1
|
Kishimoto S, Devasahayam N, Chandramouli GVR, Murugesan R, Otowa Y, Yamashita K, Yamamoto K, Brender JR, Krishna MC. Evaluation of a deuterated triarylmethyl spin probe for in vivo R 2 ∗-based EPR oximetric imaging with enhanced dynamic range. Magn Reson Med 2024; 91:413-423. [PMID: 37676121 PMCID: PMC10841161 DOI: 10.1002/mrm.29811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
- Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | | | | | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Chengalpattu, Tamil Nadu, India
| | - Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Kota Yamashita
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Qiao Z, Halpern H, Pan X. 4D-image reconstruction directly from limited-angular-range data in continuous-wave electron paramagnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107432. [PMID: 37058955 PMCID: PMC10197356 DOI: 10.1016/j.jmr.2023.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE We investigate and develop optimization-based algorithms for accurate reconstruction of four-dimensional (4D)-spectral-spatial (SS) images directly from data collected over limited angular ranges (LARs) in continuous-wave (CW) electron paramagnetic resonance imaging (EPRI). METHODS Basing on a discrete-to-discrete data model devised in CW EPRI employing the Zeeman-modulation (ZM) scheme for data acquisition, we first formulate the image reconstruction problem as a convex, constrained optimization program that includes a data fidelity term and also constraints on the individual directional total variations (DTVs) of the 4D-SS image. Subsequently, we develop a primal-dual-based DTV algorithm, simply referred to as the DTV algorithm, to solve the constrained optimization program for achieving image reconstruction from data collected in LAR scans in CW-ZM EPRI. RESULTS We evaluate the DTV algorithm in simulated- and real-data studies for a variety of LAR scans of interest in CW-ZM EPRI, and visual and quantitative results of the studies reveal that 4D-SS images can be reconstructed directly from LAR data, which are visually and quantitatively comparable to those obtained from data acquired in the standard, full-angular-range (FAR) scan in CW-ZM EPRI. CONCLUSION An optimization-based DTV algorithm is developed for accurately reconstructing 4D-SS images directly from LAR data in CW-ZM EPRI. Future work includes the development and application of the optimization-based DTV algorithm for reconstructions of 4D-SS images from FAR and LAR data acquired in CW EPRI employing schemes other than the ZM scheme. SIGNIFICANCE The DTV algorithm developed may be exploited potentially for enabling and optimizing CW EPRI with minimized imaging time and artifacts by acquiring data in LAR scans.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Takakusagi Y, Kobayashi R, Saito K, Kishimoto S, Krishna MC, Murugesan R, Matsumoto KI. EPR and Related Magnetic Resonance Imaging Techniques in Cancer Research. Metabolites 2023; 13:metabo13010069. [PMID: 36676994 PMCID: PMC9862119 DOI: 10.3390/metabo13010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| | - Ryoma Kobayashi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Palayanoor (PO), Chengalpattu 603308, India
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| |
Collapse
|
4
|
Qiao Z, Lu Y, Liu P, Epel B, Halpern H. An iterative reconstruction algorithm without system matrix for EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 344:107307. [PMID: 36308904 DOI: 10.1016/j.jmr.2022.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Electron paramagnetic resonance (EPR) imaging is an advanced oxygen imaging modality for oxygen-image guided radiation. The iterative reconstruction algorithm is the research hot-point in image reconstruction for EPR imaging (EPRI) for this type of algorithm may incorporate image-prior information to construct advanced optimization model to achieve accurate reconstruction from sparse-view projections and/or noisy projections. However, the system matrix in the iterative algorithm needs complicated calculation and needs huge memory-space if it is stored in memory. In this work, we propose an iterative reconstruction algorithm without system matrix for EPRI to simplify the whole iterative reconstruction process. The function of the system matrix is to calculate the projections, whereas the function of the transpose of the system matrix is to perform backprojection. The existing projection and backprojection methods are all based on the configuration that the imaged-object remains stationary and the scanning device rotates. Here, we implement the projection and backprojection operations by fixing the scanning device and rotating the object. Thus, the core algorithm is only the commonly-used image-rotation algorithm, while the calculation and store of the system matrix are avoided. Based on the idea of image rotation, we design a specific iterative reconstruction algorithm for EPRI, total variation constrained data divergence minimization (TVcDM) algorithm without system matrix, and named it as image-rotation based TVcDM (R-TVcDM). Through a series of comparisons with the original TVcDM via real projection data, we find that the proposed algorithm may achieve similar reconstruction accuracy with the original one. But it avoids the complicated calculation and store of the system matrix. The insights gained in this work may be also applied to other imaging modalities, for example computed tomography and positron emission tomography.
Collapse
Affiliation(s)
- Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Yang Lu
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Peng Liu
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Big Data and Intelligent Engineering, Shanxi Institute of Technology, Yangquan, Shanxi 045000, China
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Howard Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Kishimoto S, Brender JR, Chandramouli GVR, Saida Y, Yamamoto K, Mitchell JB, Krishna MC. Hypoxia-Activated Prodrug Evofosfamide Treatment in Pancreatic Ductal Adenocarcinoma Xenografts Alters the Tumor Redox Status to Potentiate Radiotherapy. Antioxid Redox Signal 2021; 35:904-915. [PMID: 32787454 PMCID: PMC8568781 DOI: 10.1089/ars.2020.8131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Bridging cell-scale simulations and radiologic images to explain short-time intratumoral oxygen fluctuations. PLoS Comput Biol 2021; 17:e1009206. [PMID: 34310608 PMCID: PMC8341701 DOI: 10.1371/journal.pcbi.1009206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/05/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Radiologic images provide a way to monitor tumor development and its response to therapies in a longitudinal and minimally invasive fashion. However, they operate on a macroscopic scale (average value per voxel) and are not able to capture microscopic scale (cell-level) phenomena. Nevertheless, to examine the causes of frequent fast fluctuations in tissue oxygenation, models simulating individual cells’ behavior are needed. Here, we provide a link between the average data values recorded for radiologic images and the cellular and vascular architecture of the corresponding tissues. Using hybrid agent-based modeling, we generate a set of tissue morphologies capable of reproducing oxygenation levels observed in radiologic images. We then use these in silico tissues to investigate whether oxygen fluctuations can be explained by changes in vascular oxygen supply or by modulations in cellular oxygen absorption. Our studies show that intravascular changes in oxygen supply reproduce the observed fluctuations in tissue oxygenation in all considered regions of interest. However, larger-magnitude fluctuations cannot be recreated by modifications in cellular absorption of oxygen in a biologically feasible manner. Additionally, we develop a procedure to identify plausible tissue morphologies for a given temporal series of average data from radiology images. In future applications, this approach can be used to generate a set of tissues comparable with radiology images and to simulate tumor responses to various anti-cancer treatments at the tissue-scale level. Low levels of oxygen, called hypoxia, are observable in many solid tumors. They are associated with more aggressive malignant cells that are resistant to chemo-, radio-, and immunotherapies. Recently developed imaging techniques provide a way to measure the magnitude of frequent short-term oxygen fluctuations, but they operate on a macro-scale voxel level. To examine the possible causes of rapid oxygen fluctuations at the cell level, we developed a hybrid agent-based mathematical model. We tested two different mechanisms that may be responsible for these cyclic effects on tissue oxygenation: temporal variations in vascular influx of oxygen and modulations in cellular oxygen absorption. Additionally, we developed a procedure to identify plausible tissue morphologies from data collected from radiological images. This can provide a bridge between the micro-scale simulations with individual cells and the longitudinal medical images containing average values. In future applications, this approach can be used to generate a set of tissues compatible with radiology images and to simulate tumor responses to various anticancer treatments at the cell-scale level.
Collapse
|
8
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
9
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|
10
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
11
|
Komarov DA, Samouilov A, Ahmad R, Zweier JL. Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106812. [PMID: 32966948 PMCID: PMC7554188 DOI: 10.1016/j.jmr.2020.106812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A novel method for reconstructing 3D spatial EPR images from large numbers of noisy projections was developed that minimizes mean square error between the experimental projections and those from the reconstructed image. The method utilizes raw projection data and zero gradient spectrum to account for EPR line shape and hyperfine structure of the paramagnetic probe without the need for deconvolution techniques that are poorly suited for processing of high noise projections. A numerical phantom was reconstructed for method validation. Reconstruction time for the matrix of 1283 voxels and 16,384 noiseless projections was 4.6 min for a single iteration. The algorithm converged quickly, reaching R2 ~ 0.99975 after the very first iteration. An experimental phantom sample with nitroxyl radical was measured. With 16,384 projections and a field gradient of 8 G/cm, resolutions of 0.4 mm were achieved for a cubical area of 25 × 25 × 25 mm3. Reconstruction was sufficiently fast and memory efficient making it suitable for applications with large 3D matrices and fully determined system of equations. The developed algorithm can be used with any gradient distribution and does not require adjustable filter parameters that makes for simple application. A thorough analysis of the strengths and limitations of this method for 3D spatial EPR imaging is provided.
Collapse
Affiliation(s)
- Denis A Komarov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rizwan Ahmad
- Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Demay-Drouhard P, Ching HYV, Decroos C, Guillot R, Li Y, Tabares LC, Policar C, Bertrand HC, Un S. Understanding the g-tensors of perchlorotriphenylmethyl and Finland-type trityl radicals. Phys Chem Chem Phys 2020; 22:20792-20800. [PMID: 32909565 DOI: 10.1039/d0cp03626a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 285 GHz EPR spectra of perchlorotriphenylmethyl and tetrathiatriarylmethyl radicals in frozen solution have been accurately measured. The relationship between their molecular structures and their g-tensors has been investigated with the aid of DFT calculations, revealing that the degree of spin density delocalization away from the central methylene carbon is an important determining factor of the g-anisotropy. In particular, the small amount of spin densities on the Cl or S heteroatoms at the 2 and 6 positions with respect to the central carbon have the strongest influence. Furthermore, the amount of spin densities on these heteroatoms and thus the anisotropy can be modulated by the protonation (esterification) state of the carboxylate groups at the 4 position. These results provide unique insights into the g-anisotropy of persistent trityl radicals and how it can be tuned.
Collapse
Affiliation(s)
- Paul Demay-Drouhard
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - H Y Vincent Ching
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Christophe Decroos
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Leandro C Tabares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Helene C Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Sun Un
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Estimation of pO2 histogram from a composite EPR Spectrum of multiple random implants. Biomed Microdevices 2019; 22:3. [DOI: 10.1007/s10544-019-0451-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Kishimoto S, Oshima N, Krishna MC, Gillies RJ. Direct and indirect assessment of cancer metabolism explored by MRI. NMR IN BIOMEDICINE 2019; 32:e3966. [PMID: 30169896 DOI: 10.1002/nbm.3966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance-based approaches to obtain metabolic information on cancer have been explored for decades. Electron paramagnetic resonance (EPR) has been developed to pursue metabolic profiling and successfully used to monitor several physiologic parameters such as pO2 , pH, and redox status. All these parameters are associated with pathophysiology of various diseases. Especially in oncology, cancer hypoxia has been intensively studied because of its relationship with metabolic alterations, acquiring treatment resistance, or a malignant phenotype. Thus, pO2 imaging leads to an indirect metabolic assessment in this regard. Proton electron double-resonance imaging (PEDRI) is an imaging technique to visualize EPR by using the Overhauser effect. Most biological parameters assessed in EPR can be visualized using PEDRI. However, EPR and PEDRI have not been evaluated sufficiently for clinical application due to limitations such as toxicity of the probes or high specific absorption rate. Hyperpolarized (HP) 13 C MRI is a novel imaging technique that can directly visualize the metabolic profile. Production of metabolites of the HP 13 C probe delivered to target tissue are evaluated in this modality. Unlike EPR or PEDRI, which require the injection of radical probes, 13 C MRI requires a probe that can be physiologically metabolized and efficiently hyperpolarized. Among several methods for hyperpolarizing probes, dissolution dynamic nuclear hyperpolarization is a widely used technique for in vivo imaging. Pyruvate is the most suitable probe for HP 13 C MRI because it is part of the glycolytic pathway and the high efficiency of pyruvate-to-lactate conversion is a distinguishing feature of cancer. Its clinical applicability also makes it a promising metabolic imaging modality. Here, we summarize the applications of these indirect and direct MR-based metabolic assessments focusing on pO2 and pyruvate-to-lactate conversion. The two parameters are strongly associated with each other, hence the acquired information is potentially interchangeable when evaluating treatment response to oxygen-dependent cancer therapies.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Nobu Oshima
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
15
|
Merging Preclinical EPR Tomography with other Imaging Techniques. Cell Biochem Biophys 2019; 77:187-196. [PMID: 31440878 PMCID: PMC6742609 DOI: 10.1007/s12013-019-00880-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
This paper presents a survey of electron paramagnetic resonance (EPR) image registration. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints and/or different techniques. EPR-imaging (EPRI) techniques belong to the functional-imaging modalities and therefore suffer from a lack of anatomical reference which is mandatory in preclinical imaging. For this reason, it is necessary to merging EPR images with other modalities which allow for obtaining anatomy images. Methodological analysis and review of the literature were done, providing a summary for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in EPR preclinical image registration and also communicate to them the contribution of this research in the field of image processing.
Collapse
|
16
|
Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomed Microdevices 2019; 21:71. [PMID: 31286244 DOI: 10.1007/s10544-019-0421-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
EPR oximetry is established as a viable method for measuring the tissue oxygen level (partial pressure of oxygen, pO2) in animal models; however, it has not yet been established for measurements in humans. EPR oximetry requires an oxygen-sensing paramagnetic probe (molecular or particulate) to be placed at the site/organ of measurement, which may pose logistical and safety concerns, including invasiveness of the probe-placement procedure as well as lack of temporal stability and sensitivity for long-term (repeated) measurements, and possible toxicity in the short- and long-term. In the past, we have developed an implantable oxygen-sensing probe, called OxyChip, which we have successfully established for oximetry in pre-clinical animal models (Hou et al. Biomed. Microdevices 20, 29, 2018). Currently, OxyChip is being evaluated in a limited clinical trial in cancer patients. A major limitation of OxyChip is that it is a large (1.4 mm3) implant and hence not suitable for measuring oxygen heterogeneity that may be present in solid tumors, chronic wounds, etc. In this report, we describe the development of a substantially smaller version of OxyChip (0.07 mm3 or 70 cubic micron), called mChip, that can be placed in the tissue of interest using a 23G syringe-needle with minimal invasiveness. Using in vitro and in vivo models, we have shown that the microchip provides adequate EPR sensitivity, stability, and biocompatibility and thus enables robust, repeated, and simultaneous measurement from multiple implants providing mean and median pO2 values in the implanted region. The mChips will be particularly useful for those applications that require repeated measurements of mean/median pO2 in superficial tissues and malignancies.
Collapse
|
17
|
Pursley R, Enomoto A, Wu H, Brender JR, Pohida T, Subramanian S, Krishna MC, Devasahayam N. Towards reduction of SAR in scaling up in vivo pulsed EPR imaging to larger objects. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:42-48. [PMID: 30579225 PMCID: PMC6753525 DOI: 10.1016/j.jmr.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
An excessive RF power requirement is one of the main obstacles in the clinical translation of EPR imaging. The radio frequency (RF) pulses used in EPR imaging to excite electron spins must be very short to match their fast relaxation. With traditional pulse schemes and ninety degree flip angles, this can lead to either unsafe specific absorption rate (SAR) levels or unfeasibly long repetition times. In spectroscopy experiments, it has been shown that stochastic excitation and correlation detection can reduce the power while maintaining sensitivity but have yet to be applied to imaging experiments. Stochastic excitation is implemented using a pseudo-random phase modulation of the input stimulus. Using a crossed coil resonator assembly comprised of an outer saddle coil and an inner surface coil, it was possible to obtain a minimum isolation of ∼50 dB across a 12 MHz bandwidth. An incident peak RF power of 5 mW was used to excite the system. The low background signal obtained from this resonator allowed us to generate images with 32 dB (>1000:1) signal-to-noise ratio (SNR) while exciting with a traditional pulse sequence in a phantom containing the solid paramagnetic probe NMP-TCNQ (N-methyl pyridinium tetracyanoquinodimethane). Using two different stochastic excitation schemes, we were able to achieve a greater than 4-fold increase in SNR at the same peak power and number of averages, compared to single pulse excitation. This procedure allowed imaging at significantly lower RF power levels than used in conventional EPR imaging system configurations. Similar techniques may enable clinical applications for EPR imaging by facilitating the use of larger RF coils while maintaining a safe SAR level.
Collapse
Affiliation(s)
- Randall Pursley
- Signal Processing and Instrumentation Section, Computational Bioscience and Engineering Laboratory, Office of Intramural Research, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Ayano Enomoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Department of Biophysical Chemistry, Nagasaki International University, Japan
| | - Haitao Wu
- Image Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas Pohida
- Signal Processing and Instrumentation Section, Computational Bioscience and Engineering Laboratory, Office of Intramural Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Indian Institute of Technology, Madras, Chennai, India
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
18
|
Matsumoto S, Kishimoto S, Saito K, Takakusagi Y, Munasinghe JP, Devasahayam N, Hart CP, Gillies RJ, Mitchell JB, Krishna MC. Metabolic and Physiologic Imaging Biomarkers of the Tumor Microenvironment Predict Treatment Outcome with Radiation or a Hypoxia-Activated Prodrug in Mice. Cancer Res 2018; 78:3783-3792. [PMID: 29792309 PMCID: PMC8092078 DOI: 10.1158/0008-5472.can-18-0491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic niches that lead to treatment resistance. Therefore, studies of tumor oxygenation and metabolic profiling should contribute to improved treatment strategies. Here, we define two imaging biomarkers that predict differences in tumor response to therapy: (i) partial oxygen pressure (pO2), measured by EPR imaging; and (ii) [1-13C] pyruvate metabolism rate, measured by hyperpolarized 13C MRI. Three human PDAC xenografts with varying treatment sensitivity (Hs766t, MiaPaCa2, and Su.86.86) were grown in mice. The median pO2 of the mature Hs766t, MiaPaCa2, and Su.86.86 tumors was 9.1 ± 1.7, 11.1 ± 2.2, and 17.6 ± 2.6 mm Hg, and the rate of pyruvate-to-lactate conversion was 2.72 ± 0.48, 2.28 ± 0.26, and 1.98 ± 0.51 per minute, respectively (n = 6, each). These results are in agreement with steady-state data of matabolites quantified by mass spectroscopy and histologic analysis, indicating glycolytic and hypoxia profile in Hs766t, MiaPaca2, and Su.86.86 tumors. Fractionated radiotherapy (5 Gy × 5) resulted in a tumor growth delay of 16.7 ± 1.6 and 18.0 ± 2.7 days in MiaPaca2 and Su.86.86 tumors, respectively, compared with 6.3 ± 2.7 days in hypoxic Hs766t tumors. Treatment with gemcitabine, a first-line chemotherapeutic agent, or the hypoxia-activated prodrug TH-302 was more effective against Hs766t tumors (20.0 ± 3.5 and 25.0 ± 7.7 days increase in survival time, respectively) than MiaPaCa2 (2.7 ± 0.4 and 6.7 ± 0.7 days) and Su.86.86 (4.7 ± 0.6 and 0.7 ± 0.6 days) tumors. Collectively, these results demonstrate the ability of molecular imaging biomarkers to predict the response of PDAC to treatment with radiotherapy and TH-302.Significance: pO2 imaging data and clinically available metabolic imaging data provide useful insight into predicting the treatment efficacy of chemotherapy, radiation, and a hypoxia-activated prodrug as monotherapies and combination therapies in PDAC tumor xenograft models. Cancer Res; 78(14); 3783-92. ©2018 AACR.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- JST, PREST, Saitama, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jeeva P Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Robert J Gillies
- Department of Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
19
|
Yasui H, Kawai T, Matsumoto S, Saito K, Devasahayam N, Mitchell JB, Camphausen K, Inanami O, Krishna MC. Quantitative imaging of pO 2 in orthotopic murine gliomas: hypoxia correlates with resistance to radiation. Free Radic Res 2018; 51:861-871. [PMID: 29076398 DOI: 10.1080/10715762.2017.1388506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxia is considered one of the microenvironmental factors associated with the malignant nature of glioblastoma. Thus, evaluating intratumoural distribution of hypoxia would be useful for therapeutic planning as well as assessment of its effectiveness during the therapy. Electron paramagnetic resonance imaging (EPRI) is an imaging technique which can generate quantitative maps of oxygen in vivo using the exogenous paramagnetic compound, triarylmethyl and monitoring its line broadening caused by oxygen. In this study, the feasibility of EPRI for assessment of oxygen distribution in the glioblastoma using orthotopic U87 and U251 xenograft model is examined. Heterogeneous distribution of pO2 between 0 and 50 mmHg was observed throughout the tumours except for the normal brain tissue. U251 glioblastoma was more likely to exhibit hypoxia than U87 for comparable tumour size (median pO2; 29.7 and 18.2 mmHg, p = .028, in U87 and U251, respectively). The area with pO2 under 10 mmHg on the EPR oximetry (HF10) showed a good correlation with pimonidazole staining among tumours with evaluated size. In subcutaneous xenograft model, irradiation was relatively less effective for U251 compared with U87. In conclusion, EPRI is a feasible method to evaluate oxygen distribution in the brain tumour.
Collapse
Affiliation(s)
- Hironobu Yasui
- a Central Institute of Isotope Science, Hokkaido University , Sapporo , Japan
| | - Tatsuya Kawai
- b Radiation Oncology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Shingo Matsumoto
- c Division of Bioengineering and Bioinformatics , Graduate School of Information Science and Technology, Hokkaido University , Sapporo , Japan
| | - Keita Saito
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Nallathamby Devasahayam
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - James B Mitchell
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Kevin Camphausen
- b Radiation Oncology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| | - Osamu Inanami
- e Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Murali C Krishna
- d Radiation Biology Branch , Center for Cancer Research, National Cancer Institute, National Health Institutes , Bethesda , MD , USA
| |
Collapse
|
20
|
Khramtsov VV. In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes. Antioxid Redox Signal 2018; 28:1365-1377. [PMID: 29132215 PMCID: PMC5910053 DOI: 10.1089/ars.2017.7329] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE A key role of the tumor microenvironment (TME) in cancer progression, treatment resistance, and as a target for therapeutic intervention is increasingly appreciated. Among important physiological components of the TME are tissue hypoxia, acidosis, high reducing capacity, elevated concentrations of intracellular glutathione (GSH), and interstitial inorganic phosphate (Pi). Noninvasive in vivo pO2, pH, GSH, Pi, and redox assessment provide unique insights into biological processes in the TME, and may serve as a tool for preclinical screening of anticancer drugs and optimizing TME-targeted therapeutic strategies. Recent Advances: A reasonable radiofrequency penetration depth in living tissues and progress in development of functional paramagnetic probes make low-field electron paramagnetic resonance (EPR)-based spectroscopy and imaging the most appropriate approaches for noninvasive assessment of the TME parameters. CRITICAL ISSUES Here we overview the current status of EPR approaches used in combination with functional paramagnetic probes that provide quantitative information on chemical TME and redox (pO2, pH, redox status, Pi, and GSH). In particular, an application of a recently developed dual-function pH and redox nitroxide probe and multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of several TME parameters in preclinical studies. The measurements of several parameters using a single probe allow for their correlation analyses independent of probe distribution and time of measurements. FUTURE DIRECTIONS The recent progress in clinical EPR instrumentation and development of biocompatible paramagnetic probes for in vivo multifunctional TME profiling eventually will make possible translation of these EPR techniques into clinical settings to improve prediction power of early diagnostics for the malignant transition and for future rational design of TME-targeted anticancer therapeutics. Antioxid. Redox Signal. 28, 1365-1377.
Collapse
Affiliation(s)
- Valery V Khramtsov
- 1 In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University , Morgantown, West Virginia.,2 Department of Biochemistry, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
21
|
Kishimoto S, Matsumoto KI, Saito K, Enomoto A, Matsumoto S, Mitchell JB, Devasahayam N, Krishna MC. Pulsed Electron Paramagnetic Resonance Imaging: Applications in the Studies of Tumor Physiology. Antioxid Redox Signal 2018; 28:1378-1393. [PMID: 29130334 PMCID: PMC5910045 DOI: 10.1089/ars.2017.7391] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Electron paramagnetic resonance imaging (EPRI) is capable of generating images of tissue oxygenation using exogenous paramagnetic probes such as trityl radicals or nitroxyl radicals. The spatial distribution of the paramagnetic probe can be generated using magnetic field gradients as in magnetic resonance imaging and, from its spectral features, spatial maps of oxygen can be obtained from live objects. In this review, two methods of signal acquisition and image formation/reconstruction are described. The probes used and its application to study tumor physiology and monitor treatment response with chemotherapy drugs in mouse models of human cancer are summarized. Recent Advances: By implementing phase encoding/Fourier reconstruction in EPRI in time domain mode, the frequency contribution to the spatial resolution was avoided and images with improved spatial resolution were obtained. The EPRI-generated pO2 maps in tumor were useful to detect and evaluate the effects of various antitumor therapies on tumor physiology. Coregistration with other imaging modalities provided a better understanding of hypoxia-related alteration in physiology. CRITICAL ISSUES The high radiofrequency (RF) power of EPR irradiation and toxicity profile of radical probes are the main obstacles for clinical application. The improvement of RF low power pulse sequences may allow for clinical translation. FUTURE DIRECTIONS Pulsed EPR oximetry can be a powerful tool to research various diseases involving hypoxia such as cancer, ischemic heart diseases, stroke, and diabetes. With appropriate paramagnetic probes, it can also be applied for various other purposes such as detecting local acid-base balance or oxidative stress. Antioxid. Redox Signal. 28, 1378-1393.
Collapse
Affiliation(s)
- Shun Kishimoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Ken-Ichiro Matsumoto
- 2 Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, Chiba, Japan
| | - Keita Saito
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Ayano Enomoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Shingo Matsumoto
- 3 Division of Bioengineering and Bioinformatics, Hokkaido University , Sapporo, Japan
| | - James B Mitchell
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Nallathamby Devasahayam
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Murali C Krishna
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
22
|
Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J, Devasahayam N, Mitchell JB, Krishna MC. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget 2018; 9:25089-25100. [PMID: 29861855 PMCID: PMC5982751 DOI: 10.18632/oncotarget.25317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
To examine the relationship between local oxygen partial pressure and energy metabolism in the tumor, electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) with hyperpolarized [1-13C] pyruvate were performed. SCCVII and HT29 solid tumors implanted in the mouse leg were imaged by EPRI using OX063, a paramagnetic probe and 13C-MRI using hyperpolarized [1-13C] pyruvate. Local partial oxygen pressure and pyruvate metabolism in the two tumor implants were examined. The effect of a single dose of 5-Gy irradiation on the pO2 and metabolism was also investigated by sequential imaging of EPRI and 13C-MRI in HT29 tumors. A phantom study using tubes filled with different concentration of [1-13C] pyruvate, [1-13C] lactate, and OX063 at different levels of oxygen confirmed the validity of this sequential imaging of EPRI and hyperpolarized 13C-MRI. In vivo studies revealed SCCVII tumor had a significantly larger hypoxic fraction (pO2 < 8 mmHg) compared to HT29 tumor. The flux of pyruvate-to-lactate conversion was also higher in SCCVII than HT29. The lactate-to-pyruvate ratio in hypoxic regions (pO2 < 8 mmHg) 24 hours after 5-Gy irradiation was significantly higher than those without irradiation (0.76 vs. 0.36) in HT29 tumor. The in vitro study showed an increase in extracellular acidification rate after irradiation. In conclusion, co-imaging of pO2 and pyruvate-to-lactate conversion kinetics successfully showed the local metabolic changes especially in hypoxic area induced by radiation therapy.
Collapse
Affiliation(s)
- Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Radiology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tatsuya Kawai
- Radiation Oncology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- MRI Research Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Tan X, Tao S, Liu W, Rockenbauer A, Villamena FA, Zweier JL, Song Y, Liu Y. Synthesis and Characterization of the Perthiatriarylmethyl Radical and Its Dendritic Derivatives with High Sensitivity and Selectivity to Superoxide Radical. Chemistry 2018; 24:6958-6967. [DOI: 10.1002/chem.201800134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/03/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Shanqing Tao
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Wenbo Liu
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry; Hungarian Academy of Sciences and; Department of Physics; Budapest University of Technology and Economics; Budafoki ut 8 1111 Budapest Hungary
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology; College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging; The Davis Heart and Lung Research Institute; Division of Cardiovascular Medicine; Department of Internal Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| |
Collapse
|
24
|
Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE. Hyperpolarized [1- 13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect. Clin Cancer Res 2018; 24:3137-3148. [PMID: 29599412 DOI: 10.1158/1078-0432.ccr-17-1957] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vivian Diaz
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Ichikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
25
|
Matsumoto KI, Kishimoto S, Devasahayam N, Chandramouli GVR, Ogawa Y, Matsumoto S, Krishna MC, Subramanian S. EPR-based oximetric imaging: a combination of single point-based spatial encoding and T 1 weighting. Magn Reson Med 2018; 80:2275-2287. [PMID: 29582458 DOI: 10.1002/mrm.27182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE Spin-lattice relaxation rate (R1 )-based time-domain EPR oximetry is reported for in vivo applications using a paramagnetic probe, a trityl-based Oxo71. METHODS The R1 dependence of the trityl probe Oxo71 on partial oxygen pressure (pO2 ) was assessed using single-point imaging mode of spatial encoding combined with rapid repetition, similar to T1 -weighted MRI, for which R1 was determined from 22 repetition times ranging from 2.1 to 40.0 μs at 300 MHz. The pO2 maps of a phantom with 3 tubes containing 2 mM Oxo71 solutions equilibrated at 0%, 2%, and 5% oxygen were determined by R1 and apparent spin-spin relaxation rate ( R2*) simultaneously. RESULTS The pO2 maps derived from R1 and R2* agreed with the known pO2 levels in the tubes of Oxo71. However, the histograms of pO2 revealed that R1 offers better pO2 resolution than R2* in low pO2 regions. The SDs of pixels at 2% pO2 (15.2 mmHg) were about 5 times lower in R1 -based estimation than R2*-based estimation (mean ± SD: 13.9 ± 1.77 mmHg and 18.3 ± 8.70 mmHg, respectively). The in vivo pO2 map obtained from R1 -based assessment displayed a homogeneous profile in low pO2 regions in tumor xenografts, consistent with previous reports on R2*-based oximetric imaging. The scan time to obtain the R1 map can be significantly reduced using 3 repetition times ranging from 4.0 to 12.0 μs. CONCLUSION Using the single-point imaging modality, R1 -based oximetry imaging with useful spatial and oxygen resolutions for small animals was demonstrated.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damage, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | | | | | | | - Yukihiro Ogawa
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damage, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
26
|
Kenney RM, Lloyd CC, Whitman NA, Lockett MR. 3D cellular invasion platforms: how do paper-based cultures stack up? Chem Commun (Camb) 2018. [PMID: 28621775 DOI: 10.1039/c7cc02357j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular invasion is the gateway to metastasis, which is the leading cause of cancer-related deaths. Invasion is driven by a number of chemical and mechanical stresses that arise in the tumor microenvironment. In vitro assays are needed for the systematic study of cancer progress. To be truly predictive, these assays must generate tissue-like environments that can be experimentally controlled and manipulated. While two-dimensional (2D) monolayer cultures are easily assembled and evaluated, they lack the extracellular components needed to assess invasion. Three-dimensional (3D) cultures are better suited for invasion studies because they generate cellular phenotypes that are more representative of those found in vivo. This feature article provides an overview of four invasion platforms. We focus on paper-based cultures, an emerging 3D culture platform capable of generating tissue-like structures and quantifying cellular invasion. Paper-based cultures are as easily assembled and analyzed as monolayers, but provide an experimentally powerful platform capable of supporting: co-cultures and representative extracellular environments; experimentally controlled gradients; readouts capable of quantifying, discerning, and separating cells based on their invasiveness. With a series of examples we highlight the potential of paper-based cultures, and discuss how they stack up against other invasion platforms.
Collapse
Affiliation(s)
- Rachael M Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | | | | | | |
Collapse
|
27
|
Shah A, Bush N, Box G, Eccles S, Bamber J. Value of combining dynamic contrast enhanced ultrasound and optoacoustic tomography for hypoxia imaging. PHOTOACOUSTICS 2017; 8:15-27. [PMID: 28932684 PMCID: PMC5596361 DOI: 10.1016/j.pacs.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 05/09/2023]
Abstract
Optoacoustic imaging (OAI) can detect haemoglobin and assess its oxygenation. However, the lack of a haemoglobin signal need not indicate a lack of perfusion. This study uses a novel method to assist the co-registration of optoacoustic images with dynamic contrast enhanced ultrasound (DCE-US) images to demonstrate, in preclinical tumour models, the value of combining haemoglobin imaging with a perfusion imaging method, showing that a lack of a haemoglobin signal does not necessarily indicate an absence of perfusion. DCE-US was chosen for this particular experiment because US is extremely sensitive to microbubble contrast agents and because microbubbles, like red blood cells but unlike currently available optical contrast agents, do not extravasate. Significant spatial correlations were revealed between the DCE-US properties and tumour blood-oxygen saturation and haemoglobin, as estimated using OAI. It is speculated that DCE-US properties could be applied as surrogate biomarkers for hypoxia when planning clinical radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Anant Shah
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| | - Nigel Bush
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| | - Gary Box
- The Institute of Cancer Research, Division of Cancer Therapeutics – Sutton, United Kingdom
| | - Suzanne Eccles
- The Institute of Cancer Research, Division of Cancer Therapeutics – Sutton, United Kingdom
| | - Jeffrey Bamber
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Joint Department of Physics and CRUK Cancer Imaging Centre in the Division of Radiotherapy and Imaging – Sutton, United Kingdom
| |
Collapse
|
28
|
Matsumoto KI, Hyodo F, Mitchell JB, Krishna MC. Effect of body temperature on the pharmacokinetics of a triarylmethyl-type paramagnetic contrast agent used in EPR oximetry. Magn Reson Med 2017; 79:1212-1218. [PMID: 29143987 DOI: 10.1002/mrm.27008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Pharmacokinetics of the tri[8-carboxy-2,2,6,6-tetrakis(2-hydroxymethyl)benzo[1,2-d:4,5-d']bis(1,3)dithio-4-yl]methyl radical (Oxo63) after a single bolus and/or continuous intravenous infusion was investigated in tumor-bearing C3H mice with or without body temperature control while under anesthesia. METHOD The in vivo time course of Oxo63 in blood was measured using X-band electron paramagnetic resonance spectroscopy. Distribution of Oxo63 in normal muscle and tumor tissues was obtained using a surface coil resonator and a 700-MHz electron paramagnetic resonance spectrometer. The whole-body distribution of Oxo63 was obtained by 300-MHz continuous-wave electron paramagnetic resonance imaging. The high-resolution 300-MHz time-domain electron paramagnetic resonance imaging was also carried out to probe the distribution of Oxo63. RESULTS Urination of mice was retarded at low body temperature, causing the concentration of Oxo63 in blood to attain high levels. However, the concentration of Oxo63 in tumor tissue was lower with no control of body temperature than active body temperature control. The nonsystemized blood flow in the tumor tissues may pool Oxo63 at lower body temperature. CONCLUSIONS Pharmacokinetics of the contrast agent were found to be significantly affected by body temperature of the experimental animal, and can influence the probe distribution and the image patterns. Magn Reson Med 79:1212-1218, 2018. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Fuminori Hyodo
- Department of Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Epel B, Kotecha M, Halpern HJ. In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:149-157. [PMID: 28552587 DOI: 10.1016/j.jmr.2017.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
The value of any measurement and a fortiori any measurement technology is defined by the reproducibility and the accuracy of the measurements. This implies a relative freedom of the measurement from factors confounding its accuracy. In the past, one of the reasons for the loss of focus on the importance of imaging oxygen in vivo was the difficulty in obtaining reproducible oxygen or pO2 images free from confounding variation. This review will briefly consider principles of electron paramagnetic oxygen imaging and describe how it achieves absolute oxygen measurements. We will provide a summary review of the progress in biomedical EPR imaging, predominantly in cancer biology research, discuss EPR oxygen imaging for cancer treatment and tissue graft assessment for regenerative medicine applications.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Mrignayani Kotecha
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago IL 60607, United States
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
30
|
Ueno M, Matsumoto S, Matsumoto A, Manda S, Nakanishi I, Matsumoto KI, Mitchell JB, Krishna MC, Anzai K. Effect of amifostine, a radiation-protecting drug, on oxygen concentration in tissue measured by EPR oximetry and imaging. J Clin Biochem Nutr 2017; 60:151-155. [PMID: 28584395 PMCID: PMC5453015 DOI: 10.3164/jcbn.15-130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/08/2016] [Indexed: 11/22/2022] Open
Abstract
Effect of amifostine, a radiation-protecting drug, on muscle tissue partial pressure of oxygen was investigated by electron paramagnetic resonance spectroscopy and imaging. When amifostine was administered intraperitoneally or intravenously to mice, the linewidth of the electron paramagnetic resonance spectra of the lithium octa-n-butoxy-substituted naphthalocyanine implanted in the mouse leg muscle decreased. Electron paramagnetic resonance oximetry using a lithium octa-n-butoxy-substituted naphthalocyanine probe and electron paramagnetic resonance oxygen mapping using a triarylmethyl radical paramagnetic probe was useful to quantify pressure of oxygen in the tissues of living mice. The result of electron paramagnetic resonance oximetric imaging showed that administration of amifostine could decrease pressure of oxygen in the muscle and also tumor tissues. This finding suggests that lowering pressure of oxygen in tissues might contribute in part to the radioprotection of amifostine.
Collapse
Affiliation(s)
- Megumi Ueno
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, NIH, Bethesda, MD 20892-1002, USA
| | - Atsuko Matsumoto
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Sushma Manda
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, NIH, Bethesda, MD 20892-1002, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, NIH, Bethesda, MD 20892-1002, USA
| | - Kazunori Anzai
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.,Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
31
|
Chou CC, Chandramouli GVR, Shin T, Devasahayam N, McMillan A, Babadi B, Gullapalli R, Krishna MC, Zhuo J. Accelerated electron paramagnetic resonance imaging using partial Fourier compressed sensing reconstruction. Magn Reson Imaging 2016; 37:90-99. [PMID: 27989911 DOI: 10.1016/j.mri.2016.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Electron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed. METHODS We present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration. RESULTS In both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images. CONCLUSIONS EPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our understanding cycling hypoxia. Moreover this technique can be easily extended to various MRI applications.
Collapse
Affiliation(s)
- Chia-Chu Chou
- University of Maryland College Park, College Park, MD 20742, United States; Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | - Taehoon Shin
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | - Alan McMillan
- Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Behtash Babadi
- University of Maryland College Park, College Park, MD 20742, United States
| | - Rao Gullapalli
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | - Jiachen Zhuo
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
32
|
Jang H, McMillan AB. A rapid and robust gradient measurement technique using dynamic single-point imaging. Magn Reson Med 2016; 78:950-962. [PMID: 27699867 DOI: 10.1002/mrm.26481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. METHODS To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. RESULTS The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. CONCLUSION The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, Wisconsin, USA.,Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Alan B McMillan
- Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Enomoto A, Hirata H, Matsumoto S, Saito K, Subramanian S, Krishna MC, Devasahayam N. Four-channel surface coil array for 300-MHz pulsed EPR imaging: proof-of-concept experiments. Magn Reson Med 2015; 71:853-8. [PMID: 23532721 DOI: 10.1002/mrm.24702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work. Toward this end, the use of planar array coils in different configurations to image larger objects than cannot be fully covered by a single resonator element is explored. Multiple circular surface coils, which are arranged in a plane or at suitable angles mimicking a volume resonator, are used in imaging a phantom and a tumor-bearing mouse leg. The image was formed by combining the images collected from the individual coils with suitable scaling. The results support such a possibility. By multiplexing or interleaving the measurements from each element of such array resonators, one can scale up the size of the subject and at the same time reduce the radiofrequency power requirements and increase the sensitivity.
Collapse
Affiliation(s)
- Ayano Enomoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Epel B, Halpern HJ. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 254:56-61. [PMID: 25828242 PMCID: PMC4420711 DOI: 10.1016/j.jmr.2015.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 05/19/2023]
Abstract
Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging in Vivo Physiology, The University of Chicago, Chicago, IL 60637, USA; Department of Physics, Kazan Federal University, Kazan 420044, Russia.
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, Center for EPR Imaging in Vivo Physiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Saito K, Matsumoto S, Takakusagi Y, Matsuo M, Morris HD, Lizak MJ, Munasinghe JP, Devasahayam N, Subramanian S, Mitchell JB, Krishna MC. 13C-MR Spectroscopic Imaging with Hyperpolarized [1-13C]pyruvate Detects Early Response to Radiotherapy in SCC Tumors and HT-29 Tumors. Clin Cancer Res 2015; 21:5073-81. [PMID: 25673698 DOI: 10.1158/1078-0432.ccr-14-1717] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/24/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE X-ray irradiation of tumors causes diverse effects on the tumor microenvironment, including metabolism. Recent developments of hyperpolarized (13)C-MRI enabled detecting metabolic changes in tumors using a tracer [1-(13)C]pyruvate, which participates in important bioenergetic processes that are altered in cancers. Here, we investigated the effects of X-ray irradiation on pyruvate metabolism in squamous cell carcinoma (SCCVII) and colon cancer (HT-29) using hyperpolarized (13)C-MRI. EXPERIMENTAL DESIGN SCCVII and HT-29 tumors were grown by injecting tumor cells into the hind legs of mice. [1-(13)C]pyruvate was hyperpolarized and injected intravenously into tumor-bearing mice, and (13)C-MR signals were acquired using a 4.7 T scanner. RESULTS [1-(13)C]pyruvate and [1-(13)C]lactate were detected in the tumor-bearing legs immediately after hyperpolarized [1-(13)C]pyruvate administration. The [1-(13)C]lactate to [1-(13)C]pyruvate ratio (Lac/Pyr) increased as the tumors grew in nonirradiated SCCVII tumors. The increase in Lac/Pyr was suppressed modestly with a single 10 Gy of irradiation, but it significantly decreased by further irradiation (10 Gy × 3). Similar results were obtained in HT-29; Lac/Pyr significantly dropped with fractionated 30 Gy irradiation. Independent ex vivo measurements revealed that the lactate dehydrogenase (LDH) activity and protein level were significantly smaller in the irradiated SCCVII tumors compared with the nonirradiated tumors, indicating that a decrease in LDH activity was one of the main factors responsible for the decrease of Lac/Pyr observed on (13)C-MRI. CONCLUSIONS Robust changes of Lac/Pyr observed in the HT-29 after the radiation suggested that lactate conversion from pyruvate monitored with hyperpolarized (13)C-MRI could be useful for the evaluation of early response to radiotherapy. See related commentary by Lai et al., p. 4996.
Collapse
Affiliation(s)
- Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - H Douglas Morris
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Martin J Lizak
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | | | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
36
|
Magnetic resonance imaging of the tumor microenvironment in radiotherapy: perfusion, hypoxia, and metabolism. Semin Radiat Oncol 2015; 24:210-7. [PMID: 24931096 DOI: 10.1016/j.semradonc.2014.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment is characterized by hypoxia, low pH, and high interstitial fluid pressure. Hypoxic regions in tumors with low partial pressure of oxygen (pO2) levels can result in resistance to radiotherapy, thus causing local failure. Therefore, it would be desirable to noninvasively measure pO2 levels in the tumor before, during, and after treatment to better customize therapy and follow treatment response. Several techniques used in preclinical and clinical studies to obtain the pO2 status of tissue, such as dynamic contrast-enhanced magnetic resonance imaging, blood oxygen level-dependent imaging, and electron paramagnetic resonance imaging, are reviewed. Furthermore, the ability to hyperpolarize specific metabolic substrates that are isotopically labeled with (13)C coupled with magnetic resonance spectroscopy enables noninvasive imaging of tissue metabolism, such as glycolysis.
Collapse
|
37
|
Matsumoto S, Saito K, Takakusagi Y, Matsuo M, Munasinghe JP, Morris HD, Lizak MJ, Merkle H, Yasukawa K, Devasahayam N, Suburamanian S, Mitchell JB, Krishna MC. In vivo imaging of tumor physiological, metabolic, and redox changes in response to the anti-angiogenic agent sunitinib: longitudinal assessment to identify transient vascular renormalization. Antioxid Redox Signal 2014; 21:1145-55. [PMID: 24597714 PMCID: PMC4142786 DOI: 10.1089/ars.2013.5725] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS The tumor microenvironment is characterized by a highly reducing redox status, a low pH, and hypoxia. Anti-angiogenic therapies for solid tumors frequently function in two steps: the transient normalization of structurally and functionally aberrant tumor blood vessels with increased blood perfusion, followed by the pruning of tumor blood vessels and the resultant cessation of nutrients and oxygen delivery required for tumor growth. Conventional anatomic or vascular imaging is impractical or insufficient to distinguish between the two steps of tumor response to anti-angiogenic therapies. Here, we investigated whether the noninvasive imaging of the tumor redox state and energy metabolism could be used to characterize anti-angiogenic drug-induced transient vascular normalization. RESULTS Daily treatment of squamous cell carcinoma (SCCVII) tumor-bearing mice with the multi-tyrosine kinase inhibitor sunitinib resulted in a rapid decrease in tumor microvessel density and the suppression of tumor growth. Tumor pO2 imaging by electron paramagnetic resonance imaging showed a transient increase in tumor oxygenation after 2-4 days of sunitinib treatment, implying improved tumor perfusion. During this window of vascular normalization, magnetic resonance imaging of the redox status using an exogenously administered nitroxide probe and hyperpolarized (13)C MRI of the metabolic flux of pyruvate/lactate couple revealed an oxidative shift in tumor redox status. INNOVATION Redox-sensitive metabolic couples can serve as noninvasive surrogate markers to identify the vascular normalization window in tumors with imaging techniques. CONCLUSION A multimodal imaging approach to characterize physiological, metabolic, and redox changes in tumors is useful to distinguish between the different stages of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Shingo Matsumoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
SIGNIFICANCE Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. RECENT ADVANCES Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. CRITICAL ISSUES In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. FUTURE DIRECTIONS A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
Collapse
Affiliation(s)
- Chen-Ting Lee
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
39
|
Jang H, Matsumoto S, Devasahayam N, Subramanian S, Zhuo J, Krishna MC, McMillan AB. Accelerated 4D quantitative single point EPR imaging using model-based reconstruction. Magn Reson Med 2014; 73:1692-701. [PMID: 24803382 DOI: 10.1002/mrm.25282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Electron paramagnetic resonance imaging has surfaced as a promising noninvasive imaging modality that is capable of imaging tissue oxygenation. Due to extremely short spin-spin relaxation times, electron paramagnetic resonance imaging benefits from single-point imaging and inherently suffers from limited spatial and temporal resolution, preventing localization of small hypoxic tissues and differentiation of hypoxia dynamics, making accelerated imaging a crucial issue. METHODS In this study, methods for accelerated single-point imaging were developed by combining a bilateral k-space extrapolation technique with model-based reconstruction that benefits from dense sampling in the parameter domain (measurement of the T2 (*) decay of a free induction delay). In bilateral kspace extrapolation, more k-space samples are obtained in a sparsely sampled region by bilaterally extrapolating data from temporally neighboring k-spaces. To improve the accuracy of T2 (*) estimation, a principal component analysis-based method was implemented. RESULTS In a computer simulation and a phantom experiment, the proposed methods showed its capability for reliable T2 (*) estimation with high acceleration (8-fold, 15-fold, and 30-fold accelerations for 61×61×61, 95×95×95, and 127×127×127 matrix, respectively). CONCLUSION By applying bilateral k-space extrapolation and model-based reconstruction, improved scan times with higher spatial resolution can be achieved in the current single-point electron paramagnetic resonance imaging modality.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Epel B, Redler G, Halpern HJ. How in vivo EPR measures and images oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:113-119. [PMID: 24729222 DOI: 10.1007/978-1-4939-0620-8_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The partial pressure of oxygen (pO₂) in tissues plays an important role in the pathophysiology of many diseases and influences outcome of cancer therapy, ischemic heart and cerebrovascular disease treatments and wound healing. Over the years a suite of EPR techniques for reliable oxygen measurements has been developed. This is a mini-review of pulse EPR in vivo oxygen imaging methods that utilize soluble spin probes. Recent developments in pulse EPR imaging technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity and considerable improvement in the precision and accuracy of oxygen measurements.
Collapse
Affiliation(s)
- Boris Epel
- Center for EPR Imaging In Vivo Physiology, Chicago, IL, USA.,Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Gage Redler
- Center for EPR Imaging In Vivo Physiology, Chicago, IL, USA.,Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Howard J Halpern
- Center for EPR Imaging In Vivo Physiology, Chicago, IL, USA. .,Department of Radiation Oncology, University of Chicago, Chicago, IL, USA. .,MC1105, Department of Radiation and Cellular Oncology, University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
41
|
Nielsen T, Nielsen NC, Holm TH, Ostergaard L, Horsman MR, Busk M. Ultra-high field 1H magnetic resonance imaging approaches for acute hypoxia. Acta Oncol 2013; 52:1287-92. [PMID: 23992112 DOI: 10.3109/0284186x.2013.824608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Currently, radiation treatments are being optimised based on in vivo imaging of radioresistant, hypoxic tumour areas. This study aimed at detecting nicotinamide's reduction of acute hypoxia in a mouse tumour model by two clinically relevant magnetic resonance imaging (MRI) methods at ultra-high magnetic field strength. MATERIAL AND METHODS The C3H mammary carcinoma was grown to 200 mm(3) in the right rear foot of CDF1 mice. The mice were anaesthetised with ketamine and xylazine prior to imaging. A treatment group received nicotinamide intraperitoneally (i.p.) at the dose 1000 mg/kg, and a control group received saline. MRI was performed at 16.4 T with a spatial resolution of 0.156 × 0.156 × 0.5 mm(3). The imaging protocol included BOLD imaging and two DCE-MRI scans. Initial area under the curve (IAUC) and the parameters from the extended Toft's model were estimated from the DCE-MRI data. Tumour median values of 1) T2* mean, 2) T2* standard deviation, 3) DCE-MRI parameters, and 4) DCE-MRI parameter differences between scans were compared between the treatment groups using Student's t-test (significance level p < 0.05). RESULTS Parametric maps showed intra- and inter-tumour heterogeneity. Blood volume was significantly larger in the nicotinamide-treated group, and also the blood volume difference between the two DCE-MRI scans was significantly larger in the treatment group. CONCLUSION Higher blood volume and blood volume variation was observed by DCE-MRI in the treatment group. Other DCE-MRI parameters showed no significant differences, and the higher blood volume was not detected by BOLD MRI. The higher blood volume variation seen with DCE-MRI may be influenced by the drug effect reducing over time, and furthermore the anaesthesia may play an important role.
Collapse
Affiliation(s)
- Thomas Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Decroos C, Balland V, Boucher JL, Bertho G, Xu-Li Y, Mansuy D. Toward stable electron paramagnetic resonance oximetry probes: synthesis, characterization, and metabolic evaluation of new ester derivatives of a tris-(para-carboxyltetrathiaaryl)methyl (TAM) radical. Chem Res Toxicol 2013; 26:1561-9. [PMID: 24010758 DOI: 10.1021/tx400250a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tris(p-carboxyltetrathiaaryl)methyl (TAM) radicals, such as 1a ("Finland" radical), are useful EPR probes for oximetry. However, they are rapidly metabolized by liver microsomes in the presence of NADPH, with the formation of diamagnetic quinone-methide metabolites resulting from an oxidative decarboxylation of one of their carboxylate substituents. In an effort to obtain TAM derivatives potentially more metabolically stable in vivo, we have synthesized four new TAM radicals in which the carboxylate substituents of 1a have been replaced with esters groups bearing various alkyl chains designed to render them water-soluble. The new compounds were completely characterized by UV-vis and EPR spectroscopies, high resolution mass spectrometry (HRMS), and electrochemistry. Two of them were water-soluble enough to undergo detailed microsomal metabolic studies in comparison with 1a. They were found to be stable in the presence of the esterases present in rat liver microsomes and cytosol, and, contrary to 1a, stable to oxidation in the presence of NADPH-supplemented microsomes. A careful study of their possible microsomal reduction under anaerobic or aerobic conditions showed that they were more easily reduced than 1a, in agreement with their higher reduction potentials. They were reduced into the corresponding anions not only under anaerobic conditions but also in the presence of dioxygen. These anions were much more stable than that of 1a and could be characterized by UV-vis spectroscopy, MS, and at the level of their protonated product. However, they were oxidized by O₂, giving back to the starting ester radicals and catalyzing a futile cycle of O₂ reduction. Such reactions should be considered in the design of future stable EPR probes for oximetry in vivo.
Collapse
Affiliation(s)
- Christophe Decroos
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Epel B, Bowman MK, Mailer C, Halpern HJ. Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med 2013; 72:362-8. [PMID: 24006331 DOI: 10.1002/mrm.24926] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE Tissue oxygen (O2) levels are among the most important and most quantifiable stimuli to which cells and tissues respond through inducible signaling pathways. Tumor O2 levels are major determinants of the response to cancer therapy. Developing more accurate measurements and images of tissue O2 partial pressure (pO2), assumes enormous practical, biological, and medical importance. METHODS We present a fundamentally new technique to image pO2 in tumors and tissues with pulse electron paramagnetic resonance (EPR) imaging enabled by an injected, nontoxic, triaryl methyl (trityl) spin probe whose unpaired electron's slow relaxation rates report the tissue pO2. Heretofore, virtually all in vivo EPR O2 imaging measures pO2 with the transverse electron spin relaxation rate, R2e, which is susceptible to the self-relaxation confounding O2 sensitivity. RESULTS We found that the trityl electron longitudinal relaxation rate, R1e, is an order of magnitude less sensitive to confounding self-relaxation. R1e imaging has greater accuracy and brings EPR O2 images to an absolute pO2 image, within uncertainties. CONCLUSION R1e imaging more accurately determines oxygenation of cancer and normal tissue in animal models than has been available. It will enable enhanced, rapid, noninvasive O2 images for understanding oxygen biology and the relationship of oxygenation patterns to therapy outcome in living animal systems.
Collapse
Affiliation(s)
- Boris Epel
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago, Illinois, USA
| | | | | | | |
Collapse
|
44
|
Jang H, Subramanian S, Devasahayam N, Saito K, Matsumoto S, Krishna MC, McMillan AB. Single acquisition quantitative single-point electron paramagnetic resonance imaging. Magn Reson Med 2013; 70:1173-81. [PMID: 23913515 DOI: 10.1002/mrm.24886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/13/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022]
Abstract
PURPOSE Electron paramagnetic resonance imaging has emerged as a promising noninvasive technology to dynamically image tissue oxygenation. Owing to its extremely short spin-spin relaxation times, electron paramagnetic resonance imaging benefits from a single-point imaging scheme where the entire free induction decay signal is captured using pure phase encoding. However, direct T2 (*)/pO2 quantification is inhibited owing to constant magnitude gradients which result in time-decreasing field of view. Therefore, conventional acquisition techniques require repeated imaging experiments with differing gradient amplitudes (typically 3), which results in long acquisition time. METHODS In this study, gridding was evaluated as a method to reconstruct images with equal field of view to enable direct T2 (*)/pO2 quantification within a single imaging experiment. Additionally, an enhanced reconstruction technique that shares high spatial k-space regions throughout different phase-encoding time delays was investigated (k-space extrapolation). RESULTS The combined application of gridding and k-space extrapolation enables pixelwise quantification of T2 (*) from a single acquisition with improved image quality across a wide range of phase-encoding time delays. The calculated T2 (*)/pO2 does not vary across this time range. CONCLUSIONS By utilizing gridding and k-space extrapolation, accurate T2 (*)/pO2 quantification can be achieved within a single data set to allow enhanced temporal resolution (by a factor of 3).
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, Wisconsin Institute for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Matsumoto S, Saito K, Yasui H, Morris HD, Munasinghe JP, Lizak M, Merkle H, Ardenkjaer-Larsen JH, Choudhuri R, Devasahayam N, Subramanian S, Koretsky AP, Mitchell JB, Krishna MC. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate. Magn Reson Med 2013; 69:1443-50. [PMID: 22692861 PMCID: PMC3479339 DOI: 10.1002/mrm.24355] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/15/2022]
Abstract
The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Hironobu Yasui
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - H. Douglas Morris
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Jeeva P. Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Martin Lizak
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Hellmut Merkle
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | | | - Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alan P. Koretsky
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
46
|
Han SH, Ackerstaff E, Stoyanova R, Carlin S, Huang W, Koutcher JA, Kim JK, Cho G, Jang G, Cho H. Gaussian mixture model-based classification of dynamic contrast enhanced MRI data for identifying diverse tumor microenvironments: preliminary results. NMR IN BIOMEDICINE 2013; 26:519-532. [PMID: 23440683 PMCID: PMC3706205 DOI: 10.1002/nbm.2888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 06/01/2023]
Abstract
Tumor hypoxia develops heterogeneously, affects radiation sensitivity and the development of metastases. Prognostic information derived from the in vivo characterization of the spatial distribution of hypoxic areas in solid tumors can be of value for radiation therapy planning and for monitoring the early treatment response. Tumor hypoxia is caused by an imbalance between the supply and consumption of oxygen. The tumor oxygen supply is inherently linked to its vasculature and perfusion which can be evaluated by dynamic contrast enhanced (DCE-) MRI using the contrast agent Gd-DTPA. Thus, we hypothesize that DCE-MRI data may provide surrogate information regarding tumor hypoxia. In this study, DCE-MRI data from a rat prostate tumor model were analysed with a Gaussian mixture model (GMM)-based classification to identify perfused, hypoxic and necrotic areas for a total of ten tumor slices from six rats, of which one slice was used as training data for GMM classifications. The results of pattern recognition analyzes were validated by comparison to corresponding Akep maps defining the perfused area (0.84 ± 0.09 overlap), hematoxylin and eosin (H&E)-stained tissue sections defining necrosis (0.64 ± 0.15 overlap) and pimonidazole-stained sections defining hypoxia (0.72 ± 0.17 overlap), respectively. Our preliminary data indicate the feasibility of a GMM-based classification to identify tumor hypoxia, necrosis and perfusion/permeability from non-invasively acquired, in vivo DCE-MRI data alone, possibly obviating the need for invasive procedures, such as biopsies, or exposure to radioactivity, such as positron emission tomography (PET) exams.
Collapse
Affiliation(s)
- S. H. Han
- Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - E. Ackerstaff
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R. Stoyanova
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| | - S. Carlin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W. Huang
- Oregon Health & Science University, Portland, OR, USA
| | - J. A. Koutcher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J. K. Kim
- Korea Basic Science Institute, Ochang, Korea
| | - G. Cho
- Korea Basic Science Institute, Ochang, Korea
| | - G. Jang
- Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - H. Cho
- Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
47
|
Liu Y, Song Y, De Pascali F, Liu X, Villamena FA, Zweier JL. Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe. Free Radic Biol Med 2012; 53:2081-2091. [PMID: 23000244 PMCID: PMC4118678 DOI: 10.1016/j.freeradbiomed.2012.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 01/09/2023]
Abstract
Superoxide (O(2)(•-)) plays crucial roles in normal physiology and disease; however, its measurement remains challenging because of the limited sensitivity and/or specificity of prior detection methods. We demonstrate that a tetrathiatriarylmethyl (TAM) radical with a single aromatic hydrogen (CT02-H) can serve as a highly sensitive and specific O(2)(•-) probe. CT02-H is an analogue of the fully substituted TAM radical CT-03 (Finland trityl) with an electron paramagnetic resonance (EPR) doublet signal due to its aromatic hydrogen. Owing to the neutral nature and negligible steric hindrance of the hydrogen, O(2)(•-) preferentially reacts with CT02-H at this site with production of the diamagnetic quinone methide via oxidative dehydrogenation. Upon reaction with O(2)(•-), CT02-H loses its EPR signal and this EPR signal decay can be used to quantitatively measure O(2)(•-). This is accompanied by a change in color from green to purple, with the quinone methide product exhibiting a unique UV-Vis absorbance (ε=15,900 M(-1) cm(-1)) at 540 nm, providing an additional O(2)(•-) detection method. More than five-fold higher reactivity of CT02-H for O(2)(•-) relative to CT-03 was demonstrated, with a second-order rate constant of 1.7×10(4) M(-1) s(-1) compared to 3.1×10(3) M(-1) s(-1) for CT-03. CT02-H exhibited high specificity for O(2)(•-) as evidenced by its inertness to other oxidoreductants. The O(2)(•-) generation rates detected by CT02-H from xanthine/xanthine oxidase were consistent with those measured by cytochrome c reduction but detection sensitivity was 10- to 100-fold higher. EPR detection of CT02-H enabled measurement of very low O(2)(•-) flux with a detection limit of 0.34 nM/min over 120 min. HPLC in tandem with electrochemical detection was used to quantitatively detect the stable quinone methide product and is a highly sensitive and specific method for measurement of O(2)(•-), with a sensitivity limit of ~2×10(-13) mol (10 nM with 20-μl injection volume). Based on the O(2)-dependent linewidth broadening of its EPR spectrum, CT02-H also enables simultaneous measurement of O(2) concentration and O(2)(•-) generation and was shown to provide sensitive detection of extracellular O(2)(•-) generation in endothelial cells stimulated either by menadione or with anoxia/reoxygenation. Thus, CT02-H is a unique probe that provides very high sensitivity and specificity for measurement of O(2)(•-) by either EPR or HPLC methods.
Collapse
Affiliation(s)
- Yangping Liu
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yuguang Song
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Francesco De Pascali
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Frederick A. Villamena
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Epel, B, Halpern H. Electron paramagnetic resonance oxygen imaging in vivo. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review covers the last 15 years of the development of EPR in vivo oxygen imaging. During this time, a number of major technological and methodological advances have taken place. Narrow line width, long relaxation time, and non-toxic triaryl methyl radicals were introduced in the late 1990s. These not only improved continuous wave (CW) imaging, but also enabled the application of pulse EPR imaging to animals. Recent developments in pulse technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity, and considerable improvement in the precision and accuracy of oxygen measurements. Consequently, pulse methods take up a significant part of this review.
Collapse
Affiliation(s)
- Boris Epel,
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| | - Howard Halpern
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| |
Collapse
|
49
|
Abstract
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.
Collapse
|
50
|
Hyodo F, Davis RM, Hyodo E, Matsumoto S, Krishna MC, Mitchell JB. The relationship between tissue oxygenation and redox status using magnetic resonance imaging. Int J Oncol 2012; 41:2103-8. [PMID: 23007796 PMCID: PMC3583655 DOI: 10.3892/ijo.2012.1638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/12/2012] [Indexed: 11/24/2022] Open
Abstract
The recent development of a bi-modality magnetic resonance imaging/electron paramagnetic resonance imaging (MRI/EPRI) platform has enabled longitudinal monitoring of both tumor oxygenation and redox status in murine cancer models. The current study used this imaging platform to test the hypothesis that a more reducing tumor microenvironment accompanies the development of tumor hypoxia. To test this, the redox status of the tumor was measured using Tempol as a redox-sensitive MRI contrast agent, and tumor hypoxia was measured with Oxo63, which is an oxygen-sensitive EPRI spin probe. Images were acquired every 1–2 days in mice bearing SCCVII tumors. The median pO2 decreased from 14 mmHg at 7 days after tumor implantation to 7 mmHg at 15 days after implantation. Additionally, the hypoxic fraction, defined as the percentage of the tumor that exhibited a pO2<10 mmHg, increased with tumor size (from 10% at 500 mm3 to 60% at 3,500 mm3). The rate of Tempol reduction increased as a function of tumor volume (0.4 min−1 at 500 mm3 to 1.7 min−1 at 3,500 mm3), suggesting that the tumor microenvironment became more reduced as the tumor grew. The results show that rapid Tempol reduction correlates with decreased tumor oxygenation, and that the Tempol decay rate constant may be a surrogate marker for tumor hypoxia.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|