1
|
Urzì C, Meyer C, Nuoffer JM, Vermathen P. Methods for Oxygen Determination in an NMR Bioreactor as a Surrogate Marker for Metabolomic Studies in Living Cell Cultures. Anal Chem 2023; 95:17486-17493. [PMID: 37989262 DOI: 10.1021/acs.analchem.3c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear magnetic resonance (NMR) approaches have been described as a powerful method for measuring oxygen in tissue cultures and body fluids by using relaxation time dependencies of substances on pO2. The present NMR study describes methods to longitudinally monitor global, in situ intracellular, and spatially resolved oxygen tension in culture media and 3D cell cultures using relaxation times of water without the need to use external sensors. 1H NMR measurements of water using a modified inversion recovery pulse scheme were employed for global, i.e., intra- and extracellular oxygen estimation in an NMR-bioreactor. The combination of 1H relaxation time T1 and diffusion measurements of water was employed for in situ cellular oxygen content determination. Spatially selective water relaxation time estimations were used for spatially resolved oxygen quantification along the NMR tube length. The inclusion in a study protocol of the presented techniques for oxygen quantification, as a surrogate marker of oxidative phosphorylation (OXPHOS), provides the possibility to measure mitochondrial respiration and metabolic changes simultaneously.
Collapse
Affiliation(s)
- Christian Urzì
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Christoph Meyer
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Jean-Marc Nuoffer
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - Peter Vermathen
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Lombó M, Ruiz-Díaz S, Gutiérrez-Adán A, Sánchez-Calabuig MJ. Sperm Metabolomics through Nuclear Magnetic Resonance Spectroscopy. Animals (Basel) 2021; 11:ani11061669. [PMID: 34205204 PMCID: PMC8227655 DOI: 10.3390/ani11061669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Proton nuclear magnetic resonance spectroscopy (1 H-NMR) is of special interest for the analysis of metabolites present in seminal plasma and spermatozoa. This metabolomic approach has been used to identify the presence of new biomarkers or their proportions in a non-invasive manner and is, therefore, an interesting tool for male fertility diagnosis. In this paper, we review current knowledge of the use of 1 H-NMR to examine sperm metabolomics in different species with special attention paid to humans and farm animals. We also describe the use of 1 H-NMR to establish a possible relationship between the mammalian diet and the presence of certain hydrophilic and lipophilic metabolites in spermatozoa. Abstract This report reviews current knowledge of sperm metabolomics analysis using proton nuclear magnetic resonance spectroscopy (1 H-NMR) with particular emphasis on human and farm animals. First, we present the benefits of NMR over other techniques to identify sperm metabolites and then describe the specific methodology required for NMR sperm analysis, stressing the importance of analyzing metabolites extracted from both the hydrophilic and lipophilic phases. This is followed by a description of advances produced to date in the use of NMR to diagnose infertility in humans and to identify metabolic differences among the sperm of mammalian herbivore, carnivore, and omnivore species. This last application of NMR mainly seeks to explore the possible use of lipids to fuel sperm physiology, contrary to previous theories that glycolysis and oxidative phosphorylation (OXPHOS) are the only sources of sperm energy. This review describes the use of NMR to identify sperm and seminal plasma metabolites as possible indicators of semen quality, and to examine the metabolites needed to maintain sperm motility, induce their capacitation, and consequently, to predict animal fertility.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; (M.L.); (S.R.-D.); (A.G.-A.)
| | - Sara Ruiz-Díaz
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; (M.L.); (S.R.-D.); (A.G.-A.)
- Mistral Fertility Clinics S.L., Clínica Tambre, 28002 Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; (M.L.); (S.R.-D.); (A.G.-A.)
| | - María-Jesús Sánchez-Calabuig
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; (M.L.); (S.R.-D.); (A.G.-A.)
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
3
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Galeano E. Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS One 2021; 16:e0247668. [PMID: 33630921 PMCID: PMC7906414 DOI: 10.1371/journal.pone.0247668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medelín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
4
|
Kuchel PW, Kirk K, Shishmarev D. The NMR 'split peak effect' in cell suspensions: Historical perspective, explanation and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:1-11. [PMID: 29405979 DOI: 10.1016/j.pnmrs.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The physicochemical environment inside cells is distinctly different from that immediately outside. The selective exchange of ions, water and other molecules across the cell membrane, mediated by integral, membrane-embedded proteins is a hallmark of living systems. There are various methodologies available to measure the selectivity and rates (kinetics) of such exchange processes, including several that take advantage of the non-invasive nature of NMR spectroscopy. A number of solutes, including particular inorganic ions, show distinctive NMR behaviour, in which separate resonances arise from the intra- and extracellular solute populations, without the addition of shift reagents, differences in pH, or selective binding partners. This 'split peak effect/phenomenon', discovered in 1984, has become a valuable tool, used in many NMR studies of cellular behaviour and function. The explanation for the phenomenon, based on the differential hydrogen bonding of the reporter solutes to water, and the various ways in which this phenomenon has been used to investigate aspects of cellular biochemistry and physiology, are the topics of this review.
Collapse
Affiliation(s)
- Philip W Kuchel
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia.
| | - Kiaran Kirk
- Australian National University, Research School of Biology, College of Science, Canberra, ACT 2601, Australia
| | - Dmitry Shishmarev
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia; Australian National University, John Curtin School of Medical Research, College of Health and Medicine, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Palomino-Schätzlein M, García H, Gutiérrez-Carcedo P, Pineda-Lucena A, Herance JR. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS One 2017; 12:e0182985. [PMID: 28793337 PMCID: PMC5549967 DOI: 10.1371/journal.pone.0182985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/03/2023] Open
Abstract
Human peripheral blood cells are relevant ex vivo models for characterizing diseases and evaluating the pharmacological effects of therapeutic interventions, as they provide a close reflection of an individual pathophysiological state. In this work, a new approach to evaluate the impact of nanoparticles on the three main fractions of human peripheral blood cells by nuclear magnetic resonance spectroscopy is shown. Thus, a comprehensive protocol has been set-up including the separation of blood cells, their in vitro treatment with nanoparticles and the extraction and characterization of metabolites by nuclear magnetic resonance. This method was applied to assess the effect of gold nanoparticles, either coated with chitosan or supported on ceria, on peripheral blood cells from healthy individuals. A clear antioxidant effect was observed for chitosan-coated gold nanoparticles by a significant increase in reduced glutathione, that was much less pronounced for gold-cerium nanoparticles. In addition, the analysis revealed significant alterations of several other pathways, which were stronger for gold-cerium nanoparticles. These results are in accordance with the toxicological data previously reported for these materials, confirming the value of the current methodology.
Collapse
Affiliation(s)
| | | | - Patricia Gutiérrez-Carcedo
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pineda-Lucena
- Laboratorio de Bioquímica Estructural, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad de Descubrimiento de Fármacos, Instituto de Investigación Sanitaria La Fe, Hospital Universitario i Politécnico La Fe, Valencia, Spain
| | - José Raul Herance
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Hong YS, Coen M, Rhode CM, Reily MD, Robertson DG, Holmes E, Lindon JC, Nicholson JK. Chemical shift calibration of 1H MAS NMR liver tissue spectra exemplified using a study of glycine protection of galactosamine toxicity. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47 Suppl 1:S47-S53. [PMID: 19856339 DOI: 10.1002/mrc.2521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-resolution (1)H magic angle spinning (MAS) NMR spectroscopy is a useful tool for analysing intact tissues as a component of metabonomic studies. The effect of referencing MAS NMR spectra to the chemical shifts of glucose or to that or trimethylsilylpropionic acid on the resultant multivariate statistical models have been investigated. It is shown that referencing to known chemical shifts of either alpha-glucose or beta-glucose in (1)H MAS NMR-based metabolic data of intact liver tissues is preferred. This has been exemplified in studies of galactosamine toxicity in the rat where co-administration of glycine ameliorates the toxic response. This approach leads to better aligned sets of spectra and reduces the inter-sample variability in multivariate statistical models. If glucose is not present in the tissue under study, then a number of alternative internal reference chemical shifts are presented. Finally, the chemical shift difference between that of the anomeric H1 proton of alpha-glucose and residual water is confirmed as a suitable internal temperature calibration method.
Collapse
Affiliation(s)
- Young-Shick Hong
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Metabonomic characterization of the 3-nitropropionic acid rat model of Huntington's disease. Neurochem Res 2009; 34:1261-71. [PMID: 19148750 DOI: 10.1007/s11064-008-9904-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
3-Nitropropionic acid (3-NP)-induced neurotoxicity can be used as a model for the genetic neurodegenerative disorder Huntington's disease (HD). A metabolic profiling strategy was adopted to explore the biochemical consequences of 3-NP administered to rats in specific brain regions. (1)H NMR spectroscopy was used to characterize the metabolite composition of several brain regions following 3-NP-intoxication. Dose-dependent increases in succinate levels were observed in all neuroanatomical regions, resulting from the 3-NP-induced inhibition of succinate dehydrogenase. Global decreases in taurine and GABA were observed in the majority of brain regions, whereas altered lipid profiles were observed only in the globus pallidus and dorsal striatum. Depleted phosphatidylcholine and elevated glycerol levels, which are indicative of apoptosis, were also observed in the frontal cortex of the 3-NP model. Many of the metabolic anomalies are consistent with those reported in HD. The 3-NP-induced model of HD provides a means of monitoring potential mechanisms of pathology and therapeutic response for drug interventions, which can be efficiently assessed using metabolic profiling strategies.
Collapse
|
8
|
Larkin TJ, Bubb WA, Kuchel PW. Water chemical shift in 1H NMR of red cells: effects of pH when transmembrane magnetic susceptibility differences are low. Magn Reson Med 2008; 59:707-11. [PMID: 18383301 DOI: 10.1002/mrm.21546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The (1)H magic angle spinning (MAS) NMR spectrum of water in erythrocyte suspensions shows peaks from each of the intracellular and extracellular water pools. The splitting is a true chemical shift and is brought about by the elimination of water exchange under MAS conditions due to physical separation of the two water populations. The size of the chemical shift difference is determined by the concentration of intracellular protein affecting the average extent of hydrogen bonding of water. We present here a model of the chemical shift behavior for water in erythrocytes under normal high-resolution NMR conditions based on results from MAS experiments on these cells exposed to different pH and osmotic conditions. The model accurately predicts the chemical shift of water for a static sample, and the results demonstrate that in high-resolution NMR experiments the chemical shift of water will appear to be invariant if differences in magnetic susceptibility across the cell membrane are minimal (<10% of the magnetic susceptibility of water). Thus, changes in the shape and chemical shift of the water resonance are not due to pH changes in the physiological range. The findings are fundamental to an interpretation of the mechanism of chemical shift effects on the water resonance that may occur in functional MRI.
Collapse
Affiliation(s)
- Timothy J Larkin
- School of Molecular and Microbial Biosciences, University of Sydney, Australia
| | | | | |
Collapse
|
9
|
Zhao L, Kroenke CD, Song J, Piwnica-Worms D, Ackerman JJH, Neil JJ. Intracellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular water exchange lifetime. NMR IN BIOMEDICINE 2008; 21:159-64. [PMID: 17461436 PMCID: PMC2700831 DOI: 10.1002/nbm.1173] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Quantitative characterization of the intracellular water (1)H MR signal from cultured cells will provide critical biophysical insight into the MR signal from tissues in vivo. Microbeads provide a robust immobilization substrate for the many mammalian cell lines that adhere to surfaces and also provide sufficient cell density for observation of the intracellular water MR signal. However, selective observation of the intracellular water MR signal from perfused, microbead-adherent mammalian cells requires highly effective suppression of the extracellular water MR signal. We describe how high-velocity perfusion of microbead-adherent cells results in short apparent (1)H MR longitudinal and transverse relaxation times for the extracellular water in a thin slice selected orthogonal to the direction of flow. When combined with a spin-echo pulse sequence, this phenomenon provides highly effective suppression of the extracellular water MR signal. This new method is exploited here to quantify the kinetics of water exchange from the intracellular to extracellular spaces of HeLa cells. The time constant describing water exchange from intracellular to extracellular spaces, also known as the exchange lifetime for intracellular water, is 119 +/- 14 ms.
Collapse
Affiliation(s)
- L Zhao
- Department of Chemistry, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lisitza NV, Warren WS, Song YQ. Study of diffusion in erythrocyte suspension using internal magnetic field inhomogeneity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 187:146-54. [PMID: 17498984 DOI: 10.1016/j.jmr.2007.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/13/2007] [Accepted: 04/12/2007] [Indexed: 05/15/2023]
Abstract
Transport of water and ions through cell membranes plays an important role in cell metabolism. We demonstrate a novel technique to measure water transport dynamics using erythrocyte suspensions as an example. This technique takes advantage of inhomogeneous internal magnetic field created by the magnetic susceptibility contrast between the erythrocytes and plasma. The decay of longitudinal magnetization due to diffusion in this internal field reveals multi-exponential behavior, with one component corresponding to the diffusive exchange of water across erythrocyte membrane. The membrane permeability is obtained from the exchange time constant and is in good agreement with the literature values. As compared to the other methods, this technique does not require strong gradients of magnetic field or contrast agents and, potentially, can be applied in vivo.
Collapse
Affiliation(s)
- Natalia V Lisitza
- Schlumberger-Doll Research, 36 Old Quarry Road, Ridgefield, CT 06877, USA
| | | | | |
Collapse
|
11
|
Bruno E, Digilio G, Cabella C, de Reggi A, Baroni S, Mainero V, Aime S. Water exchange across the erythrocyte plasma membrane studied by HR-MAS NMR spectroscopy. Magn Reson Med 2007; 56:978-85. [PMID: 17036282 DOI: 10.1002/mrm.21054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Water exchange across the plasma membrane of erythrocytes (red blood cells (RBCs)) was studied by means of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Under HR-MAS conditions, the centrifugal force causes the splitting of RBC suspensions into a two-phase system composed of a central core of cell free water and an outer layer of tightly packed cells. Water belonging to each of these phases gives rise to two separated resonances. Chemical exchange between them is not detectable on the chemical shift or saturation transfer (ST) NMR time scale because of the physical separation between the phases. When the RBCs are dispersed and immobilized within a matrix made of cross-linked albumin, the splitting into a two-phase system is prevented and a single exchange-averaged peak for water is detected in (1)H HR-MAS NMR spectra. The lineshape of this peak is dependent on transmembrane exchange kinetics, since MAS averages out all the anisotropic magnetic interactions that are responsible for additional line-broadening under conventional liquid conditions. Line-shape analysis according to a two-site exchange model yielded a residence lifetime on the order of about 10 ms (at 37 degrees C) for a water molecule within the intracellular compartment, which is not too far from the generally accepted value of 9.6-14.8 ms.
Collapse
Affiliation(s)
- Erik Bruno
- Dipartimento di Chimica Inorganica, Fisica e dei Materiali, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Kohler G, Rost F, Seelig J. Simultaneous separation of intracellular and extracellular lactate NMR signals of human erythrocytes. Magn Reson Med 2007; 58:213-7. [PMID: 17654594 DOI: 10.1002/mrm.21309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular/extracellular lactate (Lac) distribution has been determined before in human and animal erythrocytes (red blood cells [RBCs]) with various methods. However, all previous methods determine intra- and extracellular Lac separately or indirectly. Now, (13)C-NMR spectroscopy has been used to monitor intra- and extracellular Lac simultaneously in intact RBCs. Isolated human RBCs were incubated with [3-(13)C]-Lac, [3-(13)C]-pyruvate (Pyr), and [1-(13)C]-glucose (Gluc). A distortionless enhancement by polarization transfer (DEPT) sequence was used (TR = 3.3 s, N = 128) to monitor the (13)C-NMR resonances in both compartments. The intra- and extracellular methyl group resonances of Lac and Pyr were clearly separated by 9.6 Hz and 7.0 Hz, respectively, under normoxic conditions due to the RBC chemical-shift effect. The results show that the chemical-shift effect of RBCs is convenient to monitor intra- and extracellular Lac simultaneously in intact RBCs under normoxic conditions.
Collapse
Affiliation(s)
- Götz Kohler
- Biozentrum, Department of Biophysical Chemistry, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
13
|
Larkin TJ, Bubb WA, Kuchel PW. pH and cell volume effects on H2O and phosphoryl resonance splitting in rapid-spinning NMR of red cells. Biophys J 2006; 92:1770-6. [PMID: 17158568 PMCID: PMC1796813 DOI: 10.1529/biophysj.106.096149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two resonances are seen in the (1)H-NMR spectrum of water in erythrocyte suspensions spun at the magic angle, a broad signal from water inside the cells and a sharp signal from extracellular water. The splitting is a result of a true chemical shift difference between the two populations, as bulk magnetic susceptibility effects are negated at the magic angle. The pH dependence of this chemical shift difference in erythrocyte suspensions was investigated. Splittings of 16.7 +/- 0.1, 18.9 +/- 0.9, and 21.0 +/- 0.2 Hz were observed at pH 6.0, 7.0, and 8.5, respectively; however, this was accompanied by a change in the mean cell volume. To account for any contribution from the volume change, the osmolality of the pH 6.0 and 8.5 suspensions was adjusted to equalize the cell volume between samples at the three pHs. Under these conditions, the splitting was 18.3 +/- 0.1 and 18.6 +/- 0.1 Hz at pH 6.0 and 8.5, respectively. Thus the observed chemical shift difference between the two water resonances was independent of pH. Therefore the splitting of the water resonance was concluded to be directly proportional to the protein concentration within the cell. Measurements of the magnetic susceptibility difference between the two compartments were also carried out, yielding a value of 2.0 +/- 0.2 x 10(-7) (SI units) for erythrocytes in isotonic saline at pH 7.0.
Collapse
Affiliation(s)
- Timothy J Larkin
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
14
|
Aime S, Bruno E, Cabella C, Colombatto S, Digilio G, Mainero V. HR-MAS of cells: A "cellular water shift" due to water-protein interactions? Magn Reson Med 2006; 54:1547-52. [PMID: 16254945 DOI: 10.1002/mrm.20707] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Under HR-MAS conditions, cells are subjected to high centrifugal forces that may cause irreversible cell damage. First, conditions have been defined to monitor and keep to a minimum unwanted effects in HR-MAS spectra arising from the loss of cell integrity. Then, the HR-MAS spectra of reasonably intact cells have been analyzed. Cell suspensions subjected to MAS rates as low as 1 kHz split into a two-compartment system that is composed of a cell-rich phase (H(2)O(i)) and a cell-free phase (H(2)O(o)). Each of these phases is characterized by its own water (1)H-NMR signal. Transport of water molecules between the cell-rich and cell-free compartments is limited by the very low contact area between the two compartments, and water exchange dynamics consequently fall into the slow exchange limit on the NMR timescale. Since the exchange between the two water populations is "frozen," the separation between the H(2)O(o) and H(2)O(i) water signals (Deltanu(water)) detected in an HR-MAS experiment is not affected by chemical exchange but reflects only chemical differences in the two environments. Different cell lines show a different Deltanu(water), leading to the concept of "cellular water shift." This shift roughly correlates with the cellular protein content, supporting the view that the most important determinant of the cellular water shift is the interaction between water and proteins in the intracellular compartment.
Collapse
Affiliation(s)
- Silvio Aime
- Department of Chemistry I.F.M., University of Torino, Via Pietro Giuria 7, I-10125 Torino, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Bertram HC, Jakobsen HJ, Nielsen OB. Origin of the high-frequency resonances in 1H NMR spectra of muscle tissue: an in vitro slow magic-angle spinning study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:3229-3234. [PMID: 15826082 DOI: 10.1021/jf047868j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High-resolution slow magic-angle spinning (150 Hz) 1H PASS NMR spectroscopy is performed on intact excised rat m. tibialis anterior. Untreated muscles and muscles in vitro incubated in Krebs-Ringers buffer based on deuterium oxide are investigated. In the high-frequency region of the 1H NMR spectra, resonances from H4 (approximately 7.1-7.2 ppm) and H2 (approximately 8.2-8.5 ppm) in histidine are observed. In addition, a resonance appears at 6.7 ppm for the untreated muscles. However, this resonance is absent in muscles following incubation in deuterium oxide. On the basis of its behavior in deuterium oxide combined with supplementary measurements for creatine solutions, the 6.7 ppm resonance is ascribed to the amino protons in creatine. Moreover, the present study demonstrates that the observation of the 6.7 ppm resonance depends on pH, which explains earlier reports stating its occasional appearance. Finally, measurements on solutions of ATP/AMP and histidine indicate that both ATP/AMP and histidine contribute to the resonances at approximately 8.2-8.5 ppm in the 1H NMR spectra of muscle tissue.
Collapse
Affiliation(s)
- Hanne Christine Bertram
- Department of Food Science, Danish Institute of Agricultural Sciences, Research Centre Foulum, P.O. Box 50, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|
16
|
Kuchel PW, Bubb WA, Ramadan S, Chapman BE, Philp DJ, Coen M, Gready JE, Harvey PJ, McLean AJ, Hook J. 31P MAS-NMR of human erythrocytes: independence of cell volume from angular velocity. Magn Reson Med 2004; 52:663-8. [PMID: 15334588 DOI: 10.1002/mrm.20139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
31P magic angle spinning NMR (MAS-NMR) spectra were obtained from suspensions of human red blood cells (RBCs) that contained the cell-volume-sensitive probe molecule, dimethyl methylphosphonate (DMMP). A mathematical representation of the spectral-peak shape, including the separation and width-at-half-height in the 31P NMR spectra, as a function of rotor speed, enabled us to explore the extent to which a change in cell volume would be reflected in the spectra if it occurred. We concluded that a fractional volume change in excess of 3% would have been detected by our experiments. Thus, the experiments indicated that the mean cell volume did not change by this amount even at the highest spinning rate of 7 kHz. The mean cell volume and intracellular 31P line-width were independent of the packing density of the cells and of the initial cell volume. The relationship of these conclusions to other non-NMR studies of pressure effects on cells is noted.
Collapse
Affiliation(s)
- P W Kuchel
- School of Molecular and Microbial Biosciences, University of Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Philp DJ, Bubb WA, Kuchel PW. Chemical shift and magnetic susceptibility contributions to the separation of intracellular and supernatant resonances in variable angle spinning NMR spectra of erythrocyte suspensions. Magn Reson Med 2004; 51:441-4. [PMID: 15004782 DOI: 10.1002/mrm.20019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Factors contributing to the observation of two separate water resonance arising from erythrocyte suspensions under magic- and variable-angle spinning conditions were examined. By observing the 1H NMR spectra of different chemical species in erythrocytes at different spinning angles, two major effects of comparable magnitude were shown to contribute to the separation: 1) an isotropic chemical shift difference, and 2) a susceptibility difference between the intracellular and supernatant compartments. When the sample was spun at the magic angle, the susceptibility difference did not contribute to the separation. Use of different angles between the spinning axis and the main magnetic field provided a method for quantifiying the isotropic chemical shift and susceptibility differences between the compartments.
Collapse
Affiliation(s)
- David J Philp
- School of Molecular and Microbial Biosciences, University of Sydney, Australia
| | | | | |
Collapse
|
18
|
Chen JH, Enloe BM, Xiao Y, Cory DG, Singer S. Isotropic susceptibility shift under MAS: the origin of the split water resonances in 1H MAS NMR spectra of cell suspensions. Magn Reson Med 2003; 50:515-21. [PMID: 12939759 DOI: 10.1002/mrm.10569] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bulk susceptibility variations in a multiphase system such as cultured cells and tissue have two manifestations: a dipolar field component outside the regular heterogenous region which introduces linebroadening, and an isotropic field part which results in a frequency shift. Previous NMR studies have emphasized the utility of magic angle spinning for averaging the dipolar component, particularly if the spins of interest are limited to one phase of a multiphase system such as a sample of liquid with air pockets or glass beads. However, in analyzing spectra from complex multiphase systems, such as cell suspensions and tissues, etc., the isotropic part is often neglected, leading to questionable interpretation of experimental results. The present study demonstrates that under magic angle spinning, the water resonance in NMR experiments of cell suspensions is split into two resolved peaks due to the isotropic susceptibility shift. These two peaks are assigned to a central core of cell free water and an outer cylindrical ring of tightly packed cells in close association with water. A comprehensive theory for this splitting is provided based on a coaxis cylinder model with different susceptibilities. The frequency difference is shown to be dependent on the susceptibility difference and also on the angle of the rotor in the magnetic field. The splitting distance of the two water peaks can be used to measure the susceptibility difference of water in these two phases. The susceptibility difference was measured for three different cell types: 3T3 F442A preadipocyte cells, mouse embryonic stem cells, and human red blood cells.
Collapse
Affiliation(s)
- Jin-Hong Chen
- Sarcoma Disease Management Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
19
|
Calabi L, Paleari L, Biondi L, Linati L, De Miranda M, Ghelli S. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 164:28-34. [PMID: 12932452 DOI: 10.1016/s1090-7807(03)00203-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration (GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.
Collapse
Affiliation(s)
- Luisella Calabi
- Centro Ricerche Milano, Bracco Imaging S.p.A., via E. Folli, 50-20134 Milan, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Waters NJ, Holmes E, Waterfield CJ, Farrant RD, Nicholson JK. NMR and pattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate. Biochem Pharmacol 2002; 64:67-77. [PMID: 12106607 DOI: 10.1016/s0006-2952(02)01016-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metabolite profiles from livers of toxin-treated rats were investigated using high resolution 1H NMR spectroscopy of aqueous (acetonitrile/water), lipidic (chloroform/methanol) extracts and magic angle spinning (MAS)-NMR spectroscopy of intact tissue. Rats were treated with the model cholestatic hepatotoxin, alpha-naphthylisothiocyanate (ANIT, 150 mg/kg) and NMR spectra of liver were analysed using principal components analysis (PCA) to extract novel toxicity biomarker information. 1H NMR spectra of control aqueous extracts showed signals from a range of organic acids and bases, amino acids, sugars, and glycogen. Chloroform/methanol extracts showed signals from a range of saturated and unsaturated triglycerides, phospholipids and cholesterol. The MAS 1H NMR spectra of livers showed a composite of signals found in both aqueous and lipophilic extracts. Following ANIT treatment, 1H NMR-PCA of aqueous extracts indicated a progressive reduction in glucose and glycogen, together with increases in bile acid, choline, and phosphocholine signals. 1H NMR-PCA of chloroform/methanol extracts showed elevated triglyceride levels. The 1H MAS-NMR-PCA analysis allowed direct detection of all of the ANIT-induced tissue perturbations revealed by 1H NMR of extracts, enabling metabolic characterisation of the lesion, which included steatosis, bile duct obstruction and altered glucose/glycogen metabolism. MAS-NMR spectroscopy requires minimal sample preparation and, unlike 1H NMR spectroscopy of tissue extracts, does not discriminate metabolites based on their solubility in a particular solvent and so this is a particularly useful exploratory tool in biochemical toxicology.
Collapse
Affiliation(s)
- Nigel J Waters
- Division of Biomedical Sciences, Biological Chemistry, Sir Alexander Fleming Building, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
21
|
Calabi L, Alfieri G, Biondi L, De Miranda M, Paleari L, Ghelli S. Application of high-resolution magic-angle spinning NMR spectroscopy to define the cell uptake of MRI contrast agents. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 156:222-229. [PMID: 12165257 DOI: 10.1006/jmre.2002.2553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method, based on proton high-resolution magic-angle spinning ((1)H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.
Collapse
Affiliation(s)
- Luisella Calabi
- Bracco Imaging S.p.A. Centro Ricerche Milano, via E. Folli, 50-20134 Milan, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Garrod S, Humpher E, Connor SC, Connelly JC, Spraul M, Nicholson JK, Holmes E. High-resolution (1)H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue. Magn Reson Med 2001; 45:781-90. [PMID: 11323804 DOI: 10.1002/mrm.1106] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The metabolic consequences of xenobiotic-induced toxicity were investigated using high-resolution magic angle spinning (MAS) NMR spectroscopy of intact tissue. Renal papillary necrosis (RPN) was induced in Sprague-Dawley rats (n = 12) via a single i.p. dose of 250 mg/kg 2-bromoethanamine (BEA) hydrobromide. At 2, 4, 6, and 24 h after treatment with BEA, three animals were killed and tissue samples were obtained from liver, renal cortex, and renal medulla. Tissue samples were also removed at 2 and 24 h from matched controls (n = 6). (1)H MAS NMR spectroscopic techniques were used to analyze samples of intact tissue ( approximately 10 mg). Decreased levels of nonperturbing renal osmolytes (glycerophosphocholine, betaine, and myo-inositol) were observed in the renal papilla of BEA-treated animals at 6 and 24 h postdose (p.d.), concomitant with a relative increase in the tissue concentration of creatine. Increased levels of glutaric acid were found in all tissues studied in BEA-treated animals at 4 and 6 h p.d., indicating the inhibition of mitochondrial fatty acyl CoA dehydrogenases and mitochondrial dysfunction. Increased levels of trimethylamine-N-oxide occurred in the renal cortex at 6 h p.d. Changes in the metabolite profile of liver included an increase in the relative concentrations of triglycerides, lysine, and leucine. The novel application of (1)H MAS NMR to the biochemical analysis of intact tissues following a toxic insult highlights the potential of this technique as a toxicological probe in providing a direct link between urinary biomarkers of toxicity and histopathological evaluation of toxicological lesions.
Collapse
Affiliation(s)
- S Garrod
- Biological Chemistry, Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Griffin JL, Walker LA, Garrod S, Holmes E, Shore RF, Nicholson JK. NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comp Biochem Physiol B Biochem Mol Biol 2000; 127:357-67. [PMID: 11126766 DOI: 10.1016/s0305-0491(00)00276-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The metabolic profiles of three wild mammals that vary in their trophic strategies, the herbivorous bank vole (Clethrionomys glareolus), the granivorous wood mouse (Apodemus sylvaticus), and the insectivorous white-toothed shrew (Crocidura suaveolens), were compared with that of a widely used strain of laboratory rat (Sprague Dawley). In conjunction with NMR spectroscopic investigations into the urine and blood plasma composition for these mammals, high resolution magic angle spinning (HRMAS) 1H-nuclear magnetic resonance (NMR) spectroscopy was applied to investigate the composition of intact kidney samples. Adaptation to natural diet affects both renal metabolism and urinary profiles, and while these techniques have been used to study the metabolism of the laboratory rat little is known about wild small mammals. The species were readily separated by their urinary profiles using either crude metabolite ratios or statistical pattern recognition. Bank vole urine contained higher concentrations of aromatic amino acids compared with the other small mammals, while the laboratory rats produced relatively more hippurate. HRMAS 1H-NMR demonstrated striking differences in both lipid concentration and composition between the wild mammals and Sprague Dawley rats. Bank voles contained high concentrations of the aromatic amino acids phenylalanine, tyrosine and tryptophan in all tissue and biofluids studied. This study demonstrates the analytical power of combined NMR techniques for the study of inter-species metabolism and further demonstrates that metabolic data acquired on laboratory animals cannot be extended to wild species.
Collapse
Affiliation(s)
- J L Griffin
- Biological Chemistry, Division of Biomedical Sciences, Imperial College, University of London, UK
| | | | | | | | | | | |
Collapse
|
24
|
Broberg A, Kenne L. Use of high-resolution magic angle spinning nuclear magnetic resonance spectroscopy for in situ studies of low-molecular-mass compounds in red algae. Anal Biochem 2000; 284:367-74. [PMID: 10964421 DOI: 10.1006/abio.2000.4722] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of high-resolution magic angle spinning NMR spectroscopy for in situ studies of low-molecular-mass compounds in red algae has been studied. The impact of different acquisition parameters on the resulting T(2)-filtered one-dimensional high-resolution magic angle spinning (1)H NMR spectra is described. The technique was used for in situ identification and quantification of some low-molecular-mass algal metabolites.
Collapse
Affiliation(s)
- A Broberg
- Department of Chemistry, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | | |
Collapse
|
25
|
Bollard ME, Garrod S, Holmes E, Lindon JC, Humpfer E, Spraul M, Nicholson JK. High-resolution (1)H and (1)H-(13)C magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med 2000; 44:201-7. [PMID: 10918318 DOI: 10.1002/1522-2594(200008)44:2<201::aid-mrm6>3.0.co;2-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-resolution magic angle spinning (MAS) (1)H NMR spectra of small samples (ca. 8 mg) of intact rat liver are reported for the first time. One dimensional spectra reveal a number of large well-resolved NMR signals mainly from low to medium molecular weight compounds (generally <1000 Daltons) from a variety of chemical classes. A range of 2D MAS-NMR experiments were performed, including (1)H J-resolved (JRES), (1)H-(1)H total correlation spectroscopy (TOCSY) and (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) to enable detailed signal assignment. Resonances were assigned from alpha- and beta-glucose, glycerol, alanine, glutamate, glycine, dimethylglycine, lysine, and threonine, together with phosphocholine, choline, lactate, trimethylamine-N-oxide (TMAO), and certain fatty acids. Well-resolved (1)H NMR signals from glycogen (poly 1-4 alpha-glucose) were observed directly in intact liver using MAS-NMR spectroscopy. In addition, the resonances from the glycogen C(1)H proton in alpha(1-->4) linked glucose units with either alpha(1-->4) units adjacent or alpha(1-->6) linked branches could be resolved in a high-resolution (1)H NMR experiment giving direct in situ information on the ratio of alpha(1-->4) to alpha(1-->6) units. This indicates that despite the relatively high MW (>1,000,000 Daltons) there is considerable segmental motion in the glycogen molecules giving long (1)H T(2) relaxation times. Magn Reson Med 44:201-207, 2000.
Collapse
Affiliation(s)
- M E Bollard
- Biological Chemistry, Biomedical Sciences Division, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Griffin JL, Walker LA, Troke J, Osborn D, Shore RF, Nicholson JK. The initial pathogenesis of cadmium induced renal toxicity. FEBS Lett 2000; 478:147-50. [PMID: 10922487 DOI: 10.1016/s0014-5793(00)01843-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The novel application of magic angle spinning 1H NMR spectroscopy, coupled with pattern recognition techniques, has identified biochemical changes in lipid and glutamate metabolism that precede classical nephrotoxicity. These changes occurred in the bank vole (Clethrionomys glareolus) after chronic dosing, at a low level of exposure and at a renal Cd(2+) concentration (8.4 microgram/g dry wt) that was nearly two orders of magnitude below the WHO critical organ concentration (200 microg/g wet wt). These early stage effects of Cd(2+) on the biochemistry of renal tissue may reflect adaptation mechanisms to the toxic insult or the preliminary stages of the toxicological cascade.
Collapse
Affiliation(s)
- J L Griffin
- Biological Chemistry, Biomedical Sciences Division, The Sir Alexander Fleming Building, Exhibition Road, Imperial College of Science, Medicine and Technology, Univeristy of London, UK
| | | | | | | | | | | |
Collapse
|
27
|
Waters NJ, Garrod S, Farrant RD, Haselden JN, Connor SC, Connelly J, Lindon JC, Holmes E, Nicholson JK. High-resolution magic angle spinning (1)H NMR spectroscopy of intact liver and kidney: optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. Anal Biochem 2000; 282:16-23. [PMID: 10860494 DOI: 10.1006/abio.2000.4574] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-resolution magic angle spinning (MAS) (1)H NMR spectroscopy has been used to investigate the biochemical composition of whole rat renal cortex and liver tissue samples. The effects of a number of sample preparation procedures and experimental variables have been investigated systematically in order to optimize spectral quality and maximize information recovery. These variables include the effects of changing the sample volume in the MAS rotor, snap-freezing the samples, and the effect of organ perfusion with deuterated saline solution prior to MAS NMR analysis. Also, the overall biochemical stability of liver and kidney tissue MAS NMR spectra was investigated under different temperature conditions. We demonstrate improved resolution and line shape of MAS NMR spectra obtained from small spherical tissue volume (12 microl) rotor inserts compared to 65 microl cylindrical samples directly inserted into the MAS rotors. D(2)O saline perfusion of the in situ afferent vascular tree of the tissue immediately postmortem also improves line shape in MAS NMR spectra. Snap-freezing resulted in increased signal intensities from alpha-amino acids (e.g., valine) in tissue together with decreases in renal osmolytes, such as myo-inositol. A decrease in triglyceride levels was observed in renal cortex following stasis on ice and in the MAS rotor (303 K for 4 h). This work indicates that different tissues have differential metabolic stabilities in (1)H MAS NMR experiments and that careful attention to sample preparation is required to minimize artifacts and maintain spectral quality.
Collapse
Affiliation(s)
- N J Waters
- Biological Chemistry, Imperial College, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Optically enhanced NMR with (129)Xe and (3)He is emerging as a novel and promising technique for medical imaging of lungs and other tissues. Here it is shown that hyperpolarized (129)Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and noninvasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent NMR shift of (129)Xe in red blood cells, in sharp contrast to the current model of xenon-hemoglobin binding. This effect could be exploited in brain functional studies, and in the assessment of conditions and diseases affected by blood oxygenation.
Collapse
Affiliation(s)
- J Wolber
- CRC Clinical Magnetic Resonance Research Group, Institute of Cancer Research, The Royal Marsden NHS Trust, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
29
|
Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1099-0534(2000)12:5<289::aid-cmr3>3.0.co;2-w] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Illmer P, Erlebach C, Schinner F. A practicable and accurate method to differentiate between intra- and extracellular water of microbial cells. FEMS Microbiol Lett 1999; 178:135-9. [PMID: 10483732 DOI: 10.1111/j.1574-6968.1999.tb13769.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A thermographimetric method which allows for a quick and accurate estimation of intra- and extracellular water of microbial cells is reviewed and improved. Knowledge of these fractions is important for physiological as well as for toxicological investigations. Results of the study indicate that besides the species, nutrient availability and growth conditions affect the intracellular water content. Intra- and extracellular water, dry matter, volume and density of a single cell of Arthrobacter sp. are calculated. There are indications that intracellular compartments of eukaryotes could also be investigated with this method.
Collapse
Affiliation(s)
- P Illmer
- Institute of Microbiology (N.F.), University of Innsbruck, Austria.
| | | | | |
Collapse
|
31
|
Garrod S, Humpfer E, Spraul M, Connor SC, Polley S, Connelly J, Lindon JC, Nicholson JK, Holmes E. High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 1999; 41:1108-18. [PMID: 10371442 DOI: 10.1002/(sici)1522-2594(199906)41:6<1108::aid-mrm6>3.0.co;2-m] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-resolution magic angle spinning 1H NMR (MAS-NMR) spectroscopy was used to investigate the biochemical composition of normal renal cortex and renal papilla samples from rats, and results were compared with those from conventional 1H NMR analysis of protein-free tissue extracts. 1H MAS NMR spectra of samples obtained from inner and outer cortex were found to be broadly similar in terms of metabolite profile, and intra- and inter-animal variability was small. However, the MAS NMR spectra from renal papilla samples were qualitatively and quantitatively different from those obtained from cortex. High levels of free amino acids and several organic acids were detected in the cortex, together with choline, glucose, and trimethylamine-N-oxide. The dominant metabolite resonances observed in papillary tissue were from glycerophosphocholine (GPC), betaine, myo-inositol, and sorbitol. On increasing the magic angle spinning rate from 4,200 to 12,000 Hz, the lipid MAS 1H NMR signal profile remained largely unchanged in papillary tissue, whereas "new" resonances from triglycerides appeared in the spectra of cortical tissue, this effect being reversible on returning the spinning rate to 4,200 Hz. Further investigation into the behavior of the lipid components under different spinning rates suggested that the lipids in the cortex were present in more motionally constrained environments than those in the papilla. 1H MAS NMR spectra of tissues are of value both in interrogation of the biochemical composition of whole tissue, and in obtaining information on the mobility and compartmentalization of certain metabolites.
Collapse
Affiliation(s)
- S Garrod
- Section of Biological Chemistry, Biomedical Sciences, Imperial College University of London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou Z, Sayer BG, Hughes DW, Stark RE, Epand RM. Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance. Biophys J 1999; 76:387-99. [PMID: 9876150 PMCID: PMC1302527 DOI: 10.1016/s0006-3495(99)77205-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biological membranes. The average numbers of interlamellar water molecules in multilamellar vesicles (MLVs) of DOPC and POPC were found to be 37.5 +/- 1 and 37.2 +/- 1, respectively, at a spinning speed of 3 kHz. Even at speeds as high as 9 kHz, the number of interlamellar waters remained as high as 31, arguing against dehydration effects for DOPC and POPC. Both homonuclear and heteronuclear nuclear Overhauser enhancement spectroscopy (NOESY and HOESY) were used to establish the location of water near the headgroup of a PC bilayer. 1H NMR comparisons of DOPC with a lipid that can hydrogen bond (monomethyldioleoylphosphatidylethanolamine, MeDOPE) showed the following trends: 1) the interlamellar water resonance was shifted to lower frequency for DOPC but to higher frequency for MeDOPE, 2) the chemical shift variation with temperature for interlamellar water was less than that of bulk water for MeDOPE MLVs, 3) water exchange between the two lipids was rapid on the NMR time scale if they were mixed in the same bilayer, 4) water exchange was slow if they were present in separate MLVs, and 5) exchange between bulk and interlamellar water was found by two-dimensional exchange experiments to be slow, and the exchange rate should be less than 157 Hz. These results illustrate the utility of ultra-high-resolution 1H MAS NMR for determining the nature and extent of lipid hydration as well as the arrangement of nuclei at the membrane/water interface.
Collapse
Affiliation(s)
- Z Zhou
- Departments of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|