1
|
Songeon J, Lazeyras F, Agius T, Dabrowski O, Ruttimann R, Toso C, Longchamp A, Klauser A, Courvoisier S. Improved phosphorus MRSI acquisition through compressed sensing acceleration combined with low-rank reconstruction. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01218-y. [PMID: 39729226 DOI: 10.1007/s10334-024-01218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES Phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times. MATERIALS AND METHODS To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences. Specifically, we employed Compressed Sensing (CS) and Low-Rank (LR) with Total Generalized Variation (TGV) regularization in a combined CS-LR framework. Additionally, we used a novel approach to k-space undersampling that utilizes distinct pseudo-random patterns for each average. To evaluate the proposed method's performance, we performed a retrospective analysis on healthy volunteers' brains and ex-vivo perfused kidneys. RESULTS The presented method effectively improves the SNR two-to-threefold while preserving spectral and spatial quality even with threefold acceleration. We were able to recover signal attenuation of anatomical information, and the SNR improvement was obtained while maintaining the metabolites peaks linewidth. CONCLUSIONS We presented a novel combined CS-LR acceleration and reconstruction method for FID-MRSI sequences, utilizing a unique approach to k-space undersampling. Our proposed method has demonstrated promising results in enhancing the SNR making it applicable for reducing acquisition time.
Collapse
Affiliation(s)
- Julien Songeon
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, University Hospital of Geneva, Bd de la Tour 8, 1205, Geneva, Switzerland
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Oscar Dabrowski
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphael Ruttimann
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Christian Toso
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, University Hospital of Geneva, Bd de la Tour 8, 1205, Geneva, Switzerland
| | - Sebastien Courvoisier
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- CIBM Center for Biomedical Imaging, University Hospital of Geneva, Bd de la Tour 8, 1205, Geneva, Switzerland.
| |
Collapse
|
2
|
Seelen LWF, van den Wildenberg L, Gursan A, Froeling M, Gosselink MWJM, van der Kemp WJM, Haj Mohammad N, Molenaar IQ, van Santvoort HC, Klomp DWJ, Prompers JJ. 31P MR Spectroscopy in the Pancreas: Repeatability, Comparison With Liver, and Pilot Pancreatic Cancer Data. J Magn Reson Imaging 2024; 60:2657-2666. [PMID: 38485455 DOI: 10.1002/jmri.29326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Non-invasive evaluation of phosphomonoesters (PMEs) and phosphodiesters (PDEs) by 31-phosphorus MR spectroscopy (31P MRS) may have potential for early therapy (non-)response assessment in cancer. However, 31P MRS has not yet been applied to investigate the human pancreas in vivo. PURPOSE To assess the technical feasibility and repeatability of 31P MR spectroscopic imaging (MRSI) of the pancreas, compare 31P metabolite levels between pancreas and liver, and determine the feasibility of 31P MRSI in pancreatic cancer. STUDY TYPE Prospective cohort study. POPULATION 10 healthy subjects (age 34 ± 12 years, four females) and one patient (73-year-old female) with pancreatic ductal adenocarcinoma. FIELD STRENGTH/SEQUENCE 7-T, 31P FID-MRSI, 1H gradient-echo MRI. ASSESSMENT 31P FID-MRSI of the abdomen (including the pancreas and liver) was performed with a nominal voxel size of 20 mm (isotropic). For repeatability measurements, healthy subjects were scanned twice on the same day. The patient was only scanned once. Test-retest 31P MRSI data of pancreas and liver voxels (segmented on 1H MRI) of healthy subjects were quantified by fitting in the time domain and signal amplitudes were normalized to γ-adenosine triphosphate. In addition, the PME/PDE ratio was calculated. Metabolite levels were averaged over all voxels within the pancreas, right liver lobe and left liver lobe, respectively. STATISTICAL TESTS Repeatability of test-retest data from healthy pancreas was assessed by paired t-tests, Bland-Altman analyses, and calculation of the intrasubject coefficients of variation (CoVs). Significant differences between healthy pancreas and right and left liver lobes were assessed with a two-way analysis of variance (ANOVA) for repeated measures. A P-value <0.05 was considered statistically significant. RESULTS The intrasubject CoVs for PME, PDE, and PME/PDE in healthy pancreas were below 20%. Furthermore, PME and PME/PDE were significantly higher in pancreas compared to liver. In the patient with pancreatic cancer, qualitatively, elevated relative PME signals were observed in comparison with healthy pancreas. DATA CONCLUSION In vivo 31P MRSI of the human healthy pancreas and in pancreatic cancer may be feasible at 7 T. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | | | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Jonuscheit M, Wierichs S, Rothe M, Korzekwa B, Mevenkamp J, Bobrov P, Kupriyanova Y, Roden M, Schrauwen-Hinderling VB. Reproducibility of absolute quantification of adenosine triphosphate and inorganic phosphate in the liver with localized 31P-magnetic resonance spectroscopy at 3-T using different coils. NMR IN BIOMEDICINE 2024; 37:e5120. [PMID: 38404058 DOI: 10.1002/nbm.5120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 02/27/2024]
Abstract
Concentrations of the key metabolites of hepatic energy metabolism, adenosine triphosphate (ATP) and inorganic phosphate (Pi), can be altered in metabolic disorders such as diabetes mellitus. 31Phosphorus (31P)-magnetic resonance spectroscopy (MRS) is used to noninvasively measure hepatic metabolites, but measuring their absolute molar concentrations remains challenging. This study employed a 31P-MRS method based on the phantom replacement technique for quantifying hepatic 31P-metabolites on a 3-T clinical scanner. Two surface coils with different size and geometry were used to check for consistency in terms of repeatability and reproducibility and absolute concentrations of metabolites. Day-to-day (n = 8) and intra-day (n = 6) reproducibility was tested in healthy volunteers. In the day-to-day study, mean absolute concentrations of γ-ATP and Pi were 2.32 ± 0.24 and 1.73 ± 0.26 mM (coefficient of variation [CV]: 7.3% and 8.8%) for the single loop, and 2.32 ± 0.42 and 1.73 ± 0.27 mM (CVs 6.7% and 10.6%) for the quadrature coil, respectively. The intra-day study reproducibility using the quadrature coil yielded CVs of 4.7% and 6.8% for γ-ATP and Pi without repositioning, and 6.3% and 7.1% with full repositioning of the volunteer. The results of the day-to-day data did not differ between coils and visits. Both coils robustly yielded similar results for absolute concentrations of hepatic 31P-metabolites. The current method, applied with two different surface coils, can be readily utilized in long-term and interventional studies. In comparison with the single loop coil, the quadrature coil also allows measurements at a greater distance between the coil and liver, which is relevant for studying people with obesity.
Collapse
Affiliation(s)
- Marc Jonuscheit
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Stefan Wierichs
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Benedict Korzekwa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Julian Mevenkamp
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pavel Bobrov
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera B Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Kau YL, Lin IH, Juang CL, Chang CK, Ho WH, Wen HC. Metabolite Variations in the Hippocampus and Corpus Callosum of Patients with Mild Cognitive Impairment Using Magnetic Resonance Spectroscopy with Three-Dimensional Chemical Shift Images. Brain Sci 2023; 13:1244. [PMID: 37759845 PMCID: PMC10526271 DOI: 10.3390/brainsci13091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
This study compared the metabolites in the brain regions of hippocampus and corpus callosum between patients with mild cognitive impairment (MCI) and healthy controls using no-radiation and high-sensitivity magnetic resonance spectroscopy (MRS) with three-dimensional chemical shift images (3D-CSI). Twenty volunteers (seven patients with MCI and 13 healthy controls) aged 50-71 years were recruited for this prospective study. MRS with 3D-CSI images of a variety of metabolites was collected from the hippocampus and corpus callosum. Sex and weight showed no significant differences between the two groups. The metabolite levels in the hippocampus and corpus callosum of the MCI group were generally lower than in those of the healthy group, especially for creatine (p < 0.001 in the hippocampus and p = 0.020 in the corpus callosum) and N-acetyl aspartate/creatine (p < 0.001 in the hippocampus and p = 0.020 in the corpus callosum); however, choline/creatine showed a significant difference (p < 0.001) only in the hippocampus, and myo-inositol/creatine showed a significant difference (p < 0.001) only in the corpus callosum. Our study demonstrated that MRS with 3D-CSI can be used to measure these metabolite levels to determine the differences between patients with MCI and healthy individuals. This would aid early diagnosis of MCI in clinical practice, and patients could receive prompt intervention to improve their quality of life.
Collapse
Affiliation(s)
- Yen-Lon Kau
- Department of Medical Imaging, Camillian St. Mary’s Hospital, Luodong, Yilan 265502, Taiwan; (Y.-L.K.); (W.-H.H.)
- Department of Medical Imaging and Radiological Sciences, Yuanpei University, Hsinchu 30015, Taiwan;
| | - I-Hung Lin
- Nobel Eye Institute, Taipei 100008, Taiwan;
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chi-Long Juang
- Department of Medical Imaging and Radiological Sciences, Yuanpei University, Hsinchu 30015, Taiwan;
| | - Chao-Kai Chang
- Nobel Eye Institute, Taipei 100008, Taiwan;
- Department of Optometry, Yuanpei University, Hsinchu 30015, Taiwan;
| | - Wen-Hsiang Ho
- Department of Medical Imaging, Camillian St. Mary’s Hospital, Luodong, Yilan 265502, Taiwan; (Y.-L.K.); (W.-H.H.)
| | - Hsiao-Chuan Wen
- Department of Pet Healthcare, Yuanpei University, Hsinchu 300, Taiwan
| |
Collapse
|
5
|
van den Wildenberg L, Gursan A, Seelen LWF, van der Velden TA, Gosselink MWJM, Froeling M, van der Kemp WJM, Klomp DWJ, Prompers JJ. In vivo phosphorus magnetic resonance spectroscopic imaging of the whole human liver at 7 T using a phosphorus whole-body transmit coil and 16-channel receive array: Repeatability and effects of principal component analysis-based denoising. NMR IN BIOMEDICINE 2023; 36:e4877. [PMID: 36400716 DOI: 10.1002/nbm.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Quantitative three-dimensional (3D) imaging of phosphorus (31 P) metabolites is potentially a promising technique with which to assess the progression of liver disease and monitor therapy response. However, 31 P magnetic resonance spectroscopy has a low sensitivity and commonly used 31 P surface coils do not provide full coverage of the liver. This study aimed to overcome these limitations by using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T. Using this setup, we determined the repeatability of whole-liver 31 P magnetic resonance spectroscopic imaging (31 P MRSI) in healthy subjects and assessed the effects of principal component analysis (PCA)-based denoising on the repeatability parameters. In addition, spatial variations of 31 P metabolites within the liver were analyzed. 3D 31 P MRSI data of the liver were acquired with a nominal voxel size of 20 mm isotropic in 10 healthy volunteers twice on the same day. Data were reconstructed without denoising, and with PCA-based denoising before or after channel combination. From the test-retest data, repeatability parameters for metabolite level quantification were determined for 12 31 P metabolite signals. On average, 31 P MR spectra from 100 ± 25 voxels in the liver were analyzed. Only voxels with contamination from skeletal muscle or the gall bladder were excluded and no voxels were discarded based on (low) signal-to-noise ratio (SNR). Repeatability for most quantified 31 P metabolite levels in the liver was good to excellent, with an intrasubject variability below 10%. PCA-based denoising increased the SNR ~ 3-fold, but did not improve the repeatability for mean liver 31 P metabolite quantification with the fitting constraints used. Significant spatial heterogeneity of various 31 P metabolite levels within the liver was observed, with marked differences for the phosphomonoester and phosphodiester metabolites between the left and right lobe. In conclusion, using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T allowed 31 P MRSI acquisitions with full liver coverage and good to excellent repeatability.
Collapse
Affiliation(s)
| | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tijl A van der Velden
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Songeon J, Courvoisier S, Xin L, Agius T, Dabrowski O, Longchamp A, Lazeyras F, Klauser A. In vivo magnetic resonance 31 P-Spectral Analysis With Neural Networks: 31P-SPAWNN. Magn Reson Med 2023; 89:40-53. [PMID: 36161342 PMCID: PMC9828468 DOI: 10.1002/mrm.29446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 (31 $$ {}^{31} $$ P) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the performance of the two approaches, are compared in this work. THEORY AND METHODS Convolutional neural network architectures have been proposed for the analysis and quantification of31 $$ {}^{31} $$ P-spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three-dimensional31 $$ {}^{31} $$ P-magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P-SPAWNN or traditional least-square fitting techniques. RESULTS The presented experiment has demonstrated both the reliability and accuracy of 31P-SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent precision. Processing time using 31P-SPAWNN can be further shortened up to two orders of magnitude. CONCLUSION The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting.
Collapse
Affiliation(s)
- Julien Songeon
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Sébastien Courvoisier
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingGenevaSwitzerland
| | - Lijing Xin
- CIBM Center for Biomedical ImagingGenevaSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Thomas Agius
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland
| | - Oscar Dabrowski
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Alban Longchamp
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland
| | - François Lazeyras
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingGenevaSwitzerland
| | - Antoine Klauser
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- CIBM Center for Biomedical ImagingGenevaSwitzerland
| |
Collapse
|
7
|
Sedivy P, Dusilova T, Hajek M, Burian M, Krššák M, Dezortova M. In Vitro 31P MR Chemical Shifts of In Vivo-Detectable Metabolites at 3T as a Basis Set for a Pilot Evaluation of Skeletal Muscle and Liver 31P Spectra with LCModel Software. Molecules 2021; 26:molecules26247571. [PMID: 34946652 PMCID: PMC8703310 DOI: 10.3390/molecules26247571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Most in vivo 31P MR studies are realized on 3T MR systems that provide sufficient signal intensity for prominent phosphorus metabolites. The identification of these metabolites in the in vivo spectra is performed by comparing their chemical shifts with the chemical shifts measured in vitro on high-field NMR spectrometers. To approach in vivo conditions at 3T, a set of phantoms with defined metabolite solutions were measured in a 3T whole-body MR system at 7.0 and 7.5 pH, at 37 °C. A free induction decay (FID) sequence with and without 1H decoupling was used. Chemical shifts were obtained of phosphoenolpyruvate (PEP), phosphatidylcholine (PtdC), phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), glycerophosphoetanolamine (GPE), uridine diphosphoglucose (UDPG), glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), 2,3-diphosphoglycerate (2,3-DPG), nicotinamide adenine dinucleotide (NADH and NAD+), phosphocreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). The measured chemical shifts were used to construct a basis set of 31P MR spectra for the evaluation of 31P in vivo spectra of muscle and the liver using LCModel software (linear combination model). Prior knowledge was successfully employed in the analysis of previously acquired in vivo data.
Collapse
Affiliation(s)
- Petr Sedivy
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Tereza Dusilova
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Milan Hajek
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Martin Burian
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Monika Dezortova
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
- Correspondence: ; Tel.: +420-23605-5245
| |
Collapse
|
8
|
Rothe M, Wessel C, Cames S, Szendroedi J, Burkart V, Hwang JH, Roden M. In vivo absolute quantification of hepatic γ-ATP concentration in mice using 31 P MRS at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4422. [PMID: 33025629 DOI: 10.1002/nbm.4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Measurement of ATP concentrations and synthesis in humans indicated abnormal hepatic energy metabolism in obesity, non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes. Further mechanistic studies on energy metabolism require the detailed phenotyping of specific mouse models. Thus, this study aimed to establish and evaluate a robust and fast single voxel 31 P MRS method to quantify hepatic γ-ATP concentrations at 11.7 T in three mouse models with different insulin sensitivities and liver fat contents (72-week-old C57BL/6 control mice, 72-week-old insulin resistant sterol regulatory-element binding protein-1c overexpressing (SREBP-1c+ ) mice and 10-12-week-old prediabetic non-obese diabetic (NOD) mice). Absolute quantification was performed by employing an external reference and a matching replacement ATP phantom with 3D image selected in vivo spectroscopy 31 P MRS. This single voxel 31 P MRS method non-invasively quantified hepatic γ-ATP within 17 min and the repeatability tests provided a coefficient of variation of 7.8 ± 1.1%. The mean hepatic γ-ATP concentrations were markedly lower in SREBP-1c+ mice (1.14 ± 0.10 mM) than in C57BL/6 mice (2.15 ± 0.13 mM; p < 0.0002) and NOD mice (1.78 ± 0.13 mM; p < 0.006, one-way ANOVA test). In conclusion, this method allows us to rapidly and precisely measure hepatic γ-ATP concentrations, and thereby to non-invasively detect abnormal hepatic energy metabolism in mice with different degrees of insulin resistance and NAFLD. Thus, this 31 P MRS will also be useful for future mechanistic as well as therapeutic translational studies in other murine models.
Collapse
Affiliation(s)
- Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Open-label phase II study evaluating safety and efficacy of the non-steroidal farnesoid X receptor agonist PX-104 in non-alcoholic fatty liver disease. Wien Klin Wochenschr 2020; 133:441-451. [PMID: 32930860 PMCID: PMC8116226 DOI: 10.1007/s00508-020-01735-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Background The PX-104 is an oral non-steroidal agonist for the farnesoid X receptor (FXR), a key regulator of bile acid (BA), glucose and lipid homeostasis. Aims and methods This single center, proof of concept study evaluated the efficacy, safety and tolerability of PX-104 in non-diabetic NAFLD patients. 12 individuals were treated daily with 5 mg of PX-104 orally for 4 weeks. Serum liver enzymes, insulin sensitivity by clamp like index (CLIX) and hepatic fat by proton 1H‑MRS, MRI-PDFF and CAP were assessed. Hepatic energy metabolism and Kupffer cell function were evaluated by phosphorus 31P‑MRS and superparamagnetic iron oxide MRI (SPIO-MRI). Other readouts included serum lipids and markers of BA metabolism/signaling besides fecal microbiome and BA analysis. Results A significant decrease in ALT (p = 0.027; 1‑tailed) and GGT (p = 0.019) was observed, without changes in serum alkaline phosphatase or serum lipids. Insulin sensitivity improved in 92% of patients (p = 0.02). However, hepatic steatosis measured by PDFF-MRI, 1H‑MRS and CAP besides extended serum lipoprotein and BA profiles did not change. NADPH/γATP ratios at 31P‑MRS significantly decreased (p = 0.022) possibly reflecting reduced hepatic inflammatory stress, but SPIO-MRI remained unchanged. Reduced preponderance of Coriobacteriaceae (p = 0.036) correlated with a relative reduction of total fecal BAs. There were no serious adverse events but short intervals of cardiac arrhythmia recorded in 2 patients led to termination of the study. Conclusion The non-steroidal FXR agonist PX-104 improved insulin sensitivity and liver enzymes after 4 weeks of treatment in non-diabetic NAFLD patients. Changes in fecal BAs and gut microbiota deserve more extensive investigations. Electronic supplementary material The online version of this article (10.1007/s00508-020-01735-5) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Fasting Whole-Body Energy Homeostasis and Hepatic Energy Metabolism in Nondiabetic Humans with Fatty Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9796175. [PMID: 31097978 PMCID: PMC6487077 DOI: 10.1155/2019/9796175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/27/2018] [Accepted: 03/18/2019] [Indexed: 01/17/2023]
Abstract
Background Fatty liver is believed to be sustained by a higher than normal adipose-derived NEFA flux to the liver. Also, hepatic energy metabolism may be a rate-limiting step of intrahepatic fat (IHF) accumulation. Aims To assess whole-body energy metabolism and hepatic high-energy phosphates (HEPs) in individuals with fatty liver. Methods We studied 22 individuals with fatty liver and 22 control individuals matched for anthropometric features by means of (1) hepatic 1H-magnetic resonance spectroscopy (MRS) to measure the IHF content, (2) hepatic 31P-MRS to assess the relative content of HEPs (phosphomonoesters, phosphodiesters, inorganic phosphorus, and ATP), and (3) indirect calorimetry to assess whole-body resting energy expenditure and substrate oxidation. Results Patients with newly diagnosed fatty liver and controls were not different for anthropometric parameters. Based on HOMA2%-S, individuals with fatty liver were more insulin resistant than controls. Resting energy expenditure and the pattern of substrate oxidation were not different between groups. Relative content of HEPs was not different between groups; in particular, the Pi/γ-ATP ratio, the most important signals in terms of monitoring energy homeostasis, was not different even if it was associated with indirect calorimetry-derived parameters of oxidative substrate disposal. Conclusions These data demonstrate that fasting whole-body energy metabolism and the relative content of HEPs in nondiabetic patients with fatty liver are not different than those in controls when they are matched for anthropometric features.
Collapse
|
11
|
Purvis LAB, Valkovič L, Robson MD, Rodgers CT. Feasibility of absolute quantification for 31 P MRS at 7 T. Magn Reson Med 2019; 82:49-61. [PMID: 30892732 PMCID: PMC6492160 DOI: 10.1002/mrm.27729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
Purpose Phosphorus spectroscopy can differentiate among liver disease stages and types. To quantify absolute concentrations of phosphorus metabolites, sensitivity calibration and transmit field (B1+) correction are required. The trend toward ultrahigh fields (7 T) and the use of multichannel RF coils makes this ever more challenging. We investigated the constraints on reference phantoms, and implemented techniques for the absolute quantification of human liver phosphorus spectra acquired using a 10‐cm loop and a 16‐channel array at 7 T. Methods The effect of phantom conductivity was assessed at 25.8 MHz (1.5 T), 49.9 MHz (3 T), and 120.3 MHz (7 T) by electromagnetic modeling. Radiofrequency field maps (B1±) were measured in phosphate phantoms (18 mM and 40 mM) at 7 T. These maps were used to assess the correction of 4 phantom 3D‐CSI data sets using 3 techniques: phantom replacement, explicit normalization, and simplified normalization. In vivo liver spectra acquired with a 10‐cm loop were corrected with all 3 methods. Simplified normalization was applied to in vivo 16‐channel array data sets. Results Simulations show that quantification errors of less than 3% are achievable using a uniform electrolyte phantom with a conductivity of 0.23‐0.86 S.m−1 at 1.5 T, 0.39‐0.58 S.m−1 at 3 T, and 0.34‐0.42 S.m−1 (16‐19 mM KH2PO4(aq)) at 7 T. The mean γ‐ATP concentration quantified in vivo at 7 T was 1.39 ± 0.30 mmol.L−1 to 1.71 ± 0.35 mmol.L−1 wet tissue for the 10‐cm loop and 1.88 ± 0.25 mmol.L−1 wet tissue for the array. Conclusion It is essential to select a calibration phantom with appropriate conductivity for quantitative phosphorus spectroscopy at 7 T. Using an 18‐mM phosphate phantom and simplified normalization, human liver phosphate metabolite concentrations were successfully quantified at 7 T.
Collapse
Affiliation(s)
- Lucian A B Purvis
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Vidya Shankar R, Chang JC, Hu HH, Kodibagkar VD. Fast data acquisition techniques in magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2019; 32:e4046. [PMID: 30637822 DOI: 10.1002/nbm.4046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) is an important technique for assessing the spatial variation of metabolites in vivo. The long scan times in MRSI limit clinical applicability due to patient discomfort, increased costs, motion artifacts, and limited protocol flexibility. Faster acquisition strategies can address these limitations and could potentially facilitate increased adoption of MRSI into routine clinical protocols with minimal addition to the current anatomical and functional acquisition protocols in terms of imaging time. Not surprisingly, a lot of effort has been devoted to the development of faster MRSI techniques that aim to capture the same underlying metabolic information (relative metabolite peak areas and spatial distribution) as obtained by conventional MRSI, in greatly reduced time. The gain in imaging time results, in some cases, in a loss of signal-to-noise ratio and/or in spatial and spectral blurring. This review examines the current techniques and advances in fast MRSI in two and three spatial dimensions and their applications. This review categorizes the acceleration techniques according to their strategy for acquisition of the k-space. Techniques such as fast/turbo-spin echo MRSI, echo-planar spectroscopic imaging, and non-Cartesian MRSI effectively cover the full k-space in a more efficient manner per TR . On the other hand, techniques such as parallel imaging and compressed sensing acquire fewer k-space points and employ advanced reconstruction algorithms to recreate the spatial-spectral information, which maintains statistical fidelity in test conditions (ie no statistically significant differences on voxel-wise comparisions) with the fully sampled data. The advantages and limitations of each state-of-the-art technique are reviewed in detail, concluding with a note on future directions and challenges in the field of fast spectroscopic imaging.
Collapse
Affiliation(s)
- Rohini Vidya Shankar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - John C Chang
- Banner M D Anderson Cancer Center, Gilbert, AZ, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Houchun H Hu
- Department of Radiology and Medical Imaging, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Pfleger L, Gajdošík M, Wolf P, Smajis S, Fellinger P, Kuehne A, Krumpolec P, Trattnig S, Winhofer Y, Krebs M, Krššák M, Chmelík M. Absolute Quantification of Phosphor-Containing Metabolites in the Liver Using 31 P MRSI and Hepatic Lipid Volume Correction at 7T Suggests No Dependence on Body Mass Index or Age. J Magn Reson Imaging 2018; 49:597-607. [PMID: 30291654 PMCID: PMC6586048 DOI: 10.1002/jmri.26225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background Hepatic disorders are often associated with changes in the concentration of phosphorus‐31 (31P) metabolites. Absolute quantification offers a way to assess those metabolites directly but introduces obstacles, especially at higher field strengths (B0 ≥ 7T). Purpose To introduce a feasible method for in vivo absolute quantification of hepatic 31P metabolites and assess its clinical value by probing differences related to volunteers' age and body mass index (BMI). Study Type Prospective cohort. Subjects/Phantoms Four healthy volunteers included in the reproducibility study and 19 healthy subjects arranged into three subgroups according to BMI and age. Phantoms containing 31P solution for correction and validation. Field Strength/Sequence Phase‐encoded 3D pulse‐acquire chemical shift imaging for 31P and single‐volume 1H spectroscopy to assess the hepatocellular lipid content at 7T. Assessment A phantom replacement method was used. Spectra located in the liver with sufficient signal‐to‐noise ratio and no contamination from muscle tissue, were used to calculate following metabolite concentrations: adenosine triphosphates (γ‐ and α‐ATP); glycerophosphocholine (GPC); glycerophosphoethanolamine (GPE); inorganic phosphate (Pi); phosphocholine (PC); phosphoethanolamine (PE); uridine diphosphate‐glucose (UDPG); nicotinamide adenine dinucleotide‐phosphate (NADH); and phosphatidylcholine (PtdC). Correction for hepatic lipid volume fraction (HLVF) was performed. Statistical Tests Differences assessed by analysis of variance with Bonferroni correction for multiple comparison and with a Student's t‐test when appropriate. Results The concentrations for the young lean group corrected for HLVF were 2.56 ± 0.10 mM for γ‐ATP (mean ± standard deviation), α‐ATP: 2.42 ± 0.15 mM, GPC: 3.31 ± 0.27 mM, GPE: 3.38 ± 0.87 mM, Pi: 1.42 ± 0.20 mM, PC: 1.47 ± 0.24 mM, PE: 1.61 ± 0.20 mM, UDPG: 0.74 ± 0.17 mM, NADH: 1.21 ± 0.38 mM, and PtdC: 0.43 ± 0.10 mM. Differences found in ATP levels between lean and overweight volunteers vanished after HLVF correction. Data Conclusion Exploiting the excellent spectral resolution at 7T and using the phantom replacement method, we were able to quantify up to 10 31P‐containing hepatic metabolites. The combination of 31P magnetic resonance spectroscopy imaging data acquisition and HLVF correction was not able to show a possible dependence of 31P metabolite concentrations on BMI or age, in the small healthy population used in this study. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:597–607.
Collapse
Affiliation(s)
- Lorenz Pfleger
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
| | - Martin Gajdošík
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
- Medical University of Vienna, Department of Biomedical Imaging and Image‐guided Therapy, High Field MR CenterViennaAustria
| | - Peter Wolf
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
| | - Sabina Smajis
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
| | - Paul Fellinger
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
| | - Andre Kuehne
- MRI.TOOLS GmbHBerlinGermany
- Medical University of Vienna, Center for Medical Physics and Biomedical EngineeringViennaAustria
| | - Patrik Krumpolec
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental EndocrinologyBratislavaSlovakia
| | - Siegfried Trattnig
- Medical University of Vienna, Department of Biomedical Imaging and Image‐guided Therapy, High Field MR CenterViennaAustria
- Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMAViennaAustria
| | - Yvonne Winhofer
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
| | - Michael Krebs
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
| | - Martin Krššák
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and MetabolismViennaAustria
- Medical University of Vienna, Department of Biomedical Imaging and Image‐guided Therapy, High Field MR CenterViennaAustria
- Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMAViennaAustria
| | - Marek Chmelík
- Medical University of Vienna, Department of Biomedical Imaging and Image‐guided Therapy, High Field MR CenterViennaAustria
- Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMAViennaAustria
- Karl Landsteiner Institute for Clinical Molecular MRViennaAustria
- University of PrešovFaculty of HealthcarePrešovSlovakia
- General Hospital of Levoča, Radiology DepartmentLevočaSlovakia
| |
Collapse
|
14
|
Liu Y, Gu Y, Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: a methodology review. Quant Imaging Med Surg 2017; 7:707-726. [PMID: 29312876 PMCID: PMC5756783 DOI: 10.21037/qims.2017.11.03] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/11/2017] [Indexed: 01/11/2023]
Abstract
Many human diseases are caused by an imbalance between energy production and demand. Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide the unique opportunity for in vivo assessment of several fundamental events in tissue metabolism without the use of ionizing radiation. Of particular interest, phosphate metabolites that are involved in ATP generation and utilization can be quantified noninvasively by phosphorous-31 (31P) MRS/MRI. Furthermore, 31P magnetization transfer (MT) techniques allow in vivo measurement of metabolic fluxes via creatine kinase (CK) and ATP synthase. However, a major impediment for the clinical applications of 31P-MRS/MRI is the prohibitively long acquisition time and/or the low spatial resolution that are necessary to achieve adequate signal-to-noise ratio. In this review, current 31P-MRS/MRI techniques used in basic science and clinical research are presented. Recent advances in the development of fast 31P-MRS/MRI methods are also discussed.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Traussnigg S, Kienbacher C, Gajdošík M, Valkovič L, Halilbasic E, Stift J, Rechling C, Hofer H, Steindl‐Munda P, Ferenci P, Wrba F, Trattnig S, Krššák M, Trauner M. Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis. Liver Int 2017; 37:1544-1553. [PMID: 28544208 PMCID: PMC5638103 DOI: 10.1111/liv.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS With the rising prevalence of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) non-invasive tools obtaining pathomechanistic insights to improve risk stratification are urgently needed. We therefore explored high- and ultra-high-field magnetic resonance spectroscopy (MRS) to obtain novel mechanistic and diagnostic insights into alterations of hepatic lipid, cell membrane and energy metabolism across the spectrum of NAFLD. METHODS MRS and liver biopsy were performed in 30 NAFLD patients with NAFL (n=8) or NASH (n=22). Hepatic lipid content and composition were measured using 3-Tesla proton (1 H)-MRS. 7-Tesla phosphorus (31 P)-MRS was applied to determine phosphomonoester (PME) including phosphoethanolamine (PE), phosphodiester (PDE) including glycerophosphocholine (GPC), phosphocreatine (PCr), nicotinamide adenine dinucleotide phosphate (NADPH), inorganic phosphate (Pi), γ-ATP and total phosphorus (TP). Saturation transfer technique was used to quantify hepatic ATP flux. RESULTS Hepatic steatosis in 1 H-MRS highly correlated with histology (P<.001) showing higher values in NASH than NAFL (P<.001) without differences in saturated or unsaturated fatty acid indices. PE/TP ratio increased with advanced fibrosis (F3/4) (P=.002) whereas GPC/PME+PDE decreased (P=.05) compared to no/mild fibrosis (F0-2). γ-ATP/TP was lower in advanced fibrosis (P=.049), while PCr/TP increased (P=.01). NADPH/TP increased with higher grades of ballooning (P=.02). Pi-to-ATP exchange rate constant (P=.003) and ATP flux (P=.001) were lower in NASH than NAFL. CONCLUSIONS Ultra-high-field MRS, especially saturation transfer technique uncovers changes in energy metabolism including dynamic ATP flux in inflammation and fibrosis in NASH. Non-invasive profiling by MRS appears feasible and may assist further mechanistic and therapeutic studies in NAFLD/NASH.
Collapse
Affiliation(s)
- Stefan Traussnigg
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Christian Kienbacher
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Martin Gajdošík
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Ladislav Valkovič
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria,Department of Imaging MethodsInstitute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
| | - Emina Halilbasic
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Judith Stift
- Department of Clinical PathologyMedical University of ViennaViennaAustria
| | - Christian Rechling
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Harald Hofer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Petra Steindl‐Munda
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Peter Ferenci
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Fritz Wrba
- Department of Clinical PathologyMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Martin Krššák
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria,Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
Purvis LAB, Clarke WT, Valkovič L, Levick C, Pavlides M, Barnes E, Cobbold JF, Robson MD, Rodgers CT. Phosphodiester content measured in human liver by in vivo 31 P MR spectroscopy at 7 tesla. Magn Reson Med 2017; 78:2095-2105. [PMID: 28244131 PMCID: PMC5697655 DOI: 10.1002/mrm.26635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Purpose Phosphorus (31P) metabolites are emerging liver disease biomarkers. Of particular interest are phosphomonoester and phosphodiester (PDE) “peaks” that comprise multiple overlapping resonances in 31P spectra. This study investigates the effect of improved spectral resolution at 7 Tesla (T) on quantifying hepatic metabolites in cirrhosis. Methods Five volunteers were scanned to determine metabolite T1s. Ten volunteers and 11 patients with liver cirrhosis were scanned at 7T. Liver spectra were acquired in 28 min using a 16‐channel 31P array and 3D chemical shift imaging. Concentrations were calculated using γ‐adenosine‐triphosphate (γ‐ATP) = 2.65 mmol/L wet tissue. Results T1 means ± standard deviations: phosphatidylcholine 1.05 ± 0.28 s, nicotinamide‐adenine‐dinucleotide (NAD+) 2.0 ± 1.0 s, uridine‐diphosphoglucose (UDPG) 3.3 ± 1.4 s. Concentrations in healthy volunteers: α‐ATP 2.74 ± 0.11 mmol/L wet tissue, inorganic phosphate 2.23 ± 0.20 mmol/L wet tissue, glycerophosphocholine 2.34 ± 0.46 mmol/L wet tissue, glycerophosphoethanolamine 1.50 ± 0.28 mmol/L wet tissue, phosphocholine 1.06 ± 0.16 mmol/L wet tissue, phosphoethanolamine 0.77 ± 0.14 mmol/L wet tissue, NAD+ 2.37 ± 0.14 mmol/L wet tissue, UDPG 2.00 ± 0.22 mmol/L wet tissue, phosphatidylcholine 1.38 ± 0.31 mmol/L wet tissue. Inorganic phosphate and phosphatidylcholine concentrations were significantly lower in patients; glycerophosphoethanolamine concentrations were significantly higher (P < 0.05). Conclusion We report human in vivo hepatic T1s for phosphatidylcholine, NAD+, and UDPG for the first time at 7T. Our protocol allows high signal‐to‐noise, repeatable measurement of metabolite concentrations in human liver. The splitting of PDE into its constituent peaks at 7T may allow more insight into changes in metabolism. Magn Reson Med 78:2095–2105, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Lucian A B Purvis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - William T Clarke
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christina Levick
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michael Pavlides
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom.,Translational Gastroenterology Unit, University of Oxford, United Kingdom
| | - Eleanor Barnes
- Translational Gastroenterology Unit, University of Oxford, United Kingdom
| | - Jeremy F Cobbold
- Translational Gastroenterology Unit, University of Oxford, United Kingdom
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Level 0, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Koliaki C, Roden M. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr 2016; 36:337-67. [PMID: 27146012 DOI: 10.1146/annurev-nutr-071715-050656] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans.
Collapse
Affiliation(s)
- Chrysi Koliaki
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| |
Collapse
|
19
|
Bashir A, Gropler R, Ackerman J. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient. PLoS One 2015; 10:e0143239. [PMID: 26633549 PMCID: PMC4669158 DOI: 10.1371/journal.pone.0143239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. METHODS A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. RESULTS Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. CONCLUSIONS The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods.
Collapse
Affiliation(s)
- Adil Bashir
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph Ackerman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cui MH, Jayalakshmi K, Liu L, Guha C, Branch CA. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase. NMR IN BIOMEDICINE 2015; 28:1634-1644. [PMID: 26451872 DOI: 10.1002/nbm.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamaiah Jayalakshmi
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Chmelík M, Valkovič L, Wolf P, Bogner W, Gajdošík M, Halilbasic E, Gruber S, Trauner M, Krebs M, Trattnig S, Krššák M. Phosphatidylcholine contributes to in vivo (31)P MRS signal from the human liver. Eur Radiol 2015; 25:2059-66. [PMID: 25576233 DOI: 10.1007/s00330-014-3578-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To demonstrate the overlap of the hepatic and bile phosphorus ((31)P) magnetic resonance (MR) spectra and provide evidence of phosphatidylcholine (PtdC) contribution to the in vivo hepatic (31)P MRS phosphodiester (PDE) signal, suggested in previous reports to be phosphoenolpyruvate (PEP). METHODS Phantom measurements to assess the chemical shifts of PEP and PtdC signals were performed at 7 T. A retrospective analysis of hepatic 3D (31)P MR spectroscopic imaging (MRSI) data from 18 and five volunteers at 3 T and 7 T, respectively, was performed. Axial images were inspected for the presence of gallbladder, and PDE signals in representative spectra were quantified. RESULTS Phantom experiments demonstrated the strong pH-dependence of the PEP chemical shift and proved the overlap of PtdC and PEP (~2 ppm relative to phosphocreatine) at hepatic pH. Gallbladder was covered in seven of 23 in vivo 3D-MRSI datasets. The PDE(gall)/γ-ATP(liver) ratio was 4.8-fold higher (p = 0.001) in the gallbladder (PDE(gall)/γ-ATP(liver) = 3.61 ± 0.79) than in the liver (PDE(liver)/γ-ATP(liver) = 0.75 ± 0.15). In vivo 7 T (31)P MRSI allowed good separation of PDE components. The gallbladder is a strong source of contamination in adjacent (31)P MR hepatic spectra due to biliary phosphatidylcholine. CONCLUSIONS In vivo (31)P MR hepatic signal at 2.06 ppm may represent both phosphatidylcholine and phosphoenolpyruvate, with a higher phosphatidylcholine contribution due to its higher concentration. KEY POINTS • In vivo (31)P MRS from the gallbladder shows a dominant biliary phosphatidylcholine signal at 2.06 ppm. • Intrahepatic (31)P MRS signal at 2.06 ppm may represent both intrahepatic phosphatidylcholine and phosphoenolpyruvate. • In vivo (31)P MRS has the potential to monitor hepatic phosphatidylcholine.
Collapse
Affiliation(s)
- Marek Chmelík
- MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chmelik M, Považan M, Krššák M, Gruber S, Tkačov M, Trattnig S, Bogner W. In vivo (31)P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience. NMR IN BIOMEDICINE 2014; 27:478-85. [PMID: 24615903 DOI: 10.1002/nbm.3084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/11/2013] [Accepted: 01/07/2014] [Indexed: 05/12/2023]
Abstract
Phosphorus ((31) P) MRS is a powerful tool for the non-invasive investigation of human liver metabolism. Four in vivo (31) P localization approaches (single voxel image selected in vivo spectroscopy (3D-ISIS), slab selective 1D-ISIS, 2D chemical shift imaging (CSI), and 3D-CSI) with different voxel volumes and acquisition times were demonstrated in nine healthy volunteers. Localization techniques provided comparable signal-to-noise ratios normalized for voxel volume and acquisition time differences, Cramer-Rao lower bounds (8.7 ± 3.3%1D-ISIS , 7.6 ± 2.5%3D-ISIS , 8.6 ± 4.2%2D-CSI , 10.3 ± 2.7%3D-CSI ), and linewidths (50 ± 24 Hz1D-ISIS , 34 ± 10 Hz3D-ISIS , 33 ± 10 Hz2D-CSI , 34 ± 11 Hz3D-CSI ). Longitudinal (T1 ) relaxation times of human liver metabolites at 7 T were assessed by 1D-ISIS inversion recovery in the same volunteers (n = 9). T1 relaxation times of hepatic (31) P metabolites at 7 T were the following: phosphorylethanolamine - 4.41 ± 1.55 s; phosphorylcholine - 3.74 ± 1.31 s; inorganic phosphate - 0.70 ± 0.33 s; glycerol 3-phosphorylethanolamine - 6.19 ± 0.91 s; glycerol 3-phosphorylcholine - 5.94 ± 0.73 s; γ-adenosine triphosphate (ATP) - 0.50 ± 0.08 s; α-ATP - 0.46 ± 0.07 s; β-ATP - 0.56 ± 0.07 s. The improved spectral resolution at 7 T enabled separation of resonances in the phosphomonoester and phosphodiester spectral region as well as nicotinamide adenine dinucleotide and uridine diphosphoglucose signals. An additional resonance at 2.06 ppm previously assigned to phosphoenolpyruvate or phosphatidylcholine is also detectable. These are the first (31) P metabolite relaxation time measurements at 7 T in human liver, and they will help in the exploration of new, exciting questions in metabolic research with 7 T MR.
Collapse
Affiliation(s)
- Marek Chmelik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Valkovič L, Bogner W, Gajdošík M, Považan M, Kukurová IJ, Krššák M, Gruber S, Frollo I, Trattnig S, Chmelík M. One-dimensional image-selected in vivo spectroscopy localized phosphorus saturation transfer at 7T. Magn Reson Med 2014; 72:1509-15. [PMID: 24470429 DOI: 10.1002/mrm.25058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the feasibility of a one-dimensional image-selected in vivo spectroscopy (1D-ISIS) saturation transfer (ST) sequence at 7T for localized in vivo measurements of energy metabolism in different tissues in clinically reasonable examination times. METHODS The performance of a gradient offset independent adiabacity-based 1D-ISIS localization was tested on phantom and the localized ST sequence was compared with the nonlocalized version in vivo. We performed localized measurements of basal metabolism of human liver and different muscle groups of the calf. Localized ST experiments took 15-25 minutes. RESULTS The selectivity of the 1D-ISIS sequence was 81.63% and the outer volume suppression was 97.57%. The ST parameters acquired with the 1D-ISIS sequence and with the nonlocalized acquisition in the muscle were not statistically different. The forward rate constants for phosphocreatine (PCr)-adenosine triphosphate (ATP) and inorganic phosphate (Pi)-ATP exchange reactions were measured in the soleus (kCK = 0.30 ± 0.06 s(-1) and kATP = 0.11 ± 0.02 s(-1) , respectively) and in the medial gastrocnemius (kCK = 0.27 ± 0.06 s(-1) and kATP = 0.09 ± 0.03s(-1) , respectively) in 15 minutes per muscle group. The corresponding fluxes were FCK = 6.26 ± 1.28 μmol/g/s, FATP = 0.22 ± 0.05 μmol/g/s and FCK = 6.29 ± 1.66 μmol/g/s, FATP = 0.21 ± 0.07 μmol/g/s, for soleus and gastrocnemius, respectively. The hepatic ATP synthesis measurement was feasible in 24 minutes. CONCLUSION The fast assessment of PCr-ATP and Pi-ATP exchange rates at 7T makes the 1D-ISIS ST sequence a promising tool for examining local resting-state metabolism in clinically acceptable measurement times.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Novel functional magnetic resonance imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. Clin Transl Oncol 2013; 16:599-605. [PMID: 24356932 DOI: 10.1007/s12094-013-1147-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/26/2013] [Indexed: 12/19/2022]
Abstract
The established and adapted image biomarkers based on size for tumor burden measurement continue to be applied to hepatocellular carcinoma (HCC) as size measurement can easily be used in clinical practice. However, in the setting of novel targeted therapies and liver directed treatments, simple tumor anatomical changes can be less informative and usually appear later than biological changes. Functional magnetic resonance imaging (MRI) has a potential to be a promising technique for assessment of HCC response to therapy. In this review, we discuss various functional MRI biomarkers that play an increasingly important role in evaluation of HCC response after treatment.
Collapse
|
25
|
Chmelík M, Považan M, Jírů F, Just Kukurová I, Dezortová M, Krššák M, Bogner W, Hájek M, Trattnig S, Valkovič L. Flip-angle mapping of 31P coils by steady-state MR spectroscopic imaging. J Magn Reson Imaging 2013; 40:391-7. [PMID: 24925600 DOI: 10.1002/jmri.24401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/05/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Phosphorus ((31)P) MR spectroscopic imaging (MRSI) is primarily applied with sensitive, surface radiofrequency (RF) coils that provide inhomogeneous excitation RF field (B1(+)) and rough localization due to their B1(+) and sensitivity (B1(-)) profiles. A careful and time-consuming pulse adjustment and an accurate knowledge of flip angle (FA) are mandatory for quantification corrections. MATERIALS AND METHODS In this study, a simple, fast, and universal (31)P B1(+) mapping method is proposed, which requires fast steady-state MRSI (typically one sixth of normal measurement time) in addition to the typical MRSI acquired within the examination protocol. The FA maps are calculated from the ratio of the signal intensities acquired by these two measurements and were used to correct for the influence of B1(+) on the metabolite maps. RESULTS In vitro tests were performed on two scanners (3 and 7 Tesla) using a surface and a volume coil. The calculated FA maps were in good agreement with adjusted nominal FAs and the theoretical calculation using the Biot-Savart law. The method was successfully tested in vivo in the calf muscle and the brain of healthy volunteers (n = 4). The corrected metabolite maps show higher homogeneity compared with their noncorrected versions. CONCLUSION The calculated FA maps helped with B1(+) inhomogeneity corrections of acquired in vivo data, and should also be useful with optimization and testing of pulse performances, or with the construction quality tests of new dual-channel (1)H/(31)P coils.
Collapse
Affiliation(s)
- Marek Chmelík
- MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Koliaki C, Roden M. Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Mol Cell Endocrinol 2013; 379:35-42. [PMID: 23770462 DOI: 10.1016/j.mce.2013.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/08/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
Abstract
Alterations of hepatic mitochondrial function have been observed in states of insulin resistance and non-alcoholic fatty liver disease (NAFLD). Patients with overt type 2 diabetes mellitus (T2DM) can exhibit reduction in hepatic adenosine triphosphate (ATP) synthesis and impaired repletion of their hepatic ATP stores upon ATP depletion by fructose. Obesity and NAFLD may also associate with impaired ATP recovery after ATP-depleting challenges and augmented oxidative stress in the liver. On the other hand, patients with obesity or NAFLD can present with upregulated hepatic anaplerotic and oxidative fluxes, including β-oxidation and tricarboxylic cycle activity. The present review focuses on the methods and data on hepatic energy metabolism in various states of human insulin resistance. We propose that the liver can adapt to increased lipid exposition by greater lipid storing and oxidative capacity, resulting in increased oxidative stress, which in turn could deteriorate hepatic mitochondrial function in chronic insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Chrysi Koliaki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
27
|
Laufs A, Livingstone R, Nowotny B, Nowotny P, Wickrath F, Giani G, Bunke J, Roden M, Hwang JH. Quantitative liver 31
P magnetic resonance spectroscopy at 3T on a clinical scanner. Magn Reson Med 2013; 71:1670-5. [DOI: 10.1002/mrm.24835] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/10/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Alessandra Laufs
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
| | - Roshan Livingstone
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
| | - Bettina Nowotny
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
| | - Peter Nowotny
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
| | - Frithjof Wickrath
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
| | - Guido Giani
- Institute for Biometry and Epidemiology; German Diabetes Center; Düsseldorf Germany
| | - Jürgen Bunke
- Clinical Science, Philips Healthcare; Hamburg Germany
| | - Michael Roden
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
- Department of Metabolic Diseases; University Clinics, Heinrich-Heine University; Düsseldorf Germany
| | - Jong-Hee Hwang
- Institute of Clinical Diabetology; German Diabetes Center; Düsseldorf Germany
| |
Collapse
|
28
|
Abdelmalek MF, Lazo M, Horska A, Bonekamp S, Lipkin EW, Balasubramanyam A, Bantle JP, Johnson RJ, Diehl AM, Clark JM. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 2012; 56:952-60. [PMID: 22467259 PMCID: PMC3406258 DOI: 10.1002/hep.25741] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/18/2012] [Indexed: 01/08/2023]
Abstract
UNLABELLED Fructose consumption predicts increased hepatic fibrosis in those with nonalcoholic fatty liver disease (NAFLD). Because of its ability to lower hepatic adenosine triphosphate (ATP) levels, habitual fructose consumption could result in more hepatic ATP depletion and impaired ATP recovery. The degree of ATP depletion after an intravenous (IV) fructose challenge test in low- versus high-fructose consumers was assessed. We evaluated diabetic adults enrolled in the Action for Health in Diabetes Fatty Liver Ancillary Study (n = 244) for whom dietary fructose consumption estimated by a 130-item food frequency questionnaire and hepatic ATP measured by phosphorus magnetic resonance spectroscopy and uric acid (UA) levels were performed (n = 105). In a subset of participants (n = 25), an IV fructose challenge was utilized to assess change in hepatic ATP content. The relationships between dietary fructose, UA, and hepatic ATP depletion at baseline and after IV fructose challenge were evaluated in low- (<15 g/day) versus high-fructose (≥ 15 g/day) consumers. High dietary fructose consumers had slightly lower baseline hepatic ATP levels and a greater absolute change in hepatic α-ATP/ inorganic phosphate (Pi) ratio (0.08 versus 0.03; P = 0.05) and γ-ATP /Pi ratio after an IV fructose challenge (0.03 versus 0.06; P = 0.06). Patients with high UA (≥ 5.5 mg/dL) showed a lower minimum liver ATP/Pi ratio postfructose challenge (4.5 versus 7.0; P = 0.04). CONCLUSIONS High-fructose consumption depletes hepatic ATP and impairs recovery from ATP depletion after an IV fructose challenge. Subjects with high UA show a greater nadir in hepatic ATP in response to fructose. Both high dietary fructose intake and elevated UA level may predict more severe hepatic ATP depletion in response to fructose and hence may be risk factors for the development and progression of NAFLD.
Collapse
Affiliation(s)
- Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chmelík M, Kukurová IJ, Gruber S, Krššák M, Valkovič L, Trattnig S, Bogner W. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI. Magn Reson Med 2012; 69:1233-44. [PMID: 22714782 DOI: 10.1002/mrm.24363] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/24/2022]
Abstract
A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.
Collapse
Affiliation(s)
- M Chmelík
- MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Parasoglou P, Xia D, Regatte RR. Spectrally selective 3D TSE imaging of phosphocreatine in the human calf muscle at 3 T. Magn Reson Med 2012; 69:812-7. [PMID: 22499078 DOI: 10.1002/mrm.24288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/29/2022]
Abstract
Quantitative information about concentrations of several metabolites in human skeletal muscle can be obtained through localized (31)P magnetic resonance spectroscopy methods. However, these methods have shortcomings: long acquisition times, limited volume coverage, and coarse resolution. Significantly higher spatial and temporal resolution of imaging of single metabolites can be achieved through spectrally selective three-dimensional imaging methods. This study reports the implementation of a three-dimensional spectrally selective turbo spin-echo sequence, on a 3T clinical system, to map the concentration of phosphocreatine in the human calf muscle with significantly increased spatial resolution and in a clinically feasible scan time. Absolute phosphocreatine quantification was performed with the use of external phantoms after relaxation and flip angle correction of the turbo spin-echo voxel signal. The mean ± standard deviation of the phosphocreatine concentration measured in five healthy volunteers was 29.4 ± 2.5 mM with signal-to-noise ratio of 14:1 and voxel size of 0.52 mL.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Quantitative Multinuclear Musculoskeletal Imaging Group, Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, New York 10016, USA.
| | | | | |
Collapse
|
31
|
Meyerspeer M, Robinson S, Nabuurs CI, Scheenen T, Schoisengeier A, Unger E, Kemp GJ, Moser E. Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7 T. Magn Reson Med 2012; 68:1713-23. [PMID: 22334374 PMCID: PMC3378633 DOI: 10.1002/mrm.24205] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 12/31/2022]
Abstract
By improving spatial and anatomical specificity, localized spectroscopy can enhance the power and accuracy of the quantitative analysis of cellular metabolism and bioenergetics. Localized and nonlocalized dynamic (31)P magnetic resonance spectroscopy using a surface coil was compared during aerobic exercise and recovery of human calf muscle. For localization, a short echo time single-voxel magnetic resonance spectroscopy sequence with adiabatic refocusing (semi-LASER) was applied, enabling the quantification of phosphocreatine, inorganic phosphate, and pH value in a single muscle (medial gastrocnemius) in single shots (T(R) = 6 s). All measurements were performed in a 7 T whole body scanner with a nonmagnetic ergometer. From a series of equal exercise bouts we conclude that: (a) with localization, measured phosphocreatine declines in exercise to a lower value (79 ± 7% cf. 53 ± 10%, P = 0.002), (b) phosphocreatine recovery shows shorter half time (t(1/2) = 34 ± 7 s cf. t(1/2) = 42 ± 7 s, nonsignificant) and initial postexercise phosphocreatine resynthesis rate is significantly higher (32 ± 5 mM/min cf. 17 ± 4 mM/min, P = 0.001) and (c) in contrast to nonlocalized (31)P magnetic resonance spectroscopy, no splitting of the inorganic phosphate peak is observed during exercise or recovery, just an increase in line width during exercise. This confirms the absence of contaminating signals originating from weaker-exercising muscle, while an observed inorganic phosphate line broadening most probably reflects variations across fibers in a single muscle.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Panda A, Jones S, Stark H, Raghavan RS, Sandrasegaran K, Bansal N, Dydak U. Phosphorus liver MRSI at 3 T using a novel dual-tuned eight-channel ³¹P/¹H H coil. Magn Reson Med 2012; 68:1346-56. [PMID: 22287206 DOI: 10.1002/mrm.24164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
Although phosphorus-31 (³¹P) magnetic resonance spectroscopy holds potential as noninvasive tool to monitor treatment response of liver malignancies, the lack of appropriate coils has so far restricted its use to liver lesions close to the surface. A novel eight-channel phased-array dual-tuned ³¹P/¹H coil that can assess ³¹P metabolism in deeper liver tissue as well is presented in this article. Analysis of its performance demonstrates that this coil can provide good sensitivity across a width of 20 cm, thereby enabling magnetic resonance spectroscopic imaging (MRSI) scans that can fully cover axial views of the abdomen in lean subjects. In vivo results and reproducibility of ³¹P MRSI at 3 T of axial slices covering the full depth of the liver are shown in healthy volunteers. To minimize intrasubject and intersubject data variability, spectra are corrected for coil sensitivities. Methods to maximize the reproducibility of coil placement and spectroscopic planning are discussed. The phosphomonoesters/phosphodiesters ratio calculated in healthy volunteers has an average intrasubject variation of 23% averaged over voxels selected from the entire liver. Finally, the feasibility of using the coil in the clinic is shown by preliminary ³¹P liver MRSI data obtained from a patient with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Anshuman Panda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol 2011; 52:48-61. [PMID: 21964191 DOI: 10.1016/j.yjmcc.2011.08.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/30/2011] [Accepted: 08/09/2011] [Indexed: 12/01/2022]
Abstract
Mitochondria are involved in cellular functions that go beyond the traditional role of these organelles as the power plants of the cell. Mitochondria have been implicated in several human diseases, including cardiac dysfunction, and play a role in the aging process. Many aspects of our knowledge of mitochondria stem from studies performed on the isolated organelle. Their relative inaccessibility imposes experimental difficulties to study mitochondria in their natural environment-the cytosol of intact cells-and has hampered a comprehensive understanding of the plethora of mitochondrial functions. Here we review currently available methods to study mitochondrial function in intact cardiomyocytes. These methods primarily use different flavors of fluorescent dyes and genetically encoded fluorescent proteins in conjunction with high-resolution imaging techniques. We review methods to study mitochondrial morphology, mitochondrial membrane potential, Ca(2+) and Na(+) signaling, mitochondrial pH regulation, redox state and ROS production, NO signaling, oxygen consumption, ATP generation and the activity of the mitochondrial permeability transition pore. Where appropriate we complement this review on intact myocytes with seminal studies that were performed on isolated mitochondria, permeabilized cells, and in whole hearts.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
34
|
Evaluation of Early Imaging Response After Chemoembolization of Hepatocellular Carcinoma by Phosphorus-31 Magnetic Resonance Spectroscopy—Initial Experience. J Vasc Interv Radiol 2011; 22:1166-73. [DOI: 10.1016/j.jvir.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/04/2011] [Accepted: 04/11/2011] [Indexed: 11/21/2022] Open
|
35
|
Bogner W, Chmelik M, Andronesi OC, Sorensen AG, Trattnig S, Gruber S. In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: a comparison between 3 T and 7 T. Magn Reson Med 2011; 66:923-30. [PMID: 21446033 DOI: 10.1002/mrm.22897] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/01/2011] [Accepted: 02/06/2011] [Indexed: 01/11/2023]
Abstract
An improved image selected in vivo spectroscopy (ISIS) sequence for localized (31)P magnetic resonance spectroscopy at 7 T was developed. To reduce errors in localization accuracy, adiabatic excitation, gradient offset independent adiabatic inversion pulses, and a special extended ISIS ordering scheme were used. The localization accuracy of extended ISIS was investigated in phantoms. The possible spectral quality and reproducibility in vivo was explored in a volunteer (brain, muscle, and liver). A comparison between 3 T and 7 T was performed in five volunteers. Adiabatic extended ISIS provided high spectral quality and accurate localization. The contamination in phantom experiments was only ∼5%, even if a pulse repetition time ∼ 1.2·T(1) was chosen to maximize the signal-to-noise ratio per unit time. High reproducibility was found in the calf muscle for 2.5 cm isotropic voxels at 7 T. When compared with 3 T, localized (31)P magnetic resonance spectroscopy in the human calf muscle at 7 T provided ∼3.2 times higher signal-to-noise ratio (as judged from phosphocreatine peak amplitude in frequency domain after matched filtering). At 7 T, extended ISIS allowed the performance of high-quality localized (31)P magnetic resonance spectroscopy in a short measurement time (∼3 to 4 min) and isotropic voxel sizes of ∼2.5 to 3 cm. With such short measurement times, localized (31)P magnetic resonance spectroscopy has the potential to be applied not only for clinical research but also for routine clinical practice.
Collapse
Affiliation(s)
- W Bogner
- Department of Radiology, MR Center of Excellence, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
36
|
Meyerspeer M, Scheenen T, Schmid AI, Mandl T, Unger E, Moser E. Semi-LASER localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at ultra-high magnetic field. Magn Reson Med 2011; 65:1207-15. [PMID: 21384422 PMCID: PMC3272370 DOI: 10.1002/mrm.22730] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/18/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022]
Abstract
Magnetic resonance spectroscopy (MRS) can benefit from increased signal-to-noise ratio (SNR) of high magnetic fields. In this work, the SNR gain of dynamic 31P MRS at 7 T was invested in temporal and spatial resolution. Using conventional slice selective excitation combined with localization by adiabatic selective refocusing (semi-LASER) with short echo time (TE = 23 ms), phosphocreatine quantification in a 38 mL voxel inside a single exercising muscle becomes possible from single acquisitions, with SNR = 42 ± 4 in resting human medial gastrocnemius. The method was used to quantify the phosphocreatine time course during 5 min of plantar flexion exercise and recovery with a temporal resolution of 6 s (the chosen repetition time for moderate T1 saturation). Quantification of inorganic phosphate and pH required accumulation of consecutively acquired spectra when (resting) Pi concentrations were low. The localization performance was excellent while keeping the chemical shift displacement acceptably small. The SNR and spectral line widths with and without localization were compared between 3 T and 7 T systems in phantoms and in vivo. The results demonstrate that increased sensitivity of ultra-high field can be used to dynamically acquire metabolic information from a clearly defined region in a single exercising muscle while reaching a temporal resolution previously available with MRS in non-localizing studies only. The method may improve the interpretation of dynamic muscle MRS data. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Wien, Austria
| | | | | | | | | | | |
Collapse
|
37
|
Schmid AI, Szendroedi J, Chmelik M, Krssák M, Moser E, Roden M. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care 2011; 34:448-53. [PMID: 21216854 PMCID: PMC3024365 DOI: 10.2337/dc10-1076] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Steatosis associates with insulin resistance and may even predict type 2 diabetes and cardiovascular complications. Because muscular insulin resistance relates to myocellular fat deposition and disturbed energy metabolism, we hypothesized that reduced hepatic ATP turnover (fATP) underlies insulin resistance and elevated hepatocellular lipid (HCL) contents. RESEARCH DESIGN AND METHODS We measured hepatic fATP using (31)P magnetic resonance spectroscopy in patients with type 2 diabetes and age- and body mass-matched controls. Peripheral (M and M/I) and hepatic (suppression of endogenous glucose production) insulin sensitivity were assessed with euglycemic-hyperinsulinemic clamps. RESULTS Diabetic individuals had 29% and 28% lower peripheral and hepatic insulin sensitivity as well as 42% reduced fATP than controls. After adjusting for HCL, fATP correlated positively with peripheral and hepatic insulin sensitivity but negatively with waist circumference, BMI, and fasting plasma glucose. Multiple regression analysis identified waist circumference as an independent predictor of fATP and inorganic phosphate (P(I)) concentrations, explaining 65% (P = 0.001) and 56% (P = 0.003) of the variations. Hepatocellular P(I) primarily determined the alterations in fATP. CONCLUSIONS In patients with type 2 diabetes, insulin resistance relates to perturbed hepatic energy metabolism, which is at least partly accounted for by fat depots.
Collapse
|
38
|
Patel KD, Abeysekera KWM, Marlais M, McPhail MJW, Thomas HC, Fitzpatrick JA, Lim AKP, Taylor-Robinson SD, Thomas EL. Recent advances in imaging hepatic fibrosis and steatosis. Expert Rev Gastroenterol Hepatol 2011; 5:91-104. [PMID: 21309675 DOI: 10.1586/egh.10.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Liver disease is an increasing cause of morbidity and mortality worldwide. Currently, the gold standard for diagnosis and assessment of parenchymal disease is histopathological assessment of a percutaneous or transjugular liver biopsy. The risks and limitations of this technique are well recognized and as a result, significant effort has gone into the development of novel noninvasive methods of diagnosis and longitudinal assessment. Imaging techniques have improved significantly over the past decade and new technologies are beginning to enter clinical practice. Ultrasound, computed tomography and MRI are the main modalities currently used, but novel MRI-based techniques will have an increasing role. While there has been extensive research into the imaging of focal liver disease, the evidence base for imaging in diffuse disease has also undergone recent rapid development, particularly in the assessment of fibrosis and steatosis. Both of these abnormalities of the parenchyma can lead to cirrhosis and/or hepatocellular carcinoma and represent an important opportunity for detection of early liver disease. We discuss the recent advances in liver imaging techniques and their role in the diagnosis and monitoring of diffuse liver disease, with a focus on their current and potential clinical relevance and whether they may replace or augment liver biopsy. We also discuss techniques currently under development and their potential clinical applications in the future.
Collapse
Affiliation(s)
- Kayur D Patel
- Liver Unit, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, 10th Floor Queen Elizabeth the Queen Mother Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London W2 1NY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang L. Morphological and functional MDCT: problem-solving tool and surrogate biomarker for hepatic disease clinical care and drug discovery in the era of personalized medicine. Hepat Med 2010; 2:111-24. [PMID: 24367211 PMCID: PMC3846718 DOI: 10.2147/hmer.s9052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article explains the significant role of morphological and functional multidetector computer tomography (MDCT) in combination with imaging postprocessing algorithms served as a problem-solving tool and noninvasive surrogate biomarker to effectively improve hepatic diseases characterization, detection, tumor staging and prognosis, therapy response assessment, and novel drug discovery programs, partial liver resection and transplantation, and MDCT-guided interventions in the era of personalized medicine. State-of-the-art MDCT depicts and quantifies hepatic disease over conventional CT for not only depicting lesion location, size, and extent but also detecting changes in tumor biologic behavior caused by therapy or tumor progression before morphologic changes. Color-encoded parameter display provides important functional information on blood flow, permeability, leakage space, and blood volume. Together with other relevant biomarkers and genomics, the imaging modality is being developed and validated as a biomarker to early response to novel, targeted anti-VEGF(R)/PDGFR or antivascular/angiogenesis agents as its parameters correlate with immunohistochemical surrogates of tumor angiogenesis and molecular features of malignancies. MDCT holds incremental value to World Health Organization response criteria and Response Evaluation Criteria in Solid Tumors in liver disease management. MDCT volumetric measurement of future remnant liver is the most important factor influencing the outcome of patients who underwent partial liver resection and transplantation. MDCT-guided interventional methods deliver personalized therapies locally in the human body. MDCT will hold more scientific impact when it is fused with other imaging probes to yield comprehensive information regarding changes in liver disease at different levels (anatomic, metabolic, molecular, histologic, and other levels).
Collapse
Affiliation(s)
- Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
40
|
Bogner W, Chmelik M, Schmid AI, Moser E, Trattnig S, Gruber S. Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med 2009; 62:574-82. [PMID: 19526487 DOI: 10.1002/mrm.22057] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphorus ((31)P) T(1) and T(2) relaxation times in the resting human calf muscle were assessed by interleaved, surface coil localized inversion recovery and frequency-selective spin-echo at 3 and 7 T. The obtained T(1) (mean +/- SD) decreased significantly (P < 0.05) from 3 to 7 T for phosphomonoesters (PME) (8.1 +/- 1.7 s to 3.1 +/- 0.9 s), phosphodiesters (PDE) (8.6 +/- 1.2 s to 6.0 +/- 1.1 s), phosphocreatine (PCr) (6.7 +/- 0.4 s to 4.0 +/- 0.2 s), gamma-NTP (nucleotide triphosphate) (5.5 +/- 0.4 s to 3.3 +/- 0.2 s), alpha-NTP (3.4 +/- 0.3 s to 1.8 +/- 0.1 s), and beta-NTP (3.9 +/- 0.4 s to 1.8 +/- 0.1 s), but not for inorganic phosphate (Pi) (6.9 +/- 0.6 s to 6.3 +/- 1.0 s). The decrease in T(2) was significant for Pi (153 +/- 9 ms to 109 +/- 17 ms), PDE (414 +/- 128 ms to 314 +/- 35 ms), PCr (354 +/- 16 ms to 217 +/- 14 ms), and gamma-NTP (61.9 +/- 8.6 ms to 29.0 +/- 3.3 ms). This decrease in T(1) with increasing field strength of up to 62% can be explained by the increasing influence of chemical shift anisotropy on relaxation mechanisms and may allow shorter measurements at higher field strengths or up to 62% additional signal-to-noise ratio (SNR) per unit time. The fully relaxed SNR increased by +96%, while the linewidth increased from 6.5 +/- 1.2 Hz to 11.2 +/- 1.9 Hz or +72%. At 7 T (31)P-MRS in the human calf muscle offers more than twice as much SNR per unit time in reduced measurement time compared to 3 T. This will facilitate in vivo (31)P-MRS of the human muscle at 7 T.
Collapse
Affiliation(s)
- W Bogner
- Department of Radiology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, Moser E, Roden M. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 2009; 50:1079-86. [PMID: 19637187 DOI: 10.1002/hep.23093] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Increased hepatocellular lipids relate to insulin resistance and are typical for individuals with type 2 diabetes mellitus (T2DM). Steatosis and T2DM have been further associated with impaired muscular adenosine triphosphate (ATP) turnover indicating reduced mitochondrial fitness. Thus, we tested the hypothesis that hepatic energy metabolism could be impaired even in metabolically well-controlled T2DM. We measured hepatic lipid volume fraction (HLVF) and absolute concentrations of gammaATP, inorganic phosphate (Pi), phosphomonoesters and phosphodiesters using noninvasive (1)H/ (31)P magnetic resonance spectroscopy in individuals with T2DM (58 +/- 6 years, 27 +/- 3 kg/m (2)), and age-matched and body mass index-matched (mCON; 61 +/- 4 years, 26 +/- 4 kg/m (2)) and young lean humans (yCON; 25 +/- 3 years, 22 +/- 2 kg/m (2), P < 0.005, P < 0.05 versus T2DM and mCON). Insulin-mediated whole-body glucose disposal (M) and endogenous glucose production (iEGP) were assessed during euglycemic-hyperinsulinemic clamps. Individuals with T2DM had 26% and 23% lower gammaATP (1.68 +/- 0.11; 2.26 +/- 0.20; 2.20 +/- 0.09 mmol/L; P < 0.05) than mCON and yCON individuals, respectively. Further, they had 28% and 31% lower Pi than did individuals from the mCON and yCON groups (0.96 +/- 0.06; 1.33 +/- 0.13; 1.41 +/- 0.07 mmol/L; P < 0.05). Phosphomonoesters, phosphodiesters, and liver aminotransferases did not differ between groups. HLVF was not different between those from the T2DM and mCON groups, but higher (P = 0.002) than in those from the yCON group. T2DM had 13-fold higher iEGP than mCON (P < 0.05). Even after adjustment for HLVF, hepatic ATP and Pi related negatively to hepatic insulin sensitivity (iEGP) (r =-0.665, P = 0.010, r =-0.680, P = 0.007) but not to whole-body insulin sensitivity. CONCLUSION These data suggest that impaired hepatic energy metabolism and insulin resistance could precede the development of steatosis in individuals with T2DM.
Collapse
Affiliation(s)
- Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To summarize recent studies that shed more light on possible mechanisms by which ectopic lipid storage affects organ function. RECENT FINDINGS Although ectopic lipids have been considered as biomarkers of lipotoxicity, adaptation of metabolic fluxes and of mitochondrial function seem to be more important than actual cellular fat contents in liver and muscle. Diabetic and obese humans have elevated myocardial lipid contents, which are associated with mitochondrial and contractile dysfunction and could even precede the development of heart failure. Although pancreatic fat content is negatively associated with insulin secretion, [beta]-cell triglycerides are not easily accessible to measurement in humans rendering their role for [beta]-cell function unclear. New approaches to quantify energy metabolism in various organs could help to identify novel biomarkers of organ function in humans. SUMMARY Dietary intake of high-caloric high-fat diets and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Intracellular lipid contents in skeletal muscle and liver have been related to insulin resistance and inflammatory processes. Myocardial fat is increased in heart failure, whereas pancreatic fat could relate to insulin secretion.
Collapse
Affiliation(s)
- Julia Szendroedi
- Department of Medicine/Metabolic Diseases, Institute for Clinical Diabetology, German Diabetes Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
43
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|