1
|
Robison RK, Haynes JR, Ganji SK, Nockowski CP, Kovacs Z, Pham W, Morgan VL, Smith SA, Thompson RC, Omary RA, Gore JC, Choi C. J-Difference editing (MEGA) of lactate in the human brain at 3T. Magn Reson Med 2023; 90:852-862. [PMID: 37154389 PMCID: PMC10901256 DOI: 10.1002/mrm.29693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine. METHODS Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects. RESULTS The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM. CONCLUSION Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.
Collapse
Affiliation(s)
- Ryan K Robison
- Philips, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin R Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandeep K Ganji
- Philips, Rochester, Minnesota, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | - Charles P Nockowski
- Philips, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Reed A Omary
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Changho Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Choi IY, Andronesi OC, Barker P, Bogner W, Edden RAE, Kaiser LG, Lee P, Marjańska M, Terpstra M, de Graaf RA. Spectral editing in 1 H magnetic resonance spectroscopy: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4411. [PMID: 32946145 PMCID: PMC8557623 DOI: 10.1002/nbm.4411] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Spectral editing in in vivo 1 H-MRS provides an effective means to measure low-concentration metabolite signals that cannot be reliably measured by conventional MRS techniques due to signal overlap, for example, γ-aminobutyric acid, glutathione and D-2-hydroxyglutarate. Spectral editing strategies utilize known J-coupling relationships within the metabolite of interest to discriminate their resonances from overlying signals. This consensus recommendation paper provides a brief overview of commonly used homonuclear editing techniques and considerations for data acquisition, processing and quantification. Also, we have listed the experts' recommendations for minimum requirements to achieve adequate spectral editing and reliable quantification. These include selecting the right editing sequence, dealing with frequency drift, handling unwanted coedited resonances, spectral fitting of edited spectra, setting up multicenter clinical trials and recommending sequence parameters to be reported in publications.
Collapse
Affiliation(s)
- In-Young Choi
- Department of Neurology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F. M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, Maryland
| | - Wolfgang Bogner
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F. M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, Maryland
| | - Lana G Kaiser
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, California
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| |
Collapse
|
5
|
Andronesi OC, Gagoski BA, Adalsteinsson E, Sorensen AG. Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories. NMR IN BIOMEDICINE 2012; 25:195-209. [PMID: 21774010 PMCID: PMC3261335 DOI: 10.1002/nbm.1730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
In this work we introduce the concept of correlation chemical shift imaging (CCSI). Novel CCSI pulse sequences are demonstrated on clinical scanners for two-dimensional Correlation Spectroscopy (COSY) and Total Correlation Spectroscopy (TOCSY) imaging experiments. To date there has been limited progress reported towards a feasible and robust multivoxel 2D COSY. Localized 2D TOCSY imaging is shown for the first time in this work. Excitation with adiabatic GOIA-W(16,4) pulses (Gradient Offset Independent Adiabaticity Wurst modulation) provides minimal chemical shift displacement error, reduced lipid contamination from subcutaneous fat, uniform optimal flip angles, and efficient mixing for coupled spins, while enabling short repetition times due to low power requirements. Constant-density spiral readout trajectories are used to acquire simultaneously two spatial dimensions and f(2) frequency dimension in (k(x),k(y),t(2)) space in order to speed up data collection, while f(1) frequency dimension is encoded by consecutive time increments of t(1) in (k(x),k(y),t(1),t(2)) space. The efficient spiral sampling of the k-space enables the acquisition of a single-slice 2D COSY dataset with an 8 × 8 matrix in 8:32 min on 3 T clinical scanners, which makes it feasible for in vivo studies on human subjects. Here we present the first results obtained on phantoms, human volunteers and patients with brain tumors. The patient data obtained by us represent the first clinical demonstration of a feasible and robust multivoxel 2D COSY. Compared to the 2D J-resolved method, 2D COSY and TOCSY provide increased spectral dispersion which scales up with increasing main magnetic field strength and may have improved ability to unambiguously identify overlapping metabolites. It is expected that the new developments presented in this work will facilitate in vivo application of 2D chemical shift correlation MRS in basic science and clinical studies.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | |
Collapse
|
6
|
Andronesi OC, Ramadan S, Mountford CE, Sorensen AG. Low-power adiabatic sequences for in vivo localized two-dimensional chemical shift correlated MR spectroscopy. Magn Reson Med 2010; 64:1542-56. [PMID: 20890988 PMCID: PMC3214589 DOI: 10.1002/mrm.22535] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/29/2010] [Accepted: 05/21/2010] [Indexed: 12/22/2022]
Abstract
Novel low-power adiabatic sequences are demonstrated for in vivo localized two-dimensional correlated MR spectroscopy, such as correlated spectroscopy and total correlated spectroscopy. The design is based on three new elements for in vivo two-dimensional MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for (i) localization (correlated spectroscopy and total correlated spectroscopy) and (ii) mixing (total correlated spectroscopy), and (iii) the use of longitudinal mixing (z-filter) for magnetization transfer during total correlated spectroscopy. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both total correlated spectroscopy mixing and localization. Longitudinal mixing improves considerably (fivefolds) the efficiency of total correlated spectroscopy transfer. These are markedly different from previous 1D editing total correlated spectroscopy sequences using spatially nonselective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semiadiabatic (adiabatic mixing with nonadiabatic localization) methods for two-dimensional total correlated spectroscopy are compared. Results are presented for simulations, phantoms, and in vivo two-dimensional spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge, this is the first demonstration of in vivo adiabatic two-dimensional total correlated spectroscopy and fully adiabatic two-dimensional correlated spectroscopy. It is expected that these methodological developments will advance the in vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers.
Collapse
Affiliation(s)
- Ovidiu C. Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical Shool, Boston, MA 02114
- Department of Clinical Psychology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Saadallah Ramadan
- Center for Clinical Spectroscopy, Department of Radiology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Carolyn E. Mountford
- Center for Clinical Spectroscopy, Department of Radiology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - A. Gregory Sorensen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical Shool, Boston, MA 02114
| |
Collapse
|
7
|
Pickup S, Lee SC, Mancuso A, Glickson JD. Lactate imaging with Hadamard-encoded slice-selective multiple quantum coherence chemical-shift imaging. Magn Reson Med 2008; 60:299-305. [PMID: 18666110 DOI: 10.1002/mrm.21659] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to generate in vivo maps of lactate may have significant diagnostic utility in staging and treatment planning of a wide variety of cancers. The double selective multiple quantum filter technique (SelMQC) has been shown to be effective for nonlocalized detection of lactate with little or no interference from other signals. Here the SelMQC technique has been combined with longitudinal Hadamard slice selection and chemical shift imaging (CSI) to yield slice-selective images of lactate. The technique is shown to be effective in phantoms and in WSU-DLCL2 xenografts implanted in flanks of SCID mice. Tumors exhibited an annulus of elevated lactate concentration surrounding a necrotic tumor core.
Collapse
Affiliation(s)
- Stephen Pickup
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
8
|
Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, Zektzer AS, Kurhanewicz J. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 2008; 60:33-40. [PMID: 18581409 DOI: 10.1002/mrm.21647] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A fast and quantitative 2D high-resolution magic angle spinning (HR-MAS) total correlation spectroscopy (TOCSY) experiment was developed to resolve and quantify the choline- and ethanolamine-containing metabolites in human prostate tissues in approximately 1 hr prior to pathologic analysis. At a 40-ms mixing time, magnetization transfer efficiency constants were empirically determined in solution and used to calculate metabolite concentrations in tissue. Phosphocholine (PC) was observed in 11/15 (73%) cancer tissues but only 6/32 (19%) benign tissues. PC was significantly higher (0.39 +/- 0.40 mmol/kg vs. 0.02 +/- 0.07 mmol/kg, z = 3.5), while ethanolamine (Eth) was significantly lower in cancer versus benign prostate tissues (1.0 +/- 0.8 mmol/kg vs. 2.3 +/- 1.9 mmol/kg, z = 3.3). Glycerophosphocholine (GPC) (0.57 +/- 0.87 mmol/kg vs. 0.29 +/- 0.26 mmol/kg, z = 1.2), phosphoethanolamine (PE) (4.4 +/- 2.2 mmol/kg vs. 3.4 +/- 2.6 mmol/kg, z = 1.4), and glycerophosphoethanolamine (GPE) (0.54 +/- 0.82 mmol/kg vs. 0.15 +/- 0.15 mmol/kg, z = 1.8) were higher in cancer versus benign prostate tissues. The ratios of PC/GPC (3.5 +/- 4.5 vs. 0.32 +/- 1.4, z = 2.6), PC/PE (0.08 +/- 0.08 vs. 0.01 +/- 0.03, z = 3.5), PE/Eth (16 +/- 22 vs. 2.2 +/- 2.0, z = 2.4), and GPE/Eth (0.41 +/- 0.51 vs. 0.06 +/- 0.06, z = 2.6) were also significantly higher in cancer versus benign tissues. All samples were pathologically interpretable following HR-MAS analysis; however, degradation experiments showed that PC, GPC, PE, and GPE decreased 7.7 +/- 2.2%, while Cho+mI and Eth increased 18% in 1 hr at 1 degrees C and a 2250 Hz spin rate.
Collapse
Affiliation(s)
- Mark G Swanson
- Department of Radiology, University of California-San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Choi C, Coupland NJ, Bhardwaj PP, Malykhin N, Gheorghiu D, Allen PS. Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 tesla. Magn Reson Med 2006; 55:997-1005. [PMID: 16598736 DOI: 10.1002/mrm.20875] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new single-voxel proton NMR spectrally-selective refocusing method for measuring glutamate (Glu) and glutamine (Gln) in the human brain in vivo at 3T is reported. Triple-resonance selective 180 degrees RF pulses with a bandwidth of 12 Hz were implemented within point-resolved spectroscopy (PRESS) for selective detection of Glu or Gln, and simultaneous acquisition of creatine singlets for use as a reference in phase correction. The carriers of the spectrally-selective 180 degrees pulses and the echo times (TEs) were optimized with both numerical and experimental analyses of the filtering performance, which enabled measurements of the target metabolites with negligible contamination from N-acetylaspartate and glutathione. The concentrations of Glu and Gln in the prefrontal cortex were estimated to be 9.7+/-0.5 and 3.0+/-0.7 mM (mean+/-SD, N=7), with reference to Cr at 8 mM.
Collapse
Affiliation(s)
- Changho Choi
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|