1
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Deelchand DK, Auerbach EJ, Marjańska M. Apparent diffusion coefficients of the five major metabolites measured in the human brain in vivo at 3T. Magn Reson Med 2018; 79:2896-2901. [PMID: 29044690 PMCID: PMC5843522 DOI: 10.1002/mrm.26969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE To measure the apparent diffusion coefficients (ADC) of five main metabolites in the human brain at 3T with PRESS and STEAM, avoiding measurement biases because of cross-terms. Cross-terms arise from interactions between slice-selection and spoiler gradients in the localized spectroscopy sequence and the diffusion gradients. METHODS Diffusion-weighted spectra were acquired from the prefrontal cortex in five healthy subjects using STEAM (echo time [TE]/mixing time [TM]/pulse repetition time [TR] = 21.22/105/3000 ms, b-values = 0 and 3172 s/mm2 ) and PRESS (TE/TR = 54.2/3000 ms, b-values = 0 and 2204 s/mm2 ). Diffusion weighting was applied using bipolar gradients in three orthogonal directions. Post-processed spectra were analyzed with LCModel, and the trace/3 ADC values were calculated. RESULTS Comparable trace/3 ADC values (0.14-0.18 µm2 /ms) were obtained for five main metabolites with both methods. These metabolites were quantified with Cramér-Rao lower bounds below 15%. CONCLUSION The ADC values of the five main metabolites were successfully measured in the human brain at 3T with eliminated directional dependence. Both STEAM and PRESS can be used to probe the diffusivity of metabolites in normal brain and various pathologies on the clinical scanner with slightly higher precision achieved with STEAM for glutamate and myo-inositol. Magn Reson Med 79:2896-2901, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Quantum-mechanical simulations for in vivo MR spectroscopy: Principles and possibilities demonstrated with the program NMRScopeB. Anal Biochem 2017; 529:79-97. [DOI: 10.1016/j.ab.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
|
4
|
Bouhrara M, Spencer RG. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT. Neuroimage 2016; 147:800-811. [PMID: 27729276 DOI: 10.1016/j.neuroimage.2016.09.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/21/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T1, and transverse, T2, relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T1 and T2, with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T2 fraction, T2,l, and the longitudinal relaxation time of the short T1 fraction, T1,s, clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC-mcDESPOT, shows excellent performance for accurate high-resolution whole-brain mapping of MWF and bi-component transverse and longitudinal relaxation times within a clinically realistic acquisition time.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Magnetic Resonance Imaging and Spectroscopy Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Intramural Research Program, BRC 04B-116, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | - Richard G Spencer
- Magnetic Resonance Imaging and Spectroscopy Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Intramural Research Program, BRC 04B-116, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Bouhrara M, Reiter DA, Celik H, Fishbein KW, Kijowski R, Spencer RG. Analysis of mcDESPOT- and CPMG-derived parameter estimates for two-component nonexchanging systems. Magn Reson Med 2015; 75:2406-20. [PMID: 26140371 DOI: 10.1002/mrm.25801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the reliability and stability of the multicomponent-driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) and Carl-Purcell-Meiboom-Gill (CPMG) approaches to parameter estimation. METHODS The stability and reliability of mcDESPOT and CPMG-derived parameter estimates were compared through examination of energy surfaces, evaluation of model sloppiness, and Monte Carlo simulations. Comparisons were performed on an equal time basis and assuming a two-component system. Parameter estimation bias, reflecting accuracy, and dispersion, reflecting precision, were derived for a range of signal-to-noise ratios (SNRs) and relaxation parameters. RESULTS The energy surfaces for parameters incorporated into the mcDESPOT signal model exhibit flatness, a complex structure of local minima, and instability to noise to a much greater extent than the corresponding surfaces for CPMG. Although both mcDESPOT and CPMG performed well at high SNR, the CPMG approach yielded parameter estimates of considerably greater accuracy and precision at lower SNR. CONCLUSION mcDESPOT and CPMG both permit high-quality parameter estimates under SNR that are clinically achievable under many circumstances, depending upon available hardware and resolution and acquisition time constraints. At moderate to high SNR, the mcDESPOT approach incorporating two-step phase increments can yield accurate parameter estimates while providing values for longitudinal relaxation times that are not available through CPMG. However, at low SNR, the CPMG approach is more stable and provides superior parameter estimates. Magn Reson Med 75:2406-2420, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - David A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Hasan Celik
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard Kijowski
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Deelchand DK, Henry PG, Marjańska M. Effect of Carr-Purcell refocusing pulse trains on transverse relaxation times of metabolites in rat brain at 9.4 Tesla. Magn Reson Med 2014; 73:13-20. [PMID: 24436256 DOI: 10.1002/mrm.25088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/08/2013] [Accepted: 11/27/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE To investigate the effect of Carr-Purcell (CP) pulse trains on transverse relaxation times, T2, of tissue water and metabolites (both noncoupled and J-coupled spins) in the rat brain at 9.4 Tesla (T) using LASER, CP-LASER, and T2ρ-LASER sequences. METHODS Proton NMR spectra were measured in rat brain in vivo at 9.4T. Spectra were acquired at multiple echo times ranging from 18 to 402 ms. All spectra were analyzed using LCModel with simulated basis sets. Signals of metabolites as a function of echo time were fitted using a mono-exponential function to determine their T2 relaxation times. RESULTS Measured T2 s for tissue water and all metabolites were significantly longer with CP-LASER and T2ρ-LASER compared with LASER. The T2 increased by a factor of ∼ 1.3 for noncoupled and weakly coupled spins (e.g., N-acetylaspartate and total creatine) and by a factor of ∼ 2 (e.g., glutamine and taurine) to ∼ 4 (e.g., glutamate and myo-inositol) for strongly coupled spins. CONCLUSION Application of a CP pulse train results in a larger increase in T2 relaxation times for strongly coupled spins than for noncoupled (singlet) and weakly coupled spins. This needs to be taken into account when correcting for T2 relaxation in CP-like sequences such as LASER.
Collapse
Affiliation(s)
- Dinesh Kumar Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Steinseifer IK, Wijnen JP, Hamans BC, Heerschap A, Scheenen TWJ. Metabolic imaging of multiple x-nucleus resonances. Magn Reson Med 2012; 70:169-75. [PMID: 22886743 DOI: 10.1002/mrm.24456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/22/2012] [Accepted: 07/15/2012] [Indexed: 12/24/2022]
Abstract
This study describes a technique for fast imaging of x-nuclei metabolites. Due to increased sensitivity and larger chemical shift dispersion at high magnetic fields, images of multiple metabolites can be obtained simultaneously by selective excitation of their resonances with a multifrequency selective radiofrequency pulse at any desired flip angle. This aim is achieved by combining a three-dimensional gradient echo imaging sequence with a Shinnar-LeRoux optimized excitation pulse. A proper choice of bandwidth, imaging matrix size, and field of view allows using the chemical shift dispersion of the different resonances to completely separate their images within one large field of view. The method of fast metabolic imaging is illustrated with (13)C measurements of a phantom containing a solution of (13)C labeled glucose, lactate, and sodium octanoate and by dynamic measurements of the (31)P metabolites phosphocreatine and β-adenosine triphosphate in human femoral muscle in vivo, both at 7T. With dynamic selective (31)P imaging of the larger part of the upper leg, phosphocreatine signal intensity changes of specific muscles can be studied simultaneously by analyzing the sum of phosphocreatine signals within arbitrarily shaped regions of interest following the muscles' contours. This concept of dynamic metabolic imaging can be applied to other organs and further expanded to other MR-detectable nuclei and metabolites.
Collapse
Affiliation(s)
- Isabell K Steinseifer
- Department of Radiology (766), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|