellar-Chance Laboratories, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6100, USA.
| | | | | | | |
Collapse
|
48
|
Gröhn OHJ, Mäkelä HI, Lukkarinen JA, DelaBarre L, Lin J, Garwood M, Kauppinen RA. On- and off-resonance T(1rho) MRI in acute cerebral ischemia of the rat. Magn Reson Med 2003; 49:172-6. [PMID: 12509834 DOI: 10.1002/mrm.10356] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of on-resonance T(1rho) (T(1rho)) and off-resonance T(1rho) (T(1rho)(off)) measurements to indicate acute cerebral ischemia in a rat model of transient middle cerebral artery (MCA) occlusion was investigated at 4.7 T. T(1rho) was determined with B(1) fields of 0.4, 0.8, and 1.6 G, and T(1rho)(off) with five offset frequencies ((Delta)omega) ranging from 0-7.5 kHz at B(1) of 0.4 G, yielding effective B(1) (B(eff)) from 0.4 to 1.8 G. Diffusion, T(1), and T(2) were also quantified. Both T(1rho) and T(1rho)(off) acquired with (Delta)(o)< 2.5 kHz showed positive contrast during the first hours of MCA occlusion in the ischemic tissue delineated by low diffusion. Interestingly, T(1rho)(off) contrast acquired with (Delta)omega > 2.5 kHz was clearly less sensitive to ischemic alterations, and developed with a delayed time course. This discrepancy is thought to be a consequence of the frequency dependency of cross-relaxation during irradiation with spin-lock pulses.
Collapse
Affiliation(s)
- Olli H J Gröhn
- Department of Biomedical NMR, National Bio-NMR Facility, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
49
|
Sammet S, Bock M, Streckenbach M, Bachert P. [Proton spinlocking and T1 rho-weighted MR imaging at 1.5 T]. Z Med Phys 2002; 12:16-23. [PMID: 12001367 DOI: 10.1016/s0939-3889(15)70539-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During spinlocking, the magnetization is aligned along an oscillating field (RF) and relaxes with time constant T1 rho, the spin-lattice relaxation time in the rotating frame. Using a clinical whole-body MR scanner, methods of spinlocking preparation and signal acquisition were combined to evaluate the potential of T1 rho-weighted MR imaging (T1 rho w-MRI) at B0 = 1.5 T. Examinations of the brain of healthy volunteers yielded images with pronounced contrast and T1 rho-variation of the tissue. However, the contrast resembled that of T2-weighted MRI, which is explained by the restricted spinlocking-field strength (BSL < or = 6 microT) on the tomograph. The result (mono-exponential fit) of serial T1 rho w-MRI data from examinations of 8 volunteers was on average 105 +/- 4 ms in the gray matter and 86 +/- 4 ms in the white matter (for BSL = 3 microT). The values are comparable to T2 of both tissues. MRT with spinlocking is less susceptible to local magnetic field inhomogeneities than conventional MRI.
Collapse
Affiliation(s)
- Steffen Sammet
- Abteilung Biophysik und Medizinische Strahlenphysik, Deutsches Krebsforschungszentrum (dkfz), Heidelberg
| | | | | | | |
Collapse
|
50
|
Abstract
A method for MR angiography using an RF labeling technique is suggested. The method utilizes a slice-selective spin-lock pulse sequence for tagging the spins of inflowing blood. The pulse sequence begins with a spatially selective 90 degrees (x) RF pulse, followed by a nonselective composite locking pulse of 135 degrees (y) - n[360 degrees (y)]-135 degrees (y) and by a 90 degrees (-x) pulse. A spoiler gradient is then applied. A rapid imaging stage, which yields a T(1)rho-weighted signal from the tagged spins, completes the sequence. Untagged spins are thoroughly dephased and consequently suppressed in the image. Thus, contrast is obtained without an injection of a contrast material or image subtraction. Furthermore, the flow of the tagged bolus can be visualized. The sequence was implemented on phantoms and on human volunteers using a 1.5T scanner. The results indicate the feasibility of the suggested sequence.
Collapse
Affiliation(s)
- H Azhari
- Department of Biomedical Engineering, Technion IIT, Haifa, Israel.
| | | | | |
Collapse
|