1
|
Reproducibility of the computational fluid dynamic analysis of a cerebral aneurysm monitored over a decade. Sci Rep 2023; 13:219. [PMID: 36604495 PMCID: PMC9816094 DOI: 10.1038/s41598-022-27354-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Computational fluid dynamics (CFD) simulations are increasingly utilised to evaluate intracranial aneurysm (IA) haemodynamics to aid in the prediction of morphological changes and rupture risk. However, these models vary and differences in published results warrant the investigation of IA-CFD reproducibility. This study aims to explore sources of intra-team variability and determine its impact on the aneurysm morphology and CFD parameters. A team of four operators were given six sets of magnetic resonance angiography data spanning a decade from one patient with a middle cerebral aneurysm. All operators were given the same protocol and software for model reconstruction and numerical analysis. The morphology and haemodynamics of the operator models were then compared. The segmentation, smoothing factor, inlet and outflow branch lengths were found to cause intra-team variability. There was 80% reproducibility in the time-averaged wall shear stress distribution among operators with the major difference attributed to the level of smoothing. Based on these findings, it was concluded that the clinical applicability of CFD simulations may be feasible if a standardised segmentation protocol is developed. Moreover, when analysing the aneurysm shape change over a decade, it was noted that the co-existence of positive and negative values of the wall shear stress divergence (WSSD) contributed to the growth of a daughter sac.
Collapse
|
2
|
Roos PR, Rijnberg FM, Westenberg JJM, Lamb HJ. Particle Tracing Based on
4D
Flow Magnetic Resonance Imaging: A Systematic Review into Methods, Applications, and Current Developments. J Magn Reson Imaging 2022; 57:1320-1339. [PMID: 36484213 DOI: 10.1002/jmri.28540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Particle tracing based on 4D Flow MRI has been applied as a quantitative and qualitative postprocessing technique to study temporally evolving blood flow patterns. PURPOSE To systematically review the various methods to perform 4D Flow MRI-based particle tracing, as well as the clinical value, clinical applications, and current developments of the technique. STUDY TYPE The study type is systematic review. SUBJECTS Patients with cardiovascular disease (such as Marfan, Fontan, Tetralogy of Fallot), healthy controls, and cardiovascular phantoms that received 4D Flow MRI with particle tracing. FIELD STRENGTH/SEQUENCE Three-dimensional three-directional cine phase-contrast MRI, at 1.5 T and 3 T. ASSESSMENT Two systematic searches were performed on the PubMed database using Boolean operators and the relevant key terms covering 4D Flow MRI and particle tracing. One systematic search was focused on particle tracing methods, whereas the other on applications. Additional articles from other sources were sought out and included after a similar inspection. Particle tracing methods, clinical applications, clinical value, and current developments were extracted. STATISTICAL TESTS The main results of the included studies are summarized, without additional statistical analysis. RESULTS Of 127 unique articles retrieved from the initial search, 56 were included (28 for methods and 54 for applications). Most articles that described particle tracing methods used an adaptive timestep, a fourth order Runge-Kutta integration method, and linear interpolation in the time dimension. Particle tracing was applied in heart chambers, aorta, venae cavae, Fontan circulation, pulmonary arteries, abdominal vasculature, peripheral arteries, carotid arteries, and cerebral vasculature. Applications were grouped as intravascular, intracardiac, flow stasis, and research. DATA CONCLUSIONS Particle tracing based on 4D Flow MRI gives unique insight into blood flow in several cardiovascular diseases, but the quality depends heavily on the MRI data quality. Further studies are required to evaluate the clinical value of the technique for different cardiovascular diseases. EVIDENCE LEVEL 5. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Paul R. Roos
- Department of Radiology Leiden University Medical Center Leiden The Netherlands
| | - Friso M. Rijnberg
- Department of Cardiothoracic Surgery Leiden University Medical Center Leiden The Netherlands
| | | | - Hildo J. Lamb
- Department of Radiology Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
3
|
Zhou L, Fan M, Hansen C, Johnson CR, Weiskopf D. A Review of Three-Dimensional Medical Image Visualization. HEALTH DATA SCIENCE 2022; 2022:9840519. [PMID: 38487486 PMCID: PMC10880180 DOI: 10.34133/2022/9840519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/17/2022] [Indexed: 03/17/2024]
Abstract
Importance. Medical images are essential for modern medicine and an important research subject in visualization. However, medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical experts and visualization researchers.Highlights. Fundamental visualization techniques are revisited for various medical imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and segmentation, and it provides respective Internet links.Conclusions. Visualization techniques are a useful tool for medical experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute to the joint effort of the medical and visualization communities to advance precision medicine.
Collapse
Affiliation(s)
- Liang Zhou
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Mengjie Fan
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Charles Hansen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Chris R. Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Daniel Weiskopf
- Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Roberts GS, Loecher MW, Spahic A, Johnson KM, Turski PA, Eisenmenger LB, Wieben O. Virtual injections using 4D flow MRI with displacement corrections and constrained probabilistic streamlines. Magn Reson Med 2021; 87:2495-2511. [PMID: 34971458 PMCID: PMC8884720 DOI: 10.1002/mrm.29134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Streamlines from 4D-flow MRI have been used clinically for intracranial blood-flow tracking. However, deterministic and stochastic errors degrade streamline quality. The purpose of this study is to integrate displacement corrections, probabilistic streamlines, and novel fluid constraints to improve selective blood-flow tracking and emulate "virtual bolus injections." METHODS Both displacement artifacts (deterministic) and velocity noise (stochastic) inherently occur during phase-contrast MRI acquisitions. Here, two displacement correction methods, single-step and iterative, were tested in silico with simulated displacements and were compared with ground-truth velocity fields. Next, the effects of combining displacement corrections and constrained probabilistic streamlines were performed in 10 healthy volunteers using time-averaged 4D-flow data. Measures of streamline length and depth into vasculature were then compared with streamlines generated with no corrections and displacement correction alone using one-way repeated-measures analysis of variance and Friedman's tests. Finally, virtual injections with improved streamlines were generated for three intracranial pathology cases. RESULTS Iterative displacement correction outperformed the single-step method in silico. In volunteers, the combination of displacement corrections and constrained probabilistic streamlines allowed for significant improvements in streamline length and increased the number of streamlines entering the circle of Willis relative to streamlines with no corrections and displacement correction alone. In the pathology cases, virtual injections with improved streamlines were qualitatively similar to dynamic arterial spin labeling images and allowed for forward/reverse selective flow tracking to characterize cerebrovascular malformations. CONCLUSION Virtual injections with improved streamlines from 4D-flow MRI allow for flexible, robust, intracranial flow tracking.
Collapse
Affiliation(s)
- Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael W Loecher
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patrick A Turski
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Agafonov AV, Talygin EA, Bockeria LA, Gorodkov AY. The Hydrodynamics of a Swirling Blood Flow in the Left Heart and Aorta. Acta Naturae 2021; 13:4-16. [PMID: 35127142 PMCID: PMC8807531 DOI: 10.32607/actanaturae.11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
This paper proposes a new approach to the quantitative analysis of the hydrodynamic structure of a blood flow in the flow channel running from the left atrium to the end of the aorta. This approach is based on the concept of the structural organization of tornado-like swirling jets in channels with a given geometric configuration. Considering the large amount of experimental data in our possession, it was shown that along the entire length of the flow channel, conditions exist for the generation and maintenance of a swirling structure of the jet throughout the entire cardiac cycle. This study has given rise to a new direction in research in fundamental physiology and medicine, which is of great practical importance for diagnosing and treating circulatory disorders accompanied by changes in the geometric configuration and biomechanical characteristics of the heart and great vessels.
Collapse
Affiliation(s)
- A. V. Agafonov
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| | - E. A. Talygin
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| | - L. A. Bockeria
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| | - A. Yu. Gorodkov
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| |
Collapse
|
6
|
Demirkiran A, van Ooij P, Westenberg JJM, Hofman MBM, van Assen HC, Schoonmade LJ, Asim U, Blanken CPS, Nederveen AJ, van Rossum AC, Götte MJW. Clinical intra-cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging 2021; 23:154-165. [PMID: 34143872 PMCID: PMC8787996 DOI: 10.1093/ehjci/jeab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of flow patterns within the heart has long been recognized as a potential contribution to the understanding of physiological and pathophysiological processes of cardiovascular diseases. Although the pulsatile flow itself is multi-dimensional and multi-directional, current available non-invasive imaging modalities in clinical practice provide calculation of flow in only 1-direction and lack 3-dimensional volumetric velocity information. Four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) has emerged as a novel tool that enables comprehensive and critical assessment of flow through encoding velocity in all 3 directions in a volume of interest resolved over time. Following technical developments, 4D flow CMR is not only capable of visualization and quantification of conventional flow parameters such as mean/peak velocity and stroke volume but also provides new hemodynamic parameters such as kinetic energy. As a result, 4D flow CMR is being extensively exploited in clinical research aiming to improve understanding of the impact of cardiovascular disease on flow and vice versa. Of note, the analysis of 4D flow data is still complex and accurate analysis tools that deliver comparable quantification of 4D flow values are a necessity for a more widespread adoption in clinic. In this article, the acquisition and analysis processes are summarized and clinical applications of 4D flow CMR on the heart including conventional and novel hemodynamic parameters are discussed. Finally, clinical potential of other emerging intra-cardiac 4D flow imaging modalities is explored and a near-future perspective on 4D flow CMR is provided.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Pim van Ooij
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mark B M Hofman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Linda J Schoonmade
- Medical Library, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Usman Asim
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carmen P S Blanken
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Intracardiac and Vascular Hemodynamics with Cardiovascular Magnetic Resonance in Heart Failure. Heart Fail Clin 2021; 17:135-147. [PMID: 33220882 DOI: 10.1016/j.hfc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In heart failure (HF), the impaired heart loses its ability to competently eject blood during systole or fill with blood during diastole, manifesting in multifaceted abnormal intracardiac or intravascular flow dynamics. Conventional imaging techniques are limited in their ability to evaluate multidirectional multidimensional flow alterations in HF. Four-dimensional (4-D) flow magnetic resonance imaging (MRI) has emerged as a promising technique to comprehensively visualize and quantify changes in 3-dimensional blood flow dynamics in complex cardiovascular diseases. This article reviews emerging applications of 4-D flow MRI hemodynamic markers in HF and etiologies at risk of progressing to HF.
Collapse
|
8
|
Youn SW, Lee J. From 2D to 4D Phase-Contrast MRI in the Neurovascular System: Will It Be a Quantum Jump or a Fancy Decoration? J Magn Reson Imaging 2020; 55:347-372. [PMID: 33236488 DOI: 10.1002/jmri.27430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Considering the crosstalk between the flow and vessel wall, hemodynamic assessment of the neurovascular system may offer a well-integrated solution for both diagnosis and management by adding prognostic significance to the standard CT/MR angiography. 4D flow MRI or time-resolved 3D velocity-encoded phase-contrast MRI has long been promising for the hemodynamic evaluation of the great vessels, but challenged in clinical studies for assessing intracranial vessels with small diameter due to long scan times and low spatiotemporal resolution. Current accelerated MRI techniques, including parallel imaging with compressed sensing and radial k-space undersampling acquisitions, have decreased scan times dramatically while preserving spatial resolution. 4D flow MRI visualized and measured 3D complex flow of neurovascular diseases such as aneurysm, arteriovenous shunts, and atherosclerotic stenosis using parameters including flow volume, velocity vector, pressure gradients, and wall shear stress. In addition to the noninvasiveness of the phase contrast technique and retrospective flow measurement through the wanted windows of the analysis plane, 4D flow MRI has shown several advantages over Doppler ultrasound or computational fluid dynamics. The evaluation of the flow status and vessel wall can be performed simultaneously in the same imaging modality. This article is an overview of the recent advances in neurovascular 4D flow MRI techniques and their potential clinical applications in neurovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jongmin Lee
- Department of Radiology and Biomedical Engineering, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
9
|
Riedl KA, Kampf T, Herold V, Behr VC, Bauer WR. Wall shear stress analysis using 17.6 Tesla MRI: A longitudinal study in ApoE-/- mice with histological analysis. PLoS One 2020; 15:e0238112. [PMID: 32857805 PMCID: PMC7454980 DOI: 10.1371/journal.pone.0238112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
This longitudinal study was performed to evaluate the feasibility of detecting the interaction between wall shear stress (WSS) and plaque development. 20 ApoE-/- mice were separated in 12 mice with Western Diet and 8 mice with Chow Diet. Magnetic resonance (MR) scans at 17.6 Tesla and histological analysis were performed after one week, eight and twelve weeks. All in vivo MR measurements were acquired using a flow sensitive phase contrast method for determining vectorial flow. Histological sections were stained with Hematoxylin and Eosin, Elastica van Gieson and CD68 staining. Data analysis was performed using Ensight and a Matlab-based “Flow Tool”. The body weight of ApoE-/- mice increased significantly over 12 weeks. WSS values increased in the Western Diet group over the time period; in contrast, in the Chow Diet group the values decreased from the first to the second measurement point. Western Diet mice showed small plaque formations with elastin fragmentations after 8 weeks and big plaque formations after 12 weeks; Chow Diet mice showed a few elastin fragmentations after 8 weeks and small plaque formations after 12 weeks. Favored by high-fat diet, plaque formation results in higher values of WSS. With wall shear stress being a known predictor for atherosclerotic plaque development, ultra highfield MRI can serve as a tool for studying the causes and beginnings of atherosclerosis.
Collapse
Affiliation(s)
- Katharina A. Riedl
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
- * E-mail:
| | - Thomas Kampf
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Volker Herold
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Volker C. Behr
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Wolfgang R. Bauer
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Oechtering TH, Sieren MM, Hunold P, Hennemuth A, Huellebrand M, Scharfschwerdt M, Richardt D, Sievers HH, Barkhausen J, Frydrychowicz A. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) reveals altered blood flow patterns in the ascending aorta of patients with valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 2020; 159:798-810.e1. [DOI: 10.1016/j.jtcvs.2019.02.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
11
|
Englund EK, Langham MC. Quantitative and Dynamic MRI Measures of Peripheral Vascular Function. Front Physiol 2020; 11:120. [PMID: 32184733 PMCID: PMC7058683 DOI: 10.3389/fphys.2020.00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
The endothelium regulates and mediates vascular homeostasis, allowing for dynamic changes of blood flow in response to mechanical and chemical stimuli. Endothelial dysfunction underlies many diseases and is purported to be the earliest pathologic change in the progression of atherosclerotic disease. Peripheral vascular function can be interrogated by measuring the response kinetics following induced ischemia or exercise. In the presence of endothelial dysfunction, there is a blunting and delay of the hyperemic response, which can be measured non-invasively using a variety of quantitative magnetic resonance imaging (MRI) methods. In this review, we summarize recent developments in non-contrast, proton MRI for dynamic quantification of blood flow and oxygenation. Methodologic description is provided for: blood oxygenation-level dependent (BOLD) signal that reflect combined effect of blood flow and capillary bed oxygen content; arterial spin labeling (ASL) for quantification of regional perfusion; phase contrast (PC) to quantify arterial flow waveforms and macrovascular blood flow velocity and rate; high-resolution MRI for luminal flow-mediated dilation; and dynamic MR oximetry to quantify oxygen saturation. Overall, results suggest that these dynamic and quantitative MRI methods can detect endothelial dysfunction both in the presence of overt cardiovascular disease (such as in patients with peripheral artery disease), as well as in sub-clinical settings (i.e., in chronic smokers, non-smokers exposed to e-cigarette aerosol, and as a function of age). Thus far, these tools have been relegated to the realm of research, used as biomarkers of disease progression and therapeutic response. With proper validation, MRI-measures of vascular function may ultimately be used to complement the standard clinical workup, providing additional insight into the optimal treatment strategy and evaluation of treatment efficacy.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Rahman O, Markl M, Balte P, Berhane H, Blanken C, Suwa K, Dashnaw S, Wieben O, Bluemke DA, Prince MR, Lima J, Michos E, Ambale-Venkatesh B, Hoffman EA, Gomes AS, Watson K, Sun Y, Carr J, Barr RG. Reproducibility and Changes in Vena Caval Blood Flow by Using 4D Flow MRI in Pulmonary Emphysema and Chronic Obstructive Pulmonary Disease (COPD): The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Substudy. Radiology 2019; 292:585-594. [PMID: 31335282 PMCID: PMC6736177 DOI: 10.1148/radiol.2019182143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/11/2022]
Abstract
BackgroundChronic obstructive pulmonary disease (COPD) is associated with hemodynamic changes in the pulmonary vasculature. However, cardiac effects are not fully understood and vary by phenotype of chronic lower respiratory disease.PurposeTo use four-dimensional (4D) flow MRI for comprehensive assessment of the right-sided cardiovascular system, assess its interrater and intraobserver reproducibility, and examine associations with venous return to the right heart in individuals with chronic COPD and emphysema.Materials and MethodsThe Multi-Ethnic Study of Atherosclerosis COPD substudy prospectively recruited participants who smoked and who had COPD and nested control participants from population-based samples. Electrocardiography and respiratory gated 4D flow 1.5-T MRI was performed at three sites with full volumetric coverage of the thoracic vessels in 2014-2017 with postbronchodilator spirometry and inspiratory chest CT to quantify percent emphysema. Net flow, peak velocity, retrograde flow, and retrograde fraction were measured on 14 analysis planes. Interrater reproducibility was assessed by two independent observers, and the principle of conservation of mass was employed to evaluate the internal consistency of flow measures. Partial correlation coefficients were adjusted for age, sex, race/ethnicity, height, weight, and smoking status.ResultsAmong 70 participants (29 participants with COPD [mean age, 73.5 years ± 8.1 {standard deviation}; 20 men] and 41 control participants [mean age, 71.0 years ± 6.1; 22 men]), the interrater reproducibility of the 4D flow MRI measures was good to excellent (intraclass correlation coefficient range, 0.73-0.98), as was the internal consistency. There were no statistically significant differences in venous flow parameters according to COPD severity (P > .05). Greater percent emphysema at CT was associated with greater regurgitant flow in the superior and inferior caval veins and tricuspid valve (adjusted r = 0.28-0.55; all P < .01), particularly in the superior vena cava.ConclusionFour-dimensional flow MRI had good-to-excellent observer variability and flow consistency. Percent emphysema at CT was associated with statistically significant differences in retrograde flow, greatest in the superior vena cava.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Choe in this issue.
Collapse
Affiliation(s)
| | | | - Pallavi Balte
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Haben Berhane
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Carmen Blanken
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Kenichiro Suwa
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Stephen Dashnaw
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Oliver Wieben
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - David A. Bluemke
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Martin R. Prince
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Joao Lima
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Erin Michos
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Bharath Ambale-Venkatesh
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Eric A. Hoffman
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Antoinette S. Gomes
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Karol Watson
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Yanping Sun
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - James Carr
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - R. Graham Barr
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| |
Collapse
|
13
|
Azarine A, Garçon P, Stansal A, Canepa N, Angelopoulos G, Silvera S, Sidi D, Marteau V, Zins M. Four-dimensional Flow MRI: Principles and Cardiovascular Applications. Radiographics 2019; 39:632-648. [PMID: 30901284 DOI: 10.1148/rg.2019180091] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In-plane phase-contrast (PC) imaging is now a routine component of MRI of regional blood flow in the heart and great vessels. In-plane PC MRI provides a volumetric, isotropic, time-resolved cine sequence that enables three-directional velocity encoding, a technique known as four-dimensional (4D) flow MRI. Recent advances in 4D flow MRI have shortened imaging times, while progress in big-data processing has improved dataset pre- and postprocessing, thereby increasing the feasibility of 4D flow MRI in clinical practice. Important technical issues include selection of the optimal velocity-encoding sensitivity before acquisition and preprocessing of the raw data for phase-offset corrections. Four-dimensional flow MRI provides unprecedented capabilities for comprehensive analysis of complex blood flow patterns using new visualization tools such as streamlines and velocity vectors. Retrospective multiplanar navigation enables flexible retrospective flow quantification through any plane across the volume with good accuracy. Current flow parameters include forward flow, reverse flow, regurgitation fraction, and peak velocity. Four-dimensional flow MRI also supplies advanced flow parameters of use for research, such as wall shear stress. The vigorous burgeoning of new applications indicates that 4D flow MRI is becoming an important imaging modality for cardiovascular disorders. This article reviews the main technical issues of 4D flow MRI and the different parameters provided by it and describes the main applications in cardiovascular diseases, including congenital heart disease, cardiac valvular disease, aortic disease, and pulmonary hypertension. Online supplemental material is available for this article. ©RSNA, 2019 See discussion on this article by Ordovas .
Collapse
Affiliation(s)
- Arshid Azarine
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Philippe Garçon
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Audrey Stansal
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Nadia Canepa
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Giorgios Angelopoulos
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Stephane Silvera
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Daniel Sidi
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Véronique Marteau
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| | - Marc Zins
- From the Departments of Medical Imaging (A.A., N.C., G.A., S.S., V.M., M.Z.), Cardiology (P.G.), and Vascular Medicine (A.S.), Saint Joseph Hospital, 185 rue Raymond Losserand, 75014 Paris, France; and Department of Pediatric Cardiology, Necker Enfants Malades Hospital, Paris, France (D.S.)
| |
Collapse
|
14
|
Abstract
Patients with heart failure show myocardial, valvular, and electrical dysfunction, which results in enlarged cardiac chambers and increased intracardiac volume and pressure. Intracardiac flow analysis can provide information regarding the shape and wall properties, chamber dimensions, and flow efficiency throughout the cardiac cycle. There is increasing interest in vortex flow analysis for patients with heart failure to overcome limitations of conventional parameters. In conjunction with the conventional structural and functional parameters, vortex flow analysis-guided treatment in heart failure might be a novel option for cardiac physicians.
Collapse
Affiliation(s)
- In-Cheol Kim
- Division of Cardiology, Keimyung University Dongsan Medical Center, 56 Dalsung-ro Jung-gu, Daegu 41931, Republic of Korea
| | - Geu-Ru Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodae mun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Binter C, Gotschy A, Sündermann SH, Frank M, Tanner FC, Lüscher TF, Manka R, Kozerke S. Turbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.005486. [PMID: 28611119 DOI: 10.1161/circimaging.116.005486] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Christian Binter
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Alexander Gotschy
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Simon H. Sündermann
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Michelle Frank
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Felix C. Tanner
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Thomas F. Lüscher
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Robert Manka
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| | - Sebastian Kozerke
- From the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.B., A.G., S.K.); Department of Cardiology, University Heart Center (A.G., M.F., F.C.T., T.F.L., R.M.), Division of Internal Medicine (A.G.), and Institute of Diagnostic and Interventional Radiology (R.M.), University Hospital Zurich, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany (S.H.S.); and Imaging Sciences and Biomedical Engineering, King’s College
| |
Collapse
|
16
|
van der Palen RLF, Barker AJ, Bollache E, Garcia J, Rose MJ, van Ooij P, Young LT, Roest AAW, Markl M, Robinson JD, Rigsby CK. Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients. J Cardiovasc Magn Reson 2017; 19:30. [PMID: 28302143 PMCID: PMC5356404 DOI: 10.1186/s12968-017-0345-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/16/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Blood flow dynamics make it possible to better understand the development of aortopathy and cardiovascular events in patients with Marfan syndrome (MFS). Aortic 3D blood flow characteristics were investigated in relation to aortic geometry in children and adolescents with MFS. METHODS Twenty-five MFS patients (age 15.6 ± 4.0 years; 11 females) and 21 healthy controls (age 16.0 ± 2.6 years; 12 females) underwent magnetic resonance angiography and 4D flow CMR for assessment of thoracic aortic size and 3D blood flow velocities. Data analysis included calculation of aortic diameter and BSA-indexed aortic dimensions (Z-score) along the thoracic aorta, 3D mean systolic wall shear stress (WSSmean) in ten aortic segments and assessment of aortic blood flow patterns. RESULTS Aortic root (root), ascending (AAo) and descending (DAo) aortic size was significantly larger in MFS patients than healthy controls (Root Z-score: 3.56 ± 1.45 vs 0.49 ± 0.78, p < 0.001; AAo Z-score 0.21 ± 0.95 vs -0.54 ± 0.64, p = 0.004; proximal DAo Z-score 2.02 ± 1.60 vs 0.56 ± 0.66, p < 0.001). A regional variation in prevalence and severity of flow patterns (vortex and helix flow patterns) was observed, with the aortic root and the proximal DAo (pDAo) being more frequently affected in MFS. MFS patients had significantly reduced WSSmean in the proximal AAo (pAAo) outer segment (0.65 ± 0.12 vs. 0.73 ± 0.14 Pa, p = 0.029) and pDAo inner segment (0.74 ± 0.17 vs. 0.87 ± 0.21 Pa, p = 0.021), as well as higher WSSmean in the inner segment of the distal AAo (0.94 ± 0.14 vs. 0.84 ± 0.15 Pa, p = 0.036) compared to healthy subjects. An inverse relationship existed between pDAo WSSmean and both pDAo diameter (R = -0.53, p < 0.001) and % diameter change along the pDAo segment (R = -0.64, p < 0.001). CONCLUSIONS MFS children and young adults have altered aortic flow patterns and differences in aortic WSS that were most pronounced in the pAAo and pDAo, segments where aortic dissection or rupture often originate. The presence of vortex flow patterns and abnormal WSS correlated with regional size of the pDAo and are potentially valuable additional markers of disease severity.
Collapse
Affiliation(s)
- Roel L. F. van der Palen
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alex J. Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
| | - Emilie Bollache
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
| | - Julio Garcia
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, University of Calgary - Cumming School of Medicine, Calgary, AB Canada
| | - Michael J. Rose
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL USA
| | - Pim van Ooij
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Luciana T. Young
- Department of Pediatrics, Division of Pediatric Cardiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL USA
| | - Arno A. W. Roest
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
- Department of Biomedical Engineering, McCormick School; of Engineering, Northwestern University, Chicago, IL USA
| | - Joshua D. Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
- Department of Pediatrics, Division of Pediatric Cardiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Cynthia K. Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University , Chicago, IL USA
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| |
Collapse
|
17
|
Busch J, Giese D, Kozerke S. Image-based background phase error correction in 4D flow MRI revisited. J Magn Reson Imaging 2017; 46:1516-1525. [PMID: 28225577 DOI: 10.1002/jmri.25668] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/26/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Julia Busch
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Daniel Giese
- Department of Radiology; University Hospital Cologne; Cologne Germany
| | - Sebastian Kozerke
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
- Division of Imaging Science and Biomedical Engineering; King's College London; London UK
| |
Collapse
|
18
|
Kamphuis VP, Westenberg JJM, van der Palen RLF, Blom NA, de Roos A, van der Geest R, Elbaz MSM, Roest AAW. Unravelling cardiovascular disease using four dimensional flow cardiovascular magnetic resonance. Int J Cardiovasc Imaging 2016; 33:1069-1081. [PMID: 27888419 PMCID: PMC5489572 DOI: 10.1007/s10554-016-1031-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
Knowledge of normal and abnormal flow patterns in the human cardiovascular system increases our understanding of normal physiology and may help unravel the complex pathophysiological mechanisms leading to cardiovascular disease. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has emerged as a suitable technique that enables visualization of in vivo blood flow patterns and quantification of parameters that could potentially be of prognostic value in the disease process. In this review, current image processing tools that are used for comprehensive visualization and quantification of blood flow and energy distribution in the heart and great vessels will be discussed. Also, imaging biomarkers extracted from 4D flow CMR will be reviewed that have been shown to distinguish between normal and abnormal flow patterns. Furthermore, current applications of 4D flow CMR in the heart and great vessels will be discussed, showing its potential as an additional diagnostic modality which could aid in disease management and timing of surgical intervention.
Collapse
Affiliation(s)
- Vivian P Kamphuis
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico A Blom
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert de Roos
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Doron O, Cohen JE, Gomori M, Spektor S. Extensive bone erosion caused by pseudotumoral aneurysm growth. J Clin Neurosci 2016; 36:54-56. [PMID: 27842796 DOI: 10.1016/j.jocn.2016.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/15/2016] [Indexed: 11/18/2022]
Abstract
Carotid ophthalmic aneurysms constitute 0.9-6.5% of the aneurysms of the ICA with up to 20% of the cases presenting with visual symptoms. We report a case of an adult woman, presented with chronic headaches and protracted visual alterations progressing to left eye amaurosis. Neuroradiological exams, revealed a giant partially thrombosed carotid ophthalmic aneurysm extending anteriorly, causing pseudotumoral spheno-orbital bone erosion. The patient underwent surgical clipping, evacuation of the thrombotic mass and decompression of the optic pathways with rapid recovery of the vision. This unusual case, contributes to the available body of evidence on aneurysms growth.
Collapse
Affiliation(s)
- Omer Doron
- Department of Neurosurgery, Hadassah University Medical Center, Affiliated to the Hebrew University and Hadassah Medical School, Jerusalem, Israel.
| | - Jose E Cohen
- Department of Neurosurgery, Hadassah University Medical Center, Affiliated to the Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Moshe Gomori
- Department of Radiology, Hadassah University Medical Center, Affiliated to the Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Sergey Spektor
- Department of Neurosurgery, Hadassah University Medical Center, Affiliated to the Hebrew University and Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
20
|
Disturbed Intracardiac Flow Organization After Atrioventricular Septal Defect Correction as Assessed With 4D Flow Magnetic Resonance Imaging and Quantitative Particle Tracing. Invest Radiol 2016. [PMID: 26222698 DOI: 10.1097/rli.0000000000000194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Four-dimensional (3 spatial directions and time) velocity-encoded flow magnetic resonance imaging with quantitative particle tracing analysis allows assessment of left ventricular (LV) blood flow organization. Corrected atrioventricular septal defect (AVSD) patients have an abnormal left atrioventricular valve shape. We aimed to analyze flow organization in corrected AVSD patients and healthy controls. METHODS A total of 32 patients (age, 25 ± 14 years), 21 after partial AVSD correction and 11 after complete/intermediate AVSD correction, and 30 healthy volunteers (26 ± 12 years) underwent whole-heart four-dimensional velocity-encoded flow magnetic resonance imaging. Particle tracing in the 16-segment LV cavity model was used to quantitatively evaluate blood flow organization discriminating multiple components. RESULTS Patients showed a smaller percentage of direct flow compared with controls (30% ± 9% vs 44% ± 11%; P < 0.001). In patients, more inflow was observed in the basal inferior segment (22% ± 11% vs controls, 17% ± 5%; P = 0.005), with less direct but more retained inflow (ie, part of inflow that is not ejected from LV in subsequent systole). In patients, more inflow reached the midventricular level (68% ± 13% vs controls, 58% ± 9%; P < 0.001), most notably as retained inflow in the lateral segments. Subsequently, in patients, more (mostly retained) inflow reached the apex (23% ± 13% vs 14% ± 7%; P < 0.001), which correlated with early peak filling velocity (r = 0.637, P < 0.001). Patients with a corrected complete or intermediate AVSD presented with less direct flow (24% ± 8% vs 33% ± 8%; P = 0.003) and more apical inflow (30% ± 14% vs 18% ± 12%; P = 0.014) compared with a corrected partial AVSD. CONCLUSION Multicomponent particle tracing combined with 16-segment analysis quantitatively demonstrated altered LV flow organization after AVSD correction, with less direct and more retained inflow in apical and lateral LV cavity segments, which may contribute to decreased cardiac pumping efficiency.
Collapse
|
21
|
Oechtering TH, Hons CF, Sieren M, Hunold P, Hennemuth A, Huellebrand M, Drexl J, Scharfschwerdt M, Richardt D, Sievers HH, Barkhausen J, Frydrychowicz A. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) analysis of hemodynamics in valve-sparing aortic root repair with an anatomically shaped sinus prosthesis. J Thorac Cardiovasc Surg 2016; 152:418-427.e1. [DOI: 10.1016/j.jtcvs.2016.04.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
22
|
Parekh K, Markl M, Rose M, Schnell S, Popescu A, Rigsby CK. 4D flow MR imaging of the portal venous system: a feasibility study in children. Eur Radiol 2016; 27:832-840. [PMID: 27193778 DOI: 10.1007/s00330-016-4396-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 05/02/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To determine the feasibility of 4D flow MRI for visualization and quantification of the portal venous haemodynamics in children and young adults. METHODS 4D flow was performed in 28 paediatric patients (median age, 8.5 years; interquartile range, 5.2-16.5), 15 with non-operated native portal system and 13 with surgically created portal shunt. Image quality assessment for 3D flow visualization and flow pattern analyses was performed. Regional 4D flow peak velocity and net flow were compared with 2D-cine phase contrast MRI (2D-PC MR) in the post-surgical patients. RESULTS Mean 3D flow visualization quality score was excellent (mean ± SD, 4.2 ± 0.9) with good inter-rater agreement (κ,0.67). Image quality in children aged >10 years was better than children ≤10 years (p < 0.05). Flow pattern was defined for portal, superior mesenteric, splenic veins and splenic artery in all patients. 4D flow and 2D-PC MR peak velocity and net flow were similar with good correlation (peak velocity: 4D flow 22.2 ± 9.1 cm/s and 2D-PC MR 25.2 ± 11.2 cm/s, p = 0.46; r = 0.92, p < 0.0001; net flow: 4D flow 9.5 ± 7.4 ml/s and 2D-PC MR 10.1 ± 7.3 ml/s, p = 0.65; r = 0.81, p = 0.0007). CONCLUSIONS 4D flow MRI is feasible and holds promise for the comprehensive 3D visualization and quantification of portal venous flow dynamics in children and young adults. KEY POINTS • 4D flow MRI is feasible in children and young adults. • 4D flow MRI has the ability to non-invasively characterize portal haemodynamics. • Image quality of 4D flow MRI is better is older children. • 4D flow MRI can accurately quantify portal flow compared to 2D-cine PC MRI.
Collapse
Affiliation(s)
- Keyur Parekh
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA. .,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Michael Rose
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrada Popescu
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Improved Semiautomated 4D Flow MRI Analysis in the Aorta in Patients With Congenital Aortic Valve Anomalies Versus Tricuspid Aortic Valves. J Comput Assist Tomogr 2016; 40:102-8. [PMID: 26466113 DOI: 10.1097/rct.0000000000000312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to systematically investigate a newly developed semiautomated workflow for the analysis of aortic 4-dimensional flow MRI and its ability to detect hemodynamic differences in patients with congenitally altered aortic valve (bicuspid or quadricuspid valves) compared with tricuspid aortic valves. METHODS Four-dimensional flow MRI data were acquired in 20 patients with aortic dilatation (9 tricuspid aortic valves, 11 congenitally altered aortic valves). A semiautomated workflow was evaluated regarding interobserver variability, accuracy of net flow, regurgitant fraction and peak systolic velocity, and the ability to detect differences between cohorts. Results were compared with manual segmentation of vessel contours. RESULTS Despite the significantly reduced analysis time, a good interobserver agreement was found for net flow and peak systolic velocity, and a moderate agreement was found for regurgitation. Significant differences in peak velocities in the descending aorta (P = 0.014) could be detected. CONCLUSIONS Four-dimensional flow MRI-based semiautomated analysis of aortic hemodynamics can be performed with good reproducibility and accuracy.
Collapse
|
24
|
Hirtler D, Garcia J, Barker AJ, Geiger J. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur Radiol 2016; 26:3598-607. [PMID: 26747260 DOI: 10.1007/s00330-015-4186-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To comprehensively and quantitatively analyse flow and vorticity in the right heart of patients after repair of tetralogy of Fallot (rTOF) compared with healthy volunteers. METHODS Time-resolved flow-sensitive 4D MRI was acquired in 24 rTOF patients and 12 volunteers. Qualitative flow evaluation was based on consensus reading of two observers. Quantitative analysis included segmentation of the right atrium (RA) and ventricle (RV) in a four-chamber view to extract volumes and regional haemodynamic information for computation of regional mean and peak vorticity. RESULTS Right heart intra-atrial, intraventricular and outflow tract flow patterns differed considerably between rTOF patients and volunteers. Peak RA and mean RV vorticity was significantly higher in patients (p = 0.02/0.05). Significant negative correlations were found between patients' maximum and mean RV and RA vorticity and ventricular volumes (p < 0.05). The main pulmonary artery (MPA) regurgitant flow was associated with higher RA and RV vorticity, which was significant for RA maximum and RV mean vorticity (p = 0.01/0.03). CONCLUSION The calculation of vorticity based on 4D flow data is an alternative approach to assess intracardiac flow changes in rTOF patients compared with qualitative flow visualization. Alterations in intracardiac vorticity could be relevant with regard to the development of RV dilation and impaired function. KEY POINTS • 4D flow MRI with vorticity calculation enables a novel approach to assess intracardiac flow. • Significantly higher intracardiac vorticity occurred in patients after repair of tetralogy of Fallot. • Regurgitant flow in the main pulmonary artery is associated with higher right heart vorticity.
Collapse
Affiliation(s)
- Daniel Hirtler
- Department of Congenital Heart Defects and Pediatric Cardiology (Heart Center, University of Freiburg), University Hospital Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany.
| | - Julio Garcia
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex J Barker
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Geiger
- Department of Radiology, University Childrens' Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
von Spiczak J, Crelier G, Giese D, Kozerke S, Maintz D, Bunck AC. Quantitative Analysis of Vortical Blood Flow in the Thoracic Aorta Using 4D Phase Contrast MRI. PLoS One 2015; 10:e0139025. [PMID: 26418327 PMCID: PMC4587936 DOI: 10.1371/journal.pone.0139025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/07/2015] [Indexed: 11/28/2022] Open
Abstract
Introduction Phase contrast MRI allows for the examination of complex hemodynamics in the heart and adjacent great vessels. Vortex flow patterns seem to play an important role in certain vascular pathologies. We propose two- and three-dimensional metrics for the objective quantification of aortic vortex blood flow in 4D phase contrast MRI. Materials and Methods For two-dimensional vorticity assessment, a standardized set of 6 regions-of-interest (ROIs) was defined throughout the course of the aorta. For each ROI, a heatmap of time-resolved vorticity values ω→=∇v→ was computed. Evolution of minimum, maximum, and average values as well as opposing rotational flow components were analyzed. For three-dimensional analysis, vortex core detection was implemented combining the predictor-corrector method with λ2 correction. Strength, elongation, and radial expansion of the detected vortex core were recorded over time. All methods were applied to 4D flow MRI datasets of 9 healthy subjects, 2 patients with mildly dilated aorta, and 1 patient with aortic aneurysm. Results Vorticity quantification in the 6 standardized ROIs enabled the description of physiological vortex flow in the healthy aorta. Helical flow developed early in the ascending aorta (absolute vorticity = 166.4±86.4 s-1 at 12% of cardiac cycle) followed by maximum values in mid-systole in the aortic arch (240.1±45.2 s-1 at 16%). Strength, elongation, and radial expansion of 3D vortex cores escalated in early systole, reaching a peak in mid systole (strength = 241.2±30.7 s-1 at 17%, elongation = 65.1±34.6 mm at 18%, expansion = 80.1±48.8 mm2 at 20%), before all three parameters similarly decreased to overall low values in diastole. Flow patterns were considerably altered in patient data: Vortex flow developed late in mid/end-systole close to the aortic bulb and no physiological helix was found in the aortic arch. Conclusions We have introduced objective measures for quantification of vortical flow in 4D phase contrast MRI. Vortex blood flow in the thoracic aorta could be consistently described in all healthy volunteers. In patient data, pathologically altered vortex flow was observed.
Collapse
Affiliation(s)
- Jochen von Spiczak
- Department of Radiology and Neuroradiology, University Hospital of Cologne, Cologne, Germany
- * E-mail:
| | - Gerard Crelier
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Daniel Giese
- Department of Radiology and Neuroradiology, University Hospital of Cologne, Cologne, Germany
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David Maintz
- Department of Radiology and Neuroradiology, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
26
|
Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015; 17:72. [PMID: 26257141 PMCID: PMC4530492 DOI: 10.1186/s12968-015-0174-5] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5×1.5×1.5 - 3×3×3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations.
Collapse
Affiliation(s)
- Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Malenka Bissell
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK.
| | - Alex J Barker
- Department of Radiology, Northwestern University, Chicago, USA.
| | - Ann F Bolger
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.
| | - Carl-Johan Carlhäll
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
- Department of Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Tino Ebbers
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | | | - Alex Frydrychowicz
- Klinik für Radiologie und Nuklearmedizin, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Julia Geiger
- Department of Radiology, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.
| | - Michael D Hope
- Department of Radiology, University of California San Francisco, San Francisco, CA, United States.
| | - Philip J Kilner
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College, London, UK.
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | - Saul Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK.
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK.
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.
| | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
27
|
Nayak KS, Nielsen JF, Bernstein MA, Markl M, D Gatehouse P, M Botnar R, Saloner D, Lorenz C, Wen H, S Hu B, Epstein FH, N Oshinski J, Raman SV. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 2015; 17:71. [PMID: 26254979 PMCID: PMC4529988 DOI: 10.1186/s12968-015-0172-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/16/2015] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) phase contrast imaging has undergone a wide range of changes with the development and availability of improved calibration procedures, visualization tools, and analysis methods. This article provides a comprehensive review of the current state-of-the-art in CMR phase contrast imaging methodology, clinical applications including summaries of past clinical performance, and emerging research and clinical applications that utilize today's latest technology.
Collapse
Affiliation(s)
- Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, California, 90089-2564, USA.
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, IL, USA.
| | - Peter D Gatehouse
- Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.
| | - Rene M Botnar
- Cardiovascular Imaging, Imaging Sciences Division, Kings's College London, London, UK.
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Christine Lorenz
- Center for Applied Medical Imaging, Siemens Corporation, Baltimore, MD, USA.
| | - Han Wen
- Imaging Physics Laboratory, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| | - Bob S Hu
- Palo Alto Medical Foundation, Palo Alto, CA, USA.
| | - Frederick H Epstein
- Departments of Radiology and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - John N Oshinski
- Departments of Radiology and Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| | - Subha V Raman
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Callaghan FM, Kozor R, Sherrah AG, Vallely M, Celermajer D, Figtree GA, Grieve SM. Use of multi-velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta. J Magn Reson Imaging 2015; 43:352-63. [PMID: 26130421 DOI: 10.1002/jmri.24991] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/17/2015] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To show that the use of a multi-velocity encoding (VENC) 4D-flow approach offers significant improvements in the characterization of complex flow in the aorta. Four-dimensional flow magnetic resonance imaging (MRI) (4D-flow) can be used to measure complex flow patterns and dynamics in the heart and major vessels. The quality of the information derived from these measures is dependent on the accuracy of the vector field, which is limited by the vector-to-noise ratio. MATERIALS AND METHODS A 4D-flow protocol involving three different VENC values of 150, 60, and 20 cm/s was performed on six control subjects and nine patients with type-B chronic aortic dissection at 3T MRI. Data were processed using a single VENC value (150 cm/s) or using a fused dataset that selected the lowest appropriate VENC for each voxel. Performance was analyzed by measuring spatial vector angular correlation, magnitude correlation, temporal vector conservation, and "real-world" streamline tracing performance. RESULTS The multi-VENC approach provided a 31% improvement in spatial and 53% improvement in temporal precision of velocity vector measurements during the mid-late diastolic period, where 99% of the flow vectors in the normal aorta are below 20 cm/s. In low-flow conditions this resulted in practical improvements of greater than 50% in pathline tracking and streamline tracing quantified by streamline curvature measurements. CONCLUSION A multi-VENC 4D-flow approach provides accurate vector data across normal physiological velocities observed in the aorta, dramatically improving outputs such as pathline tracking, streamline estimation, and further advanced analyses.
Collapse
Affiliation(s)
- Fraser M Callaghan
- Sydney Translational Imaging Laboratory, Sydney Medical School & Charles Perkins Centre, University of Sydney, Sydney, Australia.,Heart Research Institute, Newtown, Sydney, Australia
| | - Rebecca Kozor
- Sydney Translational Imaging Laboratory, Sydney Medical School & Charles Perkins Centre, University of Sydney, Sydney, Australia.,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.,North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Andrew G Sherrah
- Sydney Translational Imaging Laboratory, Sydney Medical School & Charles Perkins Centre, University of Sydney, Sydney, Australia.,The Baird Institute, Camperdown, Australia.,Cardiothoracic Surgical Unit, Royal Prince Alfred Hospital, Sydney, Australia
| | - Michael Vallely
- The Baird Institute, Camperdown, Australia.,Cardiothoracic Surgical Unit, Royal Prince Alfred Hospital, Sydney, Australia
| | - David Celermajer
- Heart Research Institute, Newtown, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Gemma A Figtree
- Sydney Translational Imaging Laboratory, Sydney Medical School & Charles Perkins Centre, University of Sydney, Sydney, Australia.,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.,North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Sydney Medical School & Charles Perkins Centre, University of Sydney, Sydney, Australia.,Heart Research Institute, Newtown, Sydney, Australia.,Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
29
|
Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol 2015; 25:2634-40. [PMID: 25850890 DOI: 10.1007/s00330-015-3663-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. METHODS Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. RESULTS Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. CONCLUSIONS Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. KEY POINTS • 4D flow MRI, a non-invasive, non-contrast imaging technique, is feasible after TIPS. • Provides visualization and quantification of hepatic arterial, portal venous, collateral and TIPS haemodynamics. • Better understanding of liver blood flow changes after TIPS and patient management.
Collapse
|
30
|
Schubert T, Pansini M, Bieri O, Stippich C, Wetzel S, Schaedelin S, von Hessling A, Santini F. Attenuation of blood flow pulsatility along the Atlas slope: a physiologic property of the distal vertebral artery? AJNR Am J Neuroradiol 2015; 36:562-7. [PMID: 25395658 DOI: 10.3174/ajnr.a4148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Physiologic and pathologic arterial tortuosity may attenuate blood flow pulsatility. The aim of this prospective study was to assess a potential effect of the curved V3 segment (Atlas slope) of the vertebral artery on arterial flow pulsatility. The pulsatility index and resistance index were used to assess blood flow pulsatility. MATERIALS AND METHODS Twenty-one healthy volunteers (17 men, 4 women; mean age, 32 years) were examined with a 3T MR imaging system. Blood velocities were measured at 2 locations below (I and II) and at 1 location above the V3 segment (III) of the vertebral artery by using a high-resolution 2D-phase-contrast sequence with multidirectional velocity-encoding. RESULTS Pulsatility and resistance indices decreased along all measurement locations from proximal to distal. The pulsatility index decreased significantly from location II to III and from I to II. However, the decrease was more pronounced along the Atlas slope than in the straight-vessel section below. The decrease of the resistance index was highly significant along the Atlas slope (location II to III). The decrease from location I to II was small and not significant. CONCLUSIONS The pronounced decrease in pulsatility and resistance indices along the interindividually uniformly bent V3 segment compared with a straight segment of the vertebral artery indicates a physiologic attenuating effect of the Atlas slope on arterial flow pulsatility. A similar effect has been described for the carotid siphon. A physiologic reduction of pulsatility in brain-supplying arteries would be in accordance with several recent publications reporting a correlation of increased arterial flow pulsatility with leukoencephalopathy and lacunar stroke.
Collapse
Affiliation(s)
- T Schubert
- From the Divisions of Neuroradiology (T.S., C.S., A.v.H.)
| | - M Pansini
- Department of Radiology (M.P.), Bruderholz Cantonal Hospital, Basel, Switzerland
| | - O Bieri
- Radiological Physics (O.B., F.S.), Clinic of Radiology and Nuclear Medicine
| | - C Stippich
- From the Divisions of Neuroradiology (T.S., C.S., A.v.H.)
| | - S Wetzel
- Department of Neuroradiology (S.W.), Hirslanden Clinic, Zurich, Switzerland
| | - S Schaedelin
- Clinical Trial Unit (S.S.), Basel University Hospital, Basel, Switzerland
| | - A von Hessling
- From the Divisions of Neuroradiology (T.S., C.S., A.v.H.)
| | - F Santini
- Radiological Physics (O.B., F.S.), Clinic of Radiology and Nuclear Medicine
| |
Collapse
|
31
|
Abstract
4D flow MRI permits a comprehensive in-vivo assessment of three-directional blood flow within 3-dimensional vascular structures throughout the cardiac cycle. Given the large coverage permitted from a 4D flow acquisition, the distribution of vessel wall and flow parameters along an entire vessel of interest can thus be derived from a single measurement without being dependent on multiple predefined 2D acquisitions. In addition to qualitative 3D visualizations of complex cardiac and vascular flow patterns, quantitative flow analysis can be performed and is complemented by the ability to compute sophisticated hemodynamic parameters, such as wall shear stress or 3D pressure difference maps. These metrics can provide information previously unavailable with conventional modalities regarding the impact of cardiovascular disease or therapy on global and regional changes in hemodynamics. This review provides an introduction to the methodological aspects of 4D flow MRI to assess vascular hemodynamics and describes its potential for the assessment and understanding of altered hemodynamics in the presence of cardiovascular disease.
Collapse
|
32
|
Busch J, Vannesjo SJ, Barmet C, Pruessmann KP, Kozerke S. Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:97. [PMID: 25497004 PMCID: PMC4263200 DOI: 10.1186/s12968-014-0097-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/14/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The accuracy of phase-contrast cardiovascular magnetic resonance (PC-CMR) can be compromised by background phase errors. It is the objective of the present work to provide an analysis of the temperature dependence of background phase errors in PC-CMR by means of gradient mount temperature sensing and magnetic field monitoring. METHODS Background phase errors were measured for various temperatures of the gradient mount using magnetic field monitoring and validated in a static phantom. The effect of thermal changes during k-space acquisition was simulated and confirmed with measurements in a stationary phantom. RESULTS The temperature of the gradient mount was found to increase by 20-30 K during PC-CMR measurements of 6-12 min duration. Associated changes in background phase errors of up to 11% or 0.35 radian were measured at 10 cm from the magnet's iso-center as a result of first order offsets. Zeroth order phase errors exhibited little thermal dependence. CONCLUSIONS It is concluded that changes in gradient mount temperature significantly modify background phase errors during PC-CMR with high gradient duty cycle. Since temperature increases significantly during the first minutes of scanning the results presented are also of relevance for single-slice or multi-slice PC-CMR scans. The findings prompt for further studies to investigate advanced correction methods taking into account gradient temperature and/or the use of concurrent field-monitoring to map gradient-induced fields throughout the scan.
Collapse
Affiliation(s)
- Julia Busch
- />Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - S Johanna Vannesjo
- />Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christoph Barmet
- />Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- />Skope Magnetic Resonance Technologies, Zurich, Switzerland
| | - Klaas P Pruessmann
- />Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- />Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- />Division of Imaging Science and Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
33
|
Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Invest Radiol 2014; 49:189-94. [PMID: 24300842 DOI: 10.1097/rli.0000000000000013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Blood flow velocity measurement with phase contrast magnetic resonance imaging (PC-MRI) is widely applied in clinical routine imaging. Usually, velocity and volumetric flow measurements are performed using unidirectional encoding of the through-plane velocity with a 2-dimensional (2D) acquisition. Single-slice acquisitions and measurements with unidirectional encoding, however, may lead to significant errors, especially in tortuous vessels, but might benefit from higher signal-to-noise ratios (SNRs). To evaluate the impact of volumetric acquisition and multidirectional velocity encoding, blood velocity measurements were performed at 3 locations in the distal internal carotid artery with a 3-dimensional, 3-directional time-resolved phase contrast (PC) sequence (4-dimensional [4D]) and a 2D acquisition with 3-directional (2D-3dir) and through-plane velocity encoding (2D-tp) derived from the same sequence. MATERIALS AND METHODS Twenty carotid arteries of 10 healthy volunteers (24-37 years) were evaluated. For each volunteer, 1 4D acquisition and 3 2D 3-directional PC measurements were placed according to a time-of-flight angiography. Unidirectionally encoded through-plane velocities were derived from the multidirectionally encoded 2D scan by discarding the in-plane components. Regions of interest were identified on the slab after postprocessing and visualization for the 4D data set as well as directly on the digital imaging and communications in medicine images for the 2D measurement. Blood flow velocity, volumetric flow, and SNRs were measured at carotid segments C4, C5, and C7 on both sides obtaining 20 values per vessel location. The quantities were tested for significant differences between each modality at all 3 locations with paired t tests. RESULTS At the segments C5 and C7, the highest peak velocities (PVs) were measured with the 4D sequence, followed by 2D-3dir and 2D tp. The PV differences between the sequences were significant (P < 0.01) at both locations. At the proximal segment of the carotid siphon (C4), the PV values of the 2D-3dir sequence were significantly higher than the ones measured with 2D-tp. The mean PV value of the 4D sequence was located in between 2D-3dir and 2D-tp without significant differences to either of the 2D sequences. Volumetric flow measurements were also significantly different between 2D and 4D acquisitions, but without a discernible trend. The SNR analysis clearly favored 2D over 4D acquisitions because of higher inflow enhancement. CONCLUSIONS The results of the current study show that velocity measurements with a unidirectional encoded through-plane PC sequence lead to a significant underestimation of velocity values in tortuous vessels. In all 3 evaluated segments of the distal internal carotid artery, multidirectional velocity encoding revealed significantly higher PV values than those of unidirectional velocity encoding. These results indicate that multidirectional encoding should be preferred to unidirectional encoding for velocity measurements in tortuous vessels. Furthermore, 4D PC-MRI is superior to 2D-3dir in 2 of 3 locations. However, single-slice measurements with multidirectional velocity encoding have higher SNR and may be an alternative to 4D PC-MRI with a scan time of only approximately 90 seconds per slice.
Collapse
|
34
|
K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:149-59. [PMID: 25099493 DOI: 10.1007/s10334-014-0456-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Collapse
|
35
|
Lagrangian postprocessing of computational hemodynamics. Ann Biomed Eng 2014; 43:41-58. [PMID: 25059889 DOI: 10.1007/s10439-014-1070-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.
Collapse
|
36
|
Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther 2014; 4:173-92. [PMID: 24834414 DOI: 10.3978/j.issn.2223-3652.2014.01.02] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed '4D flow MRI') has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system.
Collapse
Affiliation(s)
- Zoran Stankovic
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Bradley D Allen
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Julio Garcia
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Kelly B Jarvis
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Michael Markl
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| |
Collapse
|
37
|
Cardiovascular Function and Flow by 4-Dimensional Magnetic Resonance Imaging Techniques. J Thorac Imaging 2014; 29:185-96. [DOI: 10.1097/rti.0000000000000068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Abstract
Multidimensional blood flow imaging with magnetic resonance has rapidly evolved over the last decade. The technique, often referred to as 4-dimensional (4D) flow, can now reliably image the heart and principal vessels of the chest in ≤15 minutes. In addition to dynamic 3D flow visualization, a range of unique quantitative hemodynamic markers can be calculated from 4D flow data. In this review article, we describe some of the more promising of these hemodynamic markers, including pulse wave velocity, pressure, turbulent kinetic energy, wall shear stress, and flow eccentricity. Evaluation of a range of cardiothoracic disorders has been explored with 4D flow, and many applications have been proposed. We also review the potential clinical applications of 4D flow in 4 broad contexts: the aorta, the pulmonary artery, acquired heart disease, and complex congenital heart disease. Promising preliminary results will be highlighted, including the use of abnormal systolic blood flow to risk-stratify patients for progressive valve-related aortic disease, turbulent kinetic energy to directly assess the hemodynamic impact of a stenotic lesion, and altered intracardiac flow to identify early heart failure. We discuss ongoing research efforts in the context of the larger clinical goals of 4D flow: the use of unique hemodynamic markers to (1) identify cardiovascular disease processes early in their course before clinical manifestation so that preemptive treatment can be undertaken; (2) refine the assessment of cardiovascular disease so as to better identify optimal medical or surgical therapies; and (3) enhance the evaluation and monitoring of the hemodynamic impact of different treatment options.
Collapse
|
39
|
Sekine T, Amano Y, Takagi R, Matsumura Y, Murai Y, Kumita S. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE. Magn Reson Med Sci 2014; 13:15-24. [PMID: 24492737 DOI: 10.2463/mrms.2013-0008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. MATERIALS AND METHODS Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. RESULTS 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. CONCLUSION Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.
Collapse
|
40
|
Vardakis JC, Tully BJ, Ventikos Y. Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: a computational perspective. PLoS One 2013; 8:e84577. [PMID: 24391968 PMCID: PMC3877339 DOI: 10.1371/journal.pone.0084577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/23/2013] [Indexed: 11/22/2022] Open
Abstract
This study proposes the implementation of a Multiple-Network Poroelastic Theory (MPET) model coupled with finite-volume computational fluid dynamics for the purpose of studying, in detail, the effects of obstructing CSF transport within an anatomically accurate cerebral environment. The MPET representation allows the investigation of fluid transport between CSF, brain parenchyma and cerebral blood, in an integral and comprehensive manner. A key novelty in the model is the amalgamation of anatomically accurate choroid plexuses with their feeding arteries and a simple relationship relaxing the constraint of a unique permeability for the CSF compartment. This was done in order to account for the Aquaporin-4-mediated swelling characteristics. The aim of this varying permeability compartment was to bring to light a feedback mechanism that could counteract the effects of ventricular dilation and subsequent elevations of CSF pressure through the efflux of excess CSF into the blood system. This model is used to demonstrate the impact of aqueductal stenosis and fourth ventricle outlet obstruction (FVOO). The implications of treating such a clinical condition with the aid of endoscopic third (ETV) and endoscopic fourth (EFV) ventriculostomy are considered. We observed peak CSF velocities in the aqueduct of the order of 15.6 cm/s in the healthy case, 45.4 cm/s and 72.8 cm/s for the mild and severe cases respectively. The application of ETV reduced the aqueductal velocity to levels around 16-17 cm/s. Ventricular displacement, CSF pressure, wall shear stress (WSS) and pressure difference between lateral and fourth ventricles (ΔP) increased with applied stenosis, and subsequently dropped to nominal levels with the application of ETV. The greatest reversal of the effects of atresia come by opting for ETV rather than the more complicated procedure of EFV.
Collapse
Affiliation(s)
- John C. Vardakis
- Institute of Biomedical Engineering and Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Brett J. Tully
- Oxyntix Ltd., Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, Torrington Place, London, United Kingdom
| |
Collapse
|
41
|
Hong GR, Kim M, Pedrizzetti G, Vannan MA. Current clinical application of intracardiac flow analysis using echocardiography. J Cardiovasc Ultrasound 2013; 21:155-62. [PMID: 24459561 PMCID: PMC3894365 DOI: 10.4250/jcu.2013.21.4.155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Abstract
In evaluating the cardiac function, it is important to have a comprehensive assessment of structural factors, such as the myocardial or valvular function and intracardiac flow dynamics that pass the heart. Vortex flow that form during left ventricular filling have specific geometry and anatomical location that are critical determinants of directed blood flow during ejection. The formation of abnormal vortices relates to the abnormal cardiac function. Therefore, vortex flow may offer a novel index of cardiac dysfunction. Intracardiac flow visualization using ultrasound technique has definite advantages with a higher temporal resolution and availability in real time clinical setting. Vector flow mapping based on color-Doppler and contrast echocardiography using particle image velocimetry is currently being used for visualizing the intracardiac flow. The purpose of this review is to provide readers with an update on the current method for analyzing intracardiac flow using echocardiography and its clinical applications.
Collapse
Affiliation(s)
- Geu-Ru Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minji Kim
- School of Medicine, University of Queensland, Herston, QLD, Australia
| | | | - Mani A Vannan
- Department of Cardiovascular Medicine, Piedmont Heart Institute, Atlanta, GA, USA
| |
Collapse
|
42
|
Reiter U, Reiter G, Kovacs G, Stalder AF, Gulsun MA, Greiser A, Olschewski H, Fuchsjäger M. Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PLoS One 2013; 8:e82212. [PMID: 24349224 PMCID: PMC3861394 DOI: 10.1371/journal.pone.0082212] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022] Open
Abstract
Purpose Three-dimensional (3D) magnetic resonance phase contrast imaging (PC-MRI) allows non-invasive diagnosis of pulmonary hypertension (PH) and estimation of elevated mean pulmonary arterial pressure (mPAP) based on vortical motion of blood in the main pulmonary artery. The purpose of the present study was to compare the presence and duration of PH-associated vortices derived from different flow visualization techniques with special respect to their performance for non-invasive assessment of elevated mPAP and diagnosis of PH. Methods Fifty patients with suspected PH (23 patients with and 27 without PH) were investigated by right heart catheterization and time-resolved PC-MRI of the main pulmonary artery. PC-MRI data were visualized with dedicated prototype software, providing 3D vector, multi-planar reformatted (MPR) 2D vector, streamline, and particle trace representation of flow patterns. Persistence of PH-associated vortical blood flow (tvortex) was evaluated with all visualization techniques. Dependencies of tvortex on visualization techniques were analyzed by means of correlation and receiver operating characteristic (ROC) curve analysis. Results tvortex values from 3D vector visualization correlated strongly with those from other visualization techniques (r = 0.98, 0.98 and 0.97 for MPR, streamline and particle trace visualization, respectively). Areas under ROC curves for diagnosis of PH based on tvortex did not differ significantly and were 0.998 for 3D vector, MPR vector and particle trace visualization and 0.999 for streamline visualization. Correlations between elevated mPAP and tvortex in patients with PH were r = 0.96, 0.93, 0.95 and 0.92 for 3D vector, MPR vector, streamline and particle trace visualization, respectively. Corresponding standard deviations from the linear regression lines ranged between 3 and 4 mmHg. Conclusion 3D vector, MPR vector, streamline as well as particle trace visualization of time-resolved 3D PC-MRI data of the main pulmonary artery can be employed for accurate vortex-based diagnosis of PH and estimation of elevated mPAP.
Collapse
Affiliation(s)
- Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Gert Reiter
- Siemens AG, Healthcare Sector, Graz, Austria
| | - Gabor Kovacs
- Division of Pulmology, Department of Internal Medicine, Medical University of Graz & LBI for Lung Vascular Research, Graz, Austria
| | | | | | | | - Horst Olschewski
- Division of Pulmology, Department of Internal Medicine, Medical University of Graz & LBI for Lung Vascular Research, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
43
|
Stankovic Z, Jung B, Collins J, Russe MF, Carr J, Euringer W, Stehlin L, Csatari Z, Strohm PC, Langer M, Markl M. Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med 2013; 72:477-84. [PMID: 24018798 DOI: 10.1002/mrm.24939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate influence of variation in spatio-temporal resolution and scan-rescan reproducibility on three-dimensional (3D) visualization and quantification of arterial and portal venous (PV) liver hemodynamics at four-dimensional (4D) flow MRI. METHODS Scan-rescan reproducibility of 3D hemodynamic analysis of the liver was evaluated in 10 healthy volunteers using 4D flow MRI at 3T with three different spatio-temporal resolutions (2.4 × 2.0 × 2.4 mm(3), 61.2 ms; 2.5 × 2.0 × 2.4 mm(3), 81.6 ms; 2.6 × 2.5 × 2.6 mm(3), 80 ms) and thus different total scan times. Qualitative flow analysis used 3D streamlines and time-resolved particle traces. Quantitative evaluation was based on maximum and mean velocities, flow volume, and vessel lumen area in the hepatic arterial and PV systems. RESULTS 4D flow MRI showed good interobserver variability for assessment of arterial and PV liver hemodynamics. 3D flow visualization revealed limitations for the left intrahepatic PV branch. Lower spatio-temporal resolution resulted in underestimation of arterial velocities (mean 15%, P < 0.05). For the PV system, hemodynamic analyses showed significant differences in the velocities for intrahepatic portal vein vessels (P < 0.05). Scan-rescan reproducibility was good except for flow volumes in the arterial system. CONCLUSION 4D flow MRI for assessment of liver hemodynamics can be performed with low interobserver variability and good reproducibility. Higher spatio-temporal resolution is necessary for complete assessment of the hepatic blood flow required for clinical applications.
Collapse
Affiliation(s)
- Zoran Stankovic
- Department of Radiology, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA; Department of Diagnostic Radiology and Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2013; 72:522-33. [PMID: 24006309 DOI: 10.1002/mrm.24925] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/28/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the utility of k-t parallel imaging for accelerating aortic four-dimensional (4D)-flow MRI. The aim was to systematically investigate the impact of different acceleration factors and number of coil elements on acquisition time, image quality and quantification of hemodynamic parameters. METHODS k-t accelerated 4D-flow MRI (spatial/temporal resolution = 2.1 × 2.5 × 2.5 mm/40.0 ms) was acquired in 10 healthy volunteers with acceleration factors R = 3, 5, and 8 using 12- and 32-channel receiver coils. Results were compared with conventional parallel imaging (GRAPPA [generalized autocalibrating partial parallel acquisition], R = 2). Data analysis included radiological grading of three-dimensional blood flow visualization quality as well as quantification of blood flow, velocities and wall shear stress (WSS). RESULTS k-t GRAPPA significantly reduced scan time by 28%, 54%, and 68%, for R = 3, 5, and 8, respectively, while maintaining image quality as demonstrated by overall similar image quality grading. Significant differences in peak WSS (diff12ch = -5.9%, diff32ch = 18.5%) and mean WSS (diff32ch = 13.9%) were found at the descending aorta for both receiver coils for R = 5 (PWSS < 0.04). Peak velocity differed for R=8 at the aortic root (-7.4%) and descending aorta (-12%) with PpeakVelo < 0.03. CONCLUSION k-t GRAPPA acceleration with a 12- or 32-channel receiver coil and an acceleration of 3 or 5 can compete with a standard GRAPPA R = 2 acceleration.
Collapse
Affiliation(s)
- Susanne Schnell
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lorenz R, Bock J, Snyder J, Korvink JG, Jung BA, Markl M. Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data. Magn Reson Med 2013; 72:33-40. [PMID: 24006013 DOI: 10.1002/mrm.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 11/05/2022]
Abstract
PURPOSE The measurement of velocities based on phase contrast MRI can be subject to different phase offset errors which can affect the accuracy of velocity data. The purpose of this study was to determine the impact of these inaccuracies and to evaluate different correction strategies on three-dimensional visualization. METHODS Phase contrast MRI was performed on a 3 T system (Siemens Trio) for in vitro (curved/straight tube models; venc: 0.3 m/s) and in vivo (aorta/intracranial vasculature; venc: 1.5/0.4 m/s) data. For comparison of the impact of different magnetic field gradient designs, in vitro data was additionally acquired on a wide bore 1.5 T system (Siemens Espree). Different correction methods were applied to correct for eddy currents, Maxwell terms, and gradient field inhomogeneities. RESULTS The application of phase offset correction methods lead to an improvement of three-dimensional particle trace visualization and count. The most pronounced differences were found for in vivo/in vitro data (68%/82% more particle traces) acquired with a low venc (0.3 m/s/0.4 m/s, respectively). In vivo data acquired with high venc (1.5 m/s) showed noticeable but only minor improvement. CONCLUSION This study suggests that the correction of phase offset errors can be important for a more reliable visualization of particle traces but is strongly dependent on the velocity sensitivity, object geometry, and gradient coil design.
Collapse
Affiliation(s)
- Ramona Lorenz
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Postoperative pulmonary and aortic 3D haemodynamics in patients after repair of transposition of the great arteries. Eur Radiol 2013; 24:200-8. [PMID: 23995974 DOI: 10.1007/s00330-013-2998-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/30/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To characterise aortic and pulmonary haemodynamics and investigate the correlation with post-surgical anatomy in patients with dextro-transposition of the great arteries (d-TGA). METHODS Four-dimensional (4D) MRI was performed in 17 patients after switch repair of TGA and 12 healthy controls (age, 11.9 ± 5.4 vs 23.3 ± 1.6 years). Patients were divided according to the pulmonary trunk (TP) position in relation to the ascending aorta (AAo): anterior (n = 10) and right/left anterior position (n = 7). Analysis included visual grading (ranking 0-2) of pulmonary and aortic vortical and helical flow, flow velocity quantification, blood-flow distribution to the right and left pulmonary arteries (flow ratio rPA:lPA), and vessel lumen areas. RESULTS Anterior TP position was associated with increased vortices in six out of ten patients compared with right anterior TP position (one out of seven) and controls (none). Reduced systolic lPA and TP lumina in patients resulted in significantly increased peak systolic velocities (P < 0.001). Flow ratio rPA:lPA was more heterogeneous in patients (rPA:lPA = 1.56 ± 0.78 vs volunteers 1.09 ± 0.15; P < 0.05) with predominant flow to the rPA. Eleven patients presented increased helices in the AAo (grade 1.6). CONCLUSIONS Evaluation of post-surgical haemodynamics in TGA patients revealed increased vortical flow for anterior TP position, asymmetric flow and increased systolic flow velocity in the pulmonary arteries owing to reduced vascular lumina. KEY POINTS • 3D phase contrast MRI with velocity encoding (4D MRI) has numerous cardiovascular applications • 4D MRI demonstrates postoperative haemodynamics following surgery for transposition of the great arteries • Flow visualisation depicted enhanced pulmonary vortices in the anterior pulmonary trunk • Narrow pulmonary arterial systolic lumina resulted in increased peak systolic velocities.
Collapse
|
47
|
Rodriguez Muñoz D, Markl M, Moya Mur JL, Barker A, Fernández-Golfín C, Lancellotti P, Zamorano Gómez JL. Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging 2013; 14:1029-38. [PMID: 23907342 DOI: 10.1093/ehjci/jet086] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-invasive cardiovascular imaging initially focused on heart structures, allowing the visualization of their motion and inferring its functional status from it. Colour-Doppler and cardiac magnetic resonance (CMR) have allowed a visual approach to intracardiac flow behaviour, as well as measuring its velocity at single selected spots. Recently, the application of new technologies to medical use and, particularly, to cardiology has allowed, through different algorithms in CMR and applications of ultrasound-related techniques, the description and analysis of flow behaviour in all points and directions of the selected region, creating the opportunity to incorporate new data reflecting cardiac performance to cardiovascular imaging. The following review provides an overview of the currently available imaging techniques that enable flow visualization, as well as its present and future applications based on the available literature and on-going works.
Collapse
Affiliation(s)
- Daniel Rodriguez Muñoz
- Department of Cardiology, Ramón y Cajal University Hospital, Ctra. de Colmenar, Km 9, 100, PO 28031 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Markl M, Brendecke SM, Simon J, Barker AJ, Weiller C, Harloff A. Co-registration of the distribution of wall shear stress and 140 complex plaques of the aorta. Magn Reson Imaging 2013; 31:1156-62. [PMID: 23773622 DOI: 10.1016/j.mri.2013.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/17/2022]
Abstract
Previous studies provide evidence that atherosclerosis develops in vascular regions exposed to low wall shear stress (WSS) and high oscillatory shear index (OSI). 4D flow MRI was analyzed in 70 stroke patients with complex plaques (≥4 mm thickness, ulcerated or superimposed thrombi) and in 12 young healthy volunteers. The segmental distribution of peak systolic WSSsystole and OSI was quantified in analysis planes positioned directly at the location of 140 complex plaques found in the 70 patients. In addition, WSSsystole and OSI were evaluated in 8 standard analysis planes distributed along the aorta. Complex plaques were predominantly found at the inner curvature of the aortic arch and of the descending aorta. High OSI was co-located with the segments mostly affected by complex plaque while WSSsystole demonstrated a homogenous distribution. In standard analysis planes, patients demonstrated significantly (p<0.01) altered distribution of wall parameters compared to volunteers (reduced WSSsystole in 91% of aortic wall segments, increased OSI in 48% of segments). OSI distribution was asymmetric with higher values at the inner curvature of the aorta. While WSS and OSI showed expected changes in patients compared to healthy controls, their distribution pattern at complex plaques indicated a more complex and heterogeneous relationship than previously anticipated.
Collapse
Affiliation(s)
- Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
49
|
A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur J Gastroenterol Hepatol 2013; 25:669-75. [PMID: 23411868 DOI: 10.1097/meg.0b013e32835e1297] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate the feasibility of time-resolved flow-sensitive four-dimensional (4D) MRI for the visualization and quantification of splanchnic arterial and portal venous hemodynamics in patients with cirrhosis and in controls. MATERIALS AND METHODS We applied flow-sensitive 4D MRI to evaluate arterial and portal venous three-dimensional blood flow in patients with advanced liver cirrhosis (n=5) and in healthy controls (n=10) using 3T MRI (spatial resolution=1.7×2.1×2.4 mm, temporal resolution=62.4 ms). The qualitative flow was analyzed using three-dimensional streamlines and time-resolved particle traces. Retrospective flow was quantified in nine predefined anatomic regions evaluating maximum and mean velocities, the flow volume, the vessel lumen area, pulsatility indices, and resistance indices. Doppler ultrasound (US) was our reference standard. RESULTS Flow-sensitive 4D MRI visualized liver hemodynamics successfully in 91% of patients and 96% of volunteers with limitations for the patients' extrahepatic vessels (one case of splenic and superior mesenteric veins each) and intrahepatic portal vein branches (in five vessels). Healthy control individuals revealed reduced velocities and larger vessel areas in MRI than in Doppler US. We found no significant differences in the flow volume, pulsatility indices, and resistance indices on comparing MRI with US. Regional flow quantification within the splanchnic system of healthy volunteers and liver cirrhosis patients revealed an increase in the inflow (up to 65%), but a decrease in the patients' outflow (up to 37%). CONCLUSION Flow-sensitive 4D MRI is feasible for profound evaluation of arterial and portal venous hemodynamics in liver cirrhosis patients, providing additional information on the pathophysiology of the altered splanchnic system.
Collapse
|
50
|
Abstract
Traditionally, magnetic resonance imaging (MRI) of flow using phase contrast (PC) methods is accomplished using methods that resolve single-directional flow in two spatial dimensions (2D) of an individual slice. More recently, three-dimensional (3D) spatial encoding combined with three-directional velocity-encoded phase contrast MRI (here termed 4D flow MRI) has drawn increased attention. 4D flow MRI offers the ability to measure and to visualize the temporal evolution of complex blood flow patterns within an acquired 3D volume. Various methodological improvements permit the acquisition of 4D flow MRI data encompassing individual vascular structures and entire vascular territories such as the heart, the adjacent aorta, the carotid arteries, abdominal, or peripheral vessels within reasonable scan times. To subsequently analyze the flow data by quantitative means and visualization of complex, three-directional blood flow patterns, various tools have been proposed. This review intends to introduce currently used 4D flow MRI methods, including Cartesian and radial data acquisition, approaches for accelerated data acquisition, cardiac gating, and respiration control. Based on these developments, an overview is provided over the potential this new imaging technique has in different parts of the body from the head to the peripheral arteries.
Collapse
Affiliation(s)
- Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|