1
|
Levilly S, Moussaoui S, Serfaty JM. Segmentation-Free Velocity Field Super-Resolution on 4D Flow MRI. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:5637-5649. [PMID: 39365721 DOI: 10.1109/tip.2024.3470553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Blood flow observation is of high interest in cardiovascular disease diagnosis and assessment. For this purpose, 2D Phase-Contrast MRI is widely used in the clinical routine. 4D flow MRI sequences, which dynamically image the anatomic shape and velocity vectors within a region of interest, are promising but rarely used due to their low resolution and signal-to-noise ratio (SNR). Computational fluid dynamics (CFD) simulation is considered as a reference solution for resolution enhancement. However, its precision relies on image segmentation and a clinical expertise for the definition of the vessel borders. The main contribution of this paper is a Segmentation-Free Super-Resolution (SFSR) algorithm. Based on inverse problem methodology, SFSR relies on minimizing a compound criterion involving: a data fidelity term, a fluid mechanics term, and a spatial velocity smoothing term. The proposed algorithm is evaluated with respect to state-of-the-art solutions, in terms of quantification error and computation time, on a synthetic 3D dataset with several noise levels, resulting in a 59% RMSE improvement and factor 2 super-resolution with a noise standard deviation of 5% of the Venc. Finally, its performance is demonstrated, with a scale factor of 2 and 3, on a pulsed flow phantom dataset with more complex patterns. The application on in-vivo were achievable within the 10 min. computation time.
Collapse
|
2
|
Stephan H, Grefen L, Clevert D, Onkes M, Ning J, Thierfelder N, Mela P, Hagl C, Curta A, Grab M. 4D-Flow MRI and Vector Ultrasound in the In-Vitro Evaluation of Surgical Aortic Heart Valves - a Pilot Study. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10564-0. [PMID: 39365396 DOI: 10.1007/s12265-024-10564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The aim of this study was the initial investigation of 4D-Flow MRI and Vector Ultrasound as novel imaging techniques in the in-vitro analysis of hemodynamics in anatomical models. Specifically, by looking at the hemodynamic performance of state-of-the-art surgical heart valves in a 3D-printed aortic arch. METHODS The mock circulatory loop simulated physiological, pulsatile flow. Two mechanical and three biological aortic valves prostheses were compared in a 3D-printed aortic arch. 4D magnetic resonance imaging and vector flow Doppler ultrasound served as imaging methods. Hemodynamic parameters such as wall shear stress, flow velocities and pressure gradients were analyzed. RESULTS The flow analysis revealed characteristic flow-patterns in the 3D-printed aortic arch. The blood-flow in the arch presented complex patterns, including the formation of helixes and vortices. Higher proximal peak velocities and lower flow volumes were found for biological valves. CONCLUSION The mock circulatory loop in combination with modern radiological imaging provides a sufficient basis for the hemodynamic comparison of aortic valves.
Collapse
Affiliation(s)
- Henrik Stephan
- Department of Cardiac Surgery, LMU Hospital - Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Linda Grefen
- Department of Cardiac Surgery, LMU Hospital - Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Dirk Clevert
- Department of Radiology, LMU University Hospital, Munich, Germany
| | - Meike Onkes
- Department of Radiology, LMU University Hospital, Munich, Germany
| | - Jin Ning
- Siemens Healthineers AG, Erlangen, Germany
| | - Nikolaus Thierfelder
- Department of Cardiac Surgery, LMU Hospital - Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering, and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, LMU Hospital - Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Adrian Curta
- Department of Radiology, LMU University Hospital, Munich, Germany
| | - Maximilian Grab
- Department of Cardiac Surgery, LMU Hospital - Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering, and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Trauzeddel RF, Müller M, Demir A, Wiesemann S, Daud E, Schmitter S, Viezzer D, Hadler T, Schulz-Menger J. The influence of post-processing software on quantitative results in 4D flow cardiovascular magnetic resonance examinations. Front Cardiovasc Med 2024; 11:1465554. [PMID: 39399512 PMCID: PMC11467864 DOI: 10.3389/fcvm.2024.1465554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background Several commercially available software packages exist for the analysis of three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) with three-directional velocity encoding (four-dimensional (4D) flow CMR). Only sparse data are available on the impact of these different software solutions on quantitative results. We compared two different commercially available and widely used software packages and their impact on the forward flow volume (FFV), peak velocity (PV), and maximum wall shear stress (WSS) per plane. Materials and methods 4D flow CMR datasets acquired by 3 Tesla magnetic resonance imaging of 10 healthy volunteers, 13 aortic stenosis patients, and 7 aortic valve replacement patients were retrospectively analyzed for FFV, PV, and WSS using two software packages in six analysis planes along the thoracic aorta. Absolute (AD) and relative differences (RD), intraclass correlation coefficients (ICC), Bland-Altman analysis, and Spearman's correlation analysis were calculated. Results For the FFV and PV in healthy volunteers, there was good to excellent agreement between both software packages [FFV: ICC = 0.93-0.97, AD: 0.1 ± 5.4 ml (-2.3 ± 2.4 ml), RD: -0.3 ± 8% (-5.7 ± 6.0%); PV: ICC = 0.81-0.99, AD: -0.02 ± 0.02 ml (-0.1 ± 0.1 ml), RD: -1.6 ± 2.1% (-9.3 ± 6.1%)]. In patients, the FFV showed good to excellent agreement [ICC: 0.75-0.91, AD: -1.8 ± 6.5 ml (-8.3 ± 9.9 ml), RD: -2.2 ± 9.2% (-13.8 ± 17.4%)]. In the ascending aorta, PV showed only poor to moderate agreement in patients (plane 2 ICC: 0.33, plane 3 ICC: 0.72), whereas the rest of the thoracic aorta revealed good to excellent agreement [ICC: 0.95-0.98, AD: -0.03 ± 0.07 (-0.1 ± 0.1 m/s), RD: -3.5 ± 7.9% (-7.8 ± 9.9%)]. WSS analysis showed no to poor agreement between both software packages. Global correlation analyses revealed good to very good correlation between FFV and PV and only poor correlation for WSS. Conclusions There was good to very good agreement for the FFV and PV except for the ascending aorta in patients when comparing PV and no agreement for WSS. Standardization is therefore necessary.
Collapse
Affiliation(s)
- Ralf F. Trauzeddel
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Müller
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Aylin Demir
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Stephanie Wiesemann
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Elias Daud
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine Bar-Ilan University, Nahariya, Israel
| | | | - Darian Viezzer
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Thomas Hadler
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Jeanette Schulz-Menger
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| |
Collapse
|
4
|
Ramaekers MJFG, Te Kiefte BJC, Adriaans BP, Juffermans JF, van Assen HC, Winkens B, Wildberger JE, Lamb HJ, Schalla S, Westenberg JJM. Comprehensive sex-specific and age-dependent analysis of 4D-flow MRI assessed aortic blood flow-related parameters in normal subjects using single-vendor MR systems and single-vendor software. J Cardiovasc Magn Reson 2024:101083. [PMID: 39142568 DOI: 10.1016/j.jocmr.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Aortic blood flow characterization by 4D flow MRI is increasingly performed in aneurysm research. A limited number of studies have established normal values that can aid the recognition of abnormal flow at an early stage. This study aims to establish additional sex-specific and age-dependent reference values for flow-related parameters in a large cohort of healthy adults. METHODS 212 volunteers were included, and 191 volunteers completed the full study protocol. All underwent 4D flow MRI of the entire aorta. Quantitative values for velocity, vorticity, helicity, as well as total, circumferential, and axial wall shear stress [WSS] were determined for the aortic root [AoR], ascending aorta [AAo], aortic arch [AoA], descending [DAo], suprarenal [SRA], and infrarenal aorta [IRA]. Vorticity and helicity were indexed for segment volume (mL). RESULTS The normal values were estimated per sex- and age-group, where significant differences between males (M) and females (F) were found only for specific age groups. More specifically, the following variables were significantly different after applying the false discovery rate correction for multiple testing: 1) velocity in the AAo and DAo in the 60-70 years age group (mean±SD: (M) 47.0 ± 8.2cm/s vs. (F) 38.4 ± 6.9cm/s, p=0.001 and, (M) 55.9 ± 9.9cm/s vs. (F) 46.5 ± 5.5cm/s, p=0.002), 2) normalized vorticity in AoR in the 50-59 years age group ((M) 27539 ± 5042s-1mL-1 vs. (F) 30849 ± 7285s-1mL-1, p=0.002), 3) axial WSS in the Aao in the 18-29 age group ((M) 1098 ± 203 mPa vs. (F) 921 ± 121 mPa, p=0.002). Good to strong negative correlations with age were seen for almost all variables, in different segments, and for both sexes. CONCLUSION This study describes reference values for aortic flow-related parameters as acquired by 4D flow MRI. We observed limited differences between males and females. A negative relationship with age was seen for almost all flow-related parameters and segments.
Collapse
Affiliation(s)
- Mitch J F G Ramaekers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Department of Cardiology, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands.
| | - Bastiaan J C Te Kiefte
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Bouke P Adriaans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Department of Cardiology, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Bjorn Winkens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Simon Schalla
- Department of Cardiology, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Manini C, Hüllebrand M, Walczak L, Nordmeyer S, Jarmatz L, Kuehne T, Stern H, Meierhofer C, Harloff A, Erley J, Kelle S, Bannas P, Trauzeddel RF, Schulz-Menger J, Hennemuth A. Impact of training data composition on the generalizability of convolutional neural network aortic cross-section segmentation in four-dimensional magnetic resonance flow imaging. J Cardiovasc Magn Reson 2024; 26:101081. [PMID: 39127260 PMCID: PMC11422555 DOI: 10.1016/j.jocmr.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Four-dimensional cardiovascular magnetic resonance flow imaging (4D flow CMR) plays an important role in assessing cardiovascular diseases. However, the manual or semi-automatic segmentation of aortic vessel boundaries in 4D flow data introduces variability and limits the reproducibility of aortic hemodynamics visualization and quantitative flow-related parameter computation. This paper explores the potential of deep learning to improve 4D flow CMR segmentation by developing models for automatic segmentation and analyzes the impact of the training data on the generalization of the model across different sites, scanner vendors, sequences, and pathologies. METHODS The study population consists of 260 4D flow CMR datasets, including subjects without known aortic pathology, healthy volunteers, and patients with bicuspid aortic valve (BAV) examined at different hospitals. The dataset was split to train segmentation models on subsets with different representations of characteristics, such as pathology, gender, age, scanner model, vendor, and field strength. An enhanced three-dimensional U-net convolutional neural network (CNN) architecture with residual units was trained for time-resolved two-dimensional aortic cross-sectional segmentation. Model performance was evaluated using Dice score, Hausdorff distance, and average symmetric surface distance on test data, datasets with characteristics not represented in the training set (model-specific), and an overall evaluation set. Standard diagnostic flow parameters were computed and compared with manual segmentation results using Bland-Altman analysis and interclass correlation. RESULTS The representation of technical factors, such as scanner vendor and field strength, in the training dataset had the strongest influence on the overall segmentation performance. Age had a greater impact than gender. Models solely trained on BAV patients' datasets performed well on datasets of healthy subjects but not vice versa. CONCLUSION This study highlights the importance of considering a heterogeneous dataset for the training of widely applicable automatic CNN segmentations in 4D flow CMR, with a particular focus on the inclusion of different pathologies and technical aspects of data acquisition.
Collapse
Affiliation(s)
- Chiara Manini
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Markus Hüllebrand
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Fraunhofer MEVIS, Berlin, Germany
| | - Lars Walczak
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Fraunhofer MEVIS, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Diagnostic and Interventional Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Lina Jarmatz
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
| | - Titus Kuehne
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Heiko Stern
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Andreas Harloff
- Department of Neurology and Neurophysiology, University Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer Erley
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sebastian Kelle
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Felix Trauzeddel
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jeanette Schulz-Menger
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Anja Hennemuth
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Fraunhofer MEVIS, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
David E, Grazhdani H, Aliotta L, Gavazzi LM, Foti PV, Palmucci S, Inì C, Tiralongo F, Castiglione D, Renda M, Pacini P, Di Bella C, Solito C, Gigli S, Fazio A, Bella R, Basile A, Cantisani V. Imaging of Carotid Stenosis: Where Are We Standing? Comparison of Multiparametric Ultrasound, CT Angiography, and MRI Angiography, with Recent Developments. Diagnostics (Basel) 2024; 14:1708. [PMID: 39202195 PMCID: PMC11352936 DOI: 10.3390/diagnostics14161708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Atherosclerotic disease of the carotid arteries is a crucial risk factor in predicting the likelihood of future stroke events. In addition, emerging studies suggest that carotid stenosis may also be an indicator of plaque load on coronary arteries and thus have a correlation with the risk of acute cardiovascular events. Furthermore, although in symptomatic patients the degree of stenosis is the main morphological parameter studied, recent evidence suggests, especially in asymptomatic patients, that plaque vulnerability should also be evaluated as an emerging and significant imaging parameter. The reference diagnostic methods for the evaluation of carotid stenosis are currently ultrasonography, magnetic resonance imaging (MRI), and computed tomography angiography (CTA). In addition, other more invasive methods such as 123I-metaiodobenzylguanidine (MIBG) scintigraphy and PET-CT, as well as digital subtraction angiography, can be used. Each method has advantages and disadvantages, and there is often some confusion in their use. For example, the usefulness of MRI is often underestimated. In addition, implementations for each method have been developed over the years and are already enabling a significant increase in diagnostic accuracy. The purpose of our study is to make an in-depth analysis of all the methods in use and in particular their role in the diagnostic procedure of carotid stenosis, also discussing new technologies.
Collapse
Affiliation(s)
- Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Lorenzo Aliotta
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Livio Maria Gavazzi
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Corrado Inì
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Francesco Tiralongo
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Davide Castiglione
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Carmen Solito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Silvia Gigli
- Department of Diagnostic Imaging, Sandro Pertini Hospital, Via dei Monti Tiburtini, 385, 00157 Rome, Italy;
| | - Alessandro Fazio
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Rita Bella
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| |
Collapse
|
7
|
Martín Tempestti J, Kim S, Lindsey BD, Veneziani A. A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00741-2. [PMID: 39103664 DOI: 10.1007/s13239-024-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements. METHODS Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS. RESULTS Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods. CONCLUSION The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.
Collapse
Affiliation(s)
| | - Saeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Dr, Atlanta, 30322, GA, USA
- Department of Computer Science, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
8
|
Li CY, Chen CW, Kao CC, Hsu YC, Lee CY, Lin CC, Yang TY, Wang SC, Chen SY, Lin YH, Wong MY, Chang CJ, Huang YK. Pelvic congestion syndrome analysis through quantitative 2-dimensional phase-contrast magnetic resonance imaging: A promising vision from an observational cohort study. Int J Surg 2024; 110:01279778-990000000-01866. [PMID: 39093851 PMCID: PMC11486974 DOI: 10.1097/js9.0000000000001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND To examine the application of quantitative 2-dimensional phase-contrast magnetic resonance imaging (2D PC-MRI) for treating patients with pelvic congestion syndrome (PCS). MATERIALS AND METHODS We conducted a retrospective cross-sectional analysis by using quantitative 2D PC-MRI data enrolled between April 2017 and Sep 2023. In addition, 32 healthy female controls (HCs) were included. RESULTS Most patients with PCS presented with chronic pelvic pain and more than half had extra-pelvic venous symptoms (80/81, 98% and 45/81, 56%, respectively). Quantitative 2D PC-MRI analyzed the 81 patients with PCS, 239 patients without PCS, and 32 HCs. The patients with PCS had higher stroke volume (SV), absolute SV (ASV), and mean flux (MF) in the calf region (interstitial pixel shift) than did the HCs. In the left gonadal vein, the patients with PCS had higher SV, backward flow volume (BFV), ASV, and MF and lower forward flow volume (FFV), stroke distance (SD), and mean velocity (MV) than did the HCs. However, the patients with PCS had lower SV, FFV, MF, SD, and MV in the great saphenous veins. Quantitative 2D PC-MRI analysis revealed that the PCS group had higher SV, FFV, BFV, ASV, and MF in the calf region than did the non-PCS group. The variables that most strongly differentiated the patients with PCS from the HCs were SV in the great saphenous veins, SD in the great saphenous veins and left gonadal vein, and MV in the great saphenous veins and left gonadal vein. Caudal flow in the left gonadal vein was identified in half of the patients with PCS (39/81, 48.1%); 14 of them received embolization for left gonadal vein. CONCLUSIONS In additional to providing an objective 3-dimensional morphology of the pelvic veins and extra-pelvic leaks, quantitative 2D PC-MRI analysis reveals distinct hemodynamic profiles between patients with PCS, those without PCS, and HCs, especially in the gonadal veins and regional perfusion of the calves.
Collapse
Affiliation(s)
- Chen-Yu Li
- Department of Finance, National Taichung University of Science and Technology, Taichung
| | - Chien-Wei Chen
- Department of Diagnostic Radiology, ChiaYi Chang Gung Memorial Hospital, Chiayi
- College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Chen Kao
- College of Medicine, Chang Gung University, Taoyuan
- Division of Thoracic and Cardiovascular Surgery, ChiaYi Chang Gung Memorial Hospital, Chiayi
| | - Yin-Chen Hsu
- Department of Diagnostic Radiology, ChiaYi Chang Gung Memorial Hospital, Chiayi
- College of Medicine, Chang Gung University, Taoyuan
| | - Chung-Yuan Lee
- College of Medicine, Chang Gung University, Taoyuan
- Obstetrics and Gynecology, ChiaYi Chang Gung Memorial Hospital, Chiayi
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Chieh-Chao Lin
- College of Medicine, Chang Gung University, Taoyuan
- Division of Thoracic and Cardiovascular Surgery, ChiaYi Chang Gung Memorial Hospital, Chiayi
| | - Teng-Yao Yang
- College of Medicine, Chang Gung University, Taoyuan
- Cardiology, ChiaYi Chang Gung Memorial Hospital, Chiayi
| | - Shih-Chung Wang
- Department of Diagnostic Radiology, ChiaYi Chang Gung Memorial Hospital, Chiayi
| | - Sheng-Ya Chen
- Department of Diagnostic Radiology, ChiaYi Chang Gung Memorial Hospital, Chiayi
| | - Yu-Hui Lin
- Division of Thoracic and Cardiovascular Surgery, ChiaYi Chang Gung Memorial Hospital, Chiayi
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, ChiaYi Chang Gung Memorial Hospital, Chiayi
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City
| | - Chee-Jen Chang
- College of Medicine, Chang Gung University, Taoyuan
- Department of Artificial Intelligence, GICMS and Biomedical Science Research Services Center /Health Information, Chang Gung University, Taoyuan
| | - Yao-Kuang Huang
- College of Medicine, Chang Gung University, Taoyuan
- Division of Thoracic and Cardiovascular Surgery, ChiaYi Chang Gung Memorial Hospital, Chiayi
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, MOHW, Chiayi
| |
Collapse
|
9
|
Ruiz-Muñoz A, Guala A, Dux-Santoy L, Teixidó-Turà G, Valente F, Garrido-Oliver J, Galian-Gay L, Gutiérrez L, Fernandez-Galera R, Casas-Masnou G, González-Alujas T, Cuéllar-Calabria H, Carrasco-Poves A, Morales-Galán A, Johnson KM, Wieben O, Ferreira-González I, Evangelista A, Rodriguez-Palomares J. False lumen hemodynamics and partial thrombosis in chronic aortic dissection of the descending aorta. Eur Radiol 2024; 34:5190-5200. [PMID: 38183450 DOI: 10.1007/s00330-023-10513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVES Partial thrombosis of the false lumen (FL) in patients with chronic aortic dissection (AD) of the descending aorta has been associated with poor outcomes. Meanwhile, the fluid dynamic and biomechanical characteristics associated with partial thrombosis remain to be elucidated. This retrospective, single-center study tested the association between FL fluid dynamics and biomechanics and the presence and extent of FL thrombus. METHODS Patients with chronic non-thrombosed or partially thrombosed FLs in the descending aorta after an aortic dissection underwent computed tomography angiography, cardiovascular magnetic resonance (CMR) angiography, and a 4D flow CMR study. A comprehensive quantitative analysis was performed to test the association between FL thrombus presence and extent (percentage of FL with thrombus) and FL anatomy (diameter, entry tear location and size), fluid dynamics (inflow, rotational flow, wall shear stress, kinetic energy, and flow acceleration and stasis), and biomechanics (pulse wave velocity). RESULTS Sixty-eight patients were included. In multivariate logistic regression FL kinetic energy (p = 0.038) discriminated the 33 patients with partial FL thrombosis from the 35 patients with no thrombosis. Similarly, in separated multivariate linear correlations kinetic energy (p = 0.006) and FL inflow (p = 0.002) were independently related to the extent of the thrombus. FL vortexes, flow acceleration and stasis, wall shear stress, and pulse wave velocity showed limited associations with thrombus presence and extent. CONCLUSION In patients with chronic descending aorta dissection, false lumen kinetic energy is related to the presence and extent of false lumen thrombus. CLINICAL RELEVANCE STATEMENT In patients with chronic aortic dissection of the descending aorta, false lumen hemodynamic parameters are closely linked with the presence and extent of false lumen thrombosis, and these non-invasive measures might be important in patient management. KEY POINTS • Partial false lumen thrombosis has been associated with aortic growth in patients with chronic descending aortic dissection; therefore, the identification of prothrombotic flow conditions is desirable. • The presence of partial false lumen thrombosis as well as its extent was related with false lumen kinetic energy. • The assessment of false lumen hemodynamics may be important in the management of patients with chronic aortic dissection of the descending aorta.
Collapse
Affiliation(s)
- Aroa Ruiz-Muñoz
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | | | - Gisela Teixidó-Turà
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Filipa Valente
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Laura Gutiérrez
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Rubén Fernandez-Galera
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Guillem Casas-Masnou
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Teresa González-Alujas
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Hug Cuéllar-Calabria
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | - Kevin M Johnson
- Departments of Medical Physics & Radiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Departments of Medical Physics & Radiology, University of Wisconsin, Madison, WI, USA
| | - Ignacio Ferreira-González
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Arturo Evangelista
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| | - Jose Rodriguez-Palomares
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
10
|
Perinajová R, van de Ven T, Roelse E, Xu F, Juffermans J, Westenberg J, Lamb H, Kenjereš S. A comprehensive MRI-based computational model of blood flow in compliant aorta using radial basis function interpolation. Biomed Eng Online 2024; 23:69. [PMID: 39039565 PMCID: PMC11265469 DOI: 10.1186/s12938-024-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| | - Thijn van de Ven
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Elise Roelse
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Fei Xu
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Joe Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| |
Collapse
|
11
|
El Sayed R, Park CC, Shah Z, Nahab FB, Haussen DC, Allen JW, Oshinski JN. Assessment of Complex Flow Patterns in Patients With Carotid Webs, Patients With Carotid Atherosclerosis, and Healthy Subjects Using 4D Flow MRI. J Magn Reson Imaging 2024; 59:2001-2010. [PMID: 37706274 PMCID: PMC10937327 DOI: 10.1002/jmri.29013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Carotid webs (CaWs) are fibromuscular projections in the internal carotid artery (ICA) that cause mild luminal narrowing (<50%), but may be causative in up to one-third of seemingly cryptogenic strokes. Understanding hemodynamic alterations caused by CaWs is imperative to assessing stroke risk. Time-Average Wall Shear Stress (TAWSS) and Oscillatory Shear Index (OSI) are hemodynamic parameters linked to vascular dysfunction and thrombosis. PURPOSE To test the hypothesis: "CaWs are associated with lower TAWSS and higher OSI than mild atherosclerosis or healthy carotid bifurcation." STUDY TYPE Prospective study. POPULATION A total of 35 subjects (N = 14 bifurcations with CaW, 11F, age: 49 ± 10, 10 mild atherosclerosis 6F, age: 72 ± 9, 11 healthy 9F, age: 42 ± 13). FIELD STRENGTH/SEQUENCE 4D flow/STAR-MATCH/3D TOF/3T MRI, CTA. ASSESSMENT 4D Flow velocity data were analyzed in two ways: 1) 3D ROI in the ICA bulbar segment (complex flow patterns are expected) was used to quantify the regions with low TAWSS and high OSI. 2) 2D planes were placed perpendicular to the centerline of the carotid bifurcation for detailed analysis of TAWSS and OSI. STATISTICAL TESTS Independent-samples Kruskal-Wallis-H test with 0.05 used for statistical significance. RESULTS The percent surface area where low TAWSS was present in the ICA bulb was 12.3 ± 8.0% (95% CI: 7.6-16.9) in CaW subjects, 1.6 ± 1.9% (95% CI: 0.2-2.9) in atherosclerosis, and 8.5 ± 7.7% (95% CI: 3.6-13.4) in healthy subjects, all differences were statistically significant (ƞ2 = 0.3 [95% CI: 0.05-0.5], P-value CaW vs. healthy = 0.2). OSI had similar values in the CCA between groups (ƞ2 = 0.07 [95% CI: 0.0-0.2], P-value = 0.5), but OSI was significantly higher downstream of the bifurcation in CaW subjects compared to atherosclerosis and normal subjects. OSI returned to similar values between groups 1.5 diameters distal to the bifurcation (ƞ2 = 0.03 [95% CI: 0.0-0.2], P-value = 0.7). CONCLUSION Lower TAWSS and higher OSI are present in the ICA bulb in patients with CaW when compared to patients with atherosclerotic or healthy subjects. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Retta El Sayed
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Charlie C. Park
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Zahraw Shah
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Fadi B. Nahab
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Diogo C. Haussen
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Jason W. Allen
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - John N. Oshinski
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
El Sayed R, Lucas CJ, Cebull HL, Nahab FB, Haussen DC, Allen JW, Oshinski JN. Subjects with carotid webs demonstrate pro-thrombotic hemodynamics compared to subjects with carotid atherosclerosis. Sci Rep 2024; 14:10092. [PMID: 38698141 PMCID: PMC11066020 DOI: 10.1038/s41598-024-60666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Carotid artery webs (CaW) are non-atherosclerotic projections into the vascular lumen and have been linked to up to one-third of cryptogenic strokes in younger patients. Determining how CaW affects local hemodynamics is essential for understanding clot formation and stroke risk. Computational fluid dynamics simulations were used to investigate patient-specific hemodynamics in carotid artery bifurcations with CaW, bifurcations with atherosclerotic lesions having a similar degree of lumen narrowing, and with healthy carotid bifurcations. Simulations were conducted using segmented computed tomography angiography geometries with inlet boundary conditions extracted from 2D phase contrast MRI scans. The study included carotid bifurcations with CaW (n = 13), mild atherosclerosis (n = 7), and healthy bifurcation geometries (n = 6). Hemodynamic parameters associated with vascular dysfunction and clot formation, including shear rate, oscillatory shear index (OSI), low velocity, and flow stasis were calculated and compared between the subject groups. Patients with CaW had significantly larger regions containing low shear rate, high OSI, low velocity, and flow stasis in comparison to subjects with mild atherosclerosis or normal bifurcations. These abnormal hemodynamic metrics in patients with CaW are associated with clot formation and vascular dysfunction and suggest that hemodynamic assessment may be a tool to assess stroke risk in these patients.
Collapse
Affiliation(s)
- Retta El Sayed
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Carissa J Lucas
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Hannah L Cebull
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Fadi B Nahab
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Jason W Allen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - John N Oshinski
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Maroun A, Scott MB, Catania R, Berhane H, Jarvis K, Allen BD, Barker AJ, Markl M. Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI. J Magn Reson Imaging 2024. [PMID: 38426608 DOI: 10.1002/jmri.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In patients with bicuspid aortic valve (BAV), 4D flow MRI can quantify regions exposed to abnormal aortic hemodynamics, including high wall shear stress (WSS), a known stimulus for arterial wall dysfunction. However, the long-term multiscan reproducibility of 4D flow MRI-derived hemodynamic parameters is unknown. PURPOSE To investigate the long-term stability of 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps in patients with BAV undergoing multiyear surveillance imaging. STUDY TYPE Retrospective. POPULATION 20 BAV patients (mean age 48.4 ± 13.9 years; 14 males) with five 4D flow MRI scans, with intervals of at least 6 months between scans, and 125 controls (mean age: 50.7 ± 15.8 years; 67 males). FIELD STRENGTH/SEQUENCE 1.5 and 3.0T, prospectively ECG and respiratory navigator-gated aortic 4D flow MRI. ASSESSMENT Automated AI-based 4D flow analysis pipelines were used for data preprocessing, aorta 3D segmentation, and quantification of ascending aorta (AAo) peak velocity, peak systolic WSS, and heatmap-derived relative area of elevated WSS compared to WSS ranges in age and sex-matched normative control populations. Growth rate was derived from the maximum AAo diameters measured on the first and fifth MRI scans. STATISTICAL TESTS One-way repeated measures analysis of variance. P < 0.05 indicated significance. RESULTS One hundred 4D flow MRI exams (five per patient) were analyzed. The mean total follow-up duration was 5.5 ± 1.1 years, and the average growth rate was 0.3 ± 0.2 mm/year. Peak velocity, peak systolic WSS, and relative area of elevated WSS did not change significantly over the follow-up period (P = 0.64, P = 0.69, and P = 0.35, respectively). The patterns and areas of elevated WSS demonstrated good reproducibility on semiquantitative assessment. CONCLUSION 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps showed good multiyear and multiscan stability in BAV patients with low aortic growth rates. These findings underscore the reliability of these metrics in monitoring BAV patients for potential risk of dilation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael B Scott
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Jarvis
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Xiong F, Emrich T, Schoepf UJ, Jin N, Hall S, Ruddy JM, Giese D, Lautenschlager C, Emrich AL, Varga-Szemes A. Highly accelerated free-breathing real-time 2D flow imaging using compressed sensing and shared velocity encoding. Eur Radiol 2024; 34:1692-1703. [PMID: 37658887 DOI: 10.1007/s00330-023-10157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES 2D real-time (RT) phase-contrast (PC) MRI is a promising alternative to conventional PC MRI, which overcomes problems due to irregular heartbeats or poor respiratory control. This study aims to evaluate a prototype compressed sensing (CS)-accelerated 2D RT-PC MRI technique with shared velocity encoding (SVE) for accurate beat-to-beat flow measurements. METHODS The CS RT-PC technique was implemented using a single-shot fast RF-spoiled gradient echo with SVE by symmetric velocity encoding, and acquired with a temporal resolution of 51-56.5 ms in 1-5 heartbeats. Both aortic dissection phantom (n = 8) and volunteer (n = 7) studies were conducted using the prototype CS RT (CS, R = 8), the conventional (GRAPPA, R = 2), and the fully sampled PC sequences on a 3T clinical system. Flow parameters including peak velocity, peak flow rate, net flow rate, and maximum velocity were calculated to compare the performance between different methods using linear regression, intraclass correlation (ICC), and Bland-Altman analyses. RESULTS Comparisons of the flow measurements at all locations in the phantoms demonstrated an excellent correlation (all R2 ≥ 0.93) and agreement (all ICC ≥ 0.97) with negligible means of differences. In healthy volunteers, a similarly good correlation (all R2 ≥ 0.80) and agreement (all ICC ≥ 0.90) were observed; however, CS RT slightly underestimated the maximum velocities and flow rates (~ 12%). CONCLUSION The highly accelerated CS RT-PC technique is feasible for the evaluation of flow patterns without requiring breath-holding, and it allows for rapid flow assessment in patients with arrhythmia or poor breath-hold capacity. CLINICAL RELEVANCE STATEMENT The free-breathing real-time flow MRI technique offers improved spatial and temporal resolutions, as well as the ability to image individual cardiac cycles, resulting in superior image quality compared to the conventional PC technique when imaging patients with arrhythmias, especially those with atrial fibrillation. KEY POINTS • The highly accelerated prototype CS RT-PC MRI technique with improved temporal resolution by the concept of SVE is feasible for beat-to-beat flow evaluation without requiring breath-holding. • The results of the phantom and in vivo quantitative flow evaluation show the ability of the prototype CS RT-PC technique to obtain reliable flow measurements similarly to the conventional PC MRI. • With less than 12% underestimation, excellent agreements between the two techniques were shown for the measurements of peak velocities and flow rates.
Collapse
Affiliation(s)
- Fei Xiong
- Siemens Medical Solutions USA Inc, Cardiovascular MR R&D, Chicago, IL, USA
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA.
| | - Ning Jin
- Siemens Medical Solutions USA Inc, Cardiovascular MR R&D, Chicago, IL, USA
| | - SarahRose Hall
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - Carla Lautenschlager
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
| | - Anna Lena Emrich
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Cardiac and Vascular Surgery, University Medical Center Mainz, Mainz, Germany
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
| |
Collapse
|
15
|
Bouaou K, Dietenbeck T, Soulat G, Bargiotas I, Houriez-Gombaud-Saintonge S, De Cesare A, Gencer U, Giron A, Jiménez E, Messas E, Lucor D, Bollache E, Mousseaux E, Kachenoura N. Four-dimensional flow cardiovascular magnetic resonance aortic cross-sectional pressure changes and their associations with flow patterns in health and ascending thoracic aortic aneurysm. J Cardiovasc Magn Reson 2024; 26:101030. [PMID: 38403074 PMCID: PMC10950879 DOI: 10.1016/j.jocmr.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is a silent and threatening dilation of the ascending aorta (AscAo). Maximal aortic diameter which is currently used for ATAA patients management and surgery planning has been shown to inadequately characterize risk of dissection in a large proportion of patients. Our aim was to propose a comprehensive quantitative evaluation of aortic morphology and pressure-flow-wall associations from four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) data in healthy aging and in patients with ATAA. METHODS We studied 17 ATAA patients (64.7 ± 14.3 years, 5 females) along with 17 age- and sex-matched healthy controls (59.7 ± 13.3 years, 5 females) and 13 younger healthy subjects (33.5 ± 11.1 years, 4 females). All subjects underwent a CMR exam, including 4D flow and three-dimensional anatomical images of the aorta. This latter dataset was used for aortic morphology measurements, including AscAo maximal diameter (iDMAX) and volume, indexed to body surface area. 4D flow MRI data were used to estimate 1) cross-sectional local AscAo spatial (∆PS) and temporal (∆PT) pressure changes as well as the distance (∆DPS) and time duration (∆TPT) between local pressure peaks, 2) AscAo maximal wall shear stress (WSSMAX) at peak systole, and 3) AscAo flow vorticity amplitude (VMAX), duration (VFWHM), and eccentricity (VECC). RESULTS Consistency of flow and pressure indices was demonstrated through their significant associations with AscAo iDMAX (WSSMAX:r = -0.49, p < 0.001; VECC:r = -0.29, p = 0.045; VFWHM:r = 0.48, p < 0.001; ∆DPS:r = 0.37, p = 0.010; ∆TPT:r = -0.52, p < 0.001) and indexed volume (WSSMAX:r = -0.63, VECC:r = -0.51, VFWHM:r = 0.53, ∆DPS:r = 0.54, ∆TPT:r = -0.63, p < 0.001 for all). Intra-AscAo cross-sectional pressure difference, ∆PS, was significantly and positively associated with both VMAX (r = 0.55, p = 0.002) and WSSMAX (r = 0.59, p < 0.001) in the 30 healthy subjects (48.3 ± 18.0 years). Associations remained significant after adjustment for iDMAX, age, and systolic blood pressure. Superimposition of ATAA patients to normal aging trends between ∆PS and WSSMAX as well as VMAX allowed identifying patients with substantially high pressure differences concomitant with AscAo dilation. CONCLUSION Local variations in pressures within ascending aortic cross-sections derived from 4D flow MRI were associated with flow changes, as quantified by vorticity, and with stress exerted by blood on the aortic wall, as quantified by wall shear stress. Such flow-wall and pressure interactions might help for the identification of at-risk patients.
Collapse
Affiliation(s)
- Kevin Bouaou
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Thomas Dietenbeck
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Gilles Soulat
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Ioannis Bargiotas
- CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France.
| | | | - Alain De Cesare
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Umit Gencer
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Alain Giron
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Elena Jiménez
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Emmanuel Messas
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Didier Lucor
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France.
| | - Emilie Bollache
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Elie Mousseaux
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| |
Collapse
|
16
|
Henriques J, Amaro AM, Piedade AP. Biomimicking Atherosclerotic Vessels: A Relevant and (Yet) Sub-Explored Topic. Biomimetics (Basel) 2024; 9:135. [PMID: 38534820 DOI: 10.3390/biomimetics9030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Atherosclerosis represents the etiologic source of several cardiovascular events, including myocardial infarction, cerebrovascular accidents, and peripheral artery disease, which remain the leading cause of mortality in the world. Numerous strategies are being delineated to revert the non-optimal projections of the World Health Organization, by both designing new diagnostic and therapeutic approaches or improving the interventional procedures performed by physicians. Deeply understanding the pathological process of atherosclerosis is, therefore, mandatory to accomplish improved results in these trials. Due to their availability, reproducibility, low expensiveness, and rapid production, biomimicking physical models are preferred over animal experimentation because they can overcome some limitations, mainly related to replicability and ethical issues. Their capability to represent any atherosclerotic stage and/or plaque type makes them valuable tools to investigate hemodynamical, pharmacodynamical, and biomechanical behaviors, as well as to optimize imaging systems and, thus, obtain meaningful prospects to improve the efficacy and effectiveness of treatment on a patient-specific basis. However, the broadness of possible applications in which these biomodels can be used is associated with a wide range of tissue-mimicking materials that are selected depending on the final purpose of the model and, consequently, prioritizing some materials' properties over others. This review aims to summarize the progress in fabricating biomimicking atherosclerotic models, mainly focusing on using materials according to the intended application.
Collapse
Affiliation(s)
- Joana Henriques
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Ana M Amaro
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Ana P Piedade
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
17
|
Ebrahimkhani M, Johnson EMI, Sodhi A, Robinson JD, Rigsby CK, Allen BD, Markl M. A Deep Learning Approach to Using Wearable Seismocardiography (SCG) for Diagnosing Aortic Valve Stenosis and Predicting Aortic Hemodynamics Obtained by 4D Flow MRI. Ann Biomed Eng 2023; 51:2802-2811. [PMID: 37573264 DOI: 10.1007/s10439-023-03342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
In this paper, we explored the use of deep learning for the prediction of aortic flow metrics obtained using 4-dimensional (4D) flow magnetic resonance imaging (MRI) using wearable seismocardiography (SCG) devices. 4D flow MRI provides a comprehensive assessment of cardiovascular hemodynamics, but it is costly and time-consuming. We hypothesized that deep learning could be used to identify pathological changes in blood flow, such as elevated peak systolic velocity ([Formula: see text]) in patients with heart valve diseases, from SCG signals. We also investigated the ability of this deep learning technique to differentiate between patients diagnosed with aortic valve stenosis (AS), non-AS patients with a bicuspid aortic valve (BAV), non-AS patients with a mechanical aortic valve (MAV), and healthy subjects with a normal tricuspid aortic valve (TAV). In a study of 77 subjects who underwent same-day 4D flow MRI and SCG, we found that the [Formula: see text] values obtained using deep learning and SCGs were in good agreement with those obtained by 4D flow MRI. Additionally, subjects with non-AS TAV, non-AS BAV, non-AS MAV, and AS could be classified with ROC-AUC (area under the receiver operating characteristic curves) values of 92%, 95%, 81%, and 83%, respectively. This suggests that SCG obtained using low-cost wearable electronics may be used as a supplement to 4D flow MRI exams or as a screening tool for aortic valve disease.
Collapse
Affiliation(s)
- Mahmoud Ebrahimkhani
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan M I Johnson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Aparna Sodhi
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradly D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
18
|
Takahashi Y, Kamiya K, Nagai T, Tsuneta S, Oyama-Manabe N, Hamaya T, Kazui S, Yasui Y, Saiin K, Naito S, Mizuguchi Y, Takenaka S, Tada A, Ishizaka S, Kobayashi Y, Omote K, Sato T, Shingu Y, Kudo K, Wakasa S, Anzai T. Differences in blood flow dynamics between balloon- and self-expandable valves in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J Cardiovasc Magn Reson 2023; 25:60. [PMID: 37880721 PMCID: PMC10601149 DOI: 10.1186/s12968-023-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The differences in pre- and early post-procedural blood flow dynamics between the two major types of bioprosthetic valves, the balloon-expandable valve (BEV) and self-expandable valve (SEV), in patients with aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR), have not been investigated. We aimed to investigate the differences in blood flow dynamics between the BEV and SEV using four-dimensional flow cardiovascular magnetic resonance (4D flow CMR). METHODS We prospectively examined 98 consecutive patients with severe AS who underwent TAVR between May 2018 and November 2021 (58 BEV and 40 SEV) after excluding those without CMR because of a contraindication, inadequate imaging from the analyses, or patients' refusal. CMR was performed in all participants before (median interval, 22 [interquartile range (IQR) 4-39] days) and after (median interval, 6 [IQR 3-6] days) TAVR. We compared the changes in blood flow patterns, wall shear stress (WSS), and energy loss (EL) in the ascending aorta (AAo) between the BEV and SEV using 4D flow CMR. RESULTS The absolute reductions in helical flow and flow eccentricity were significantly higher in the SEV group compared in the BEV group after TAVR (BEV: - 0.22 ± 0.86 vs. SEV: - 0.85 ± 0.80, P < 0.001 and BEV: - 0.11 ± 0.79 vs. SEV: - 0.50 ± 0.88, P = 0.037, respectively); there were no significant differences in vortical flow between the groups. The absolute reduction of average WSS was significantly higher in the SEV group compared to the BEV group after TAVR (BEV: - 0.6 [- 2.1 to 0.5] Pa vs. SEV: - 1.8 [- 3.5 to - 0.8] Pa, P = 0.006). The systolic EL in the AAo significantly decreased after TAVR in both the groups, while the absolute reduction was comparable between the groups. CONCLUSIONS Helical flow, flow eccentricity, and average WSS in the AAo were significantly decreased after SEV implantation compared to BEV implantation, providing functional insights for valve selection in patients with AS undergoing TAVR. Our findings offer valuable insights into blood flow dynamics, aiding in the selection of valves for patients with AS undergoing TAVR. Further larger-scale studies are warranted to confirm the prognostic significance of hemodynamic changes in these patients.
Collapse
Affiliation(s)
- Yuki Takahashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kiwamu Kamiya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-Cho, Omiya-Ku, Saitama-City, Saitama, 330-8503, Japan
| | - Takeshi Hamaya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Sho Kazui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yutaro Yasui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kohei Saiin
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Seiichiro Naito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshifumi Mizuguchi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Sakae Takenaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Atsushi Tada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Suguru Ishizaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuta Kobayashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takuma Sato
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasushige Shingu
- Department of Cardiovascular Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Satoru Wakasa
- Department of Cardiovascular Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
19
|
Wieben O, Roberts GS, Corrado PA, Johnson KM, Roldán-Alzate A. Four-Dimensional Flow MR Imaging: Technique and Advances. Magn Reson Imaging Clin N Am 2023; 31:433-449. [PMID: 37414470 DOI: 10.1016/j.mric.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
4D Flow MRI is an advanced imaging technique for comprehensive non-invasive assessment of the cardiovascular system. The capture of the blood velocity vector field throughout the cardiac cycle enables measures of flow, pulse wave velocity, kinetic energy, wall shear stress, and more. Advances in hardware, MRI data acquisition and reconstruction methodology allow for clinically feasible scan times. The availability of 4D Flow analysis packages allows for more widespread use in research and the clinic and will facilitate much needed multi-center, multi-vendor studies in order to establish consistency across scanner platforms and to enable larger scale studies to demonstrate clinical value.
Collapse
Affiliation(s)
- Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Suite 1127, Madison, WI 53705-2275, USA; Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Suite 1127, Madison, WI 53705-2275, USA.
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705-2275, USA
| | - Philip A Corrado
- Accuray Incorporated, 1414 Raleigh Road, Suite 330, DurhamChapel Hill, NC 27517, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 1133, Madison, WI 53705-2275, USA; Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 1133, Madison, WI 53705-2275, USA
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin-Madison, Room: 3035, 1513 University Avenue, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Wang K, Armour CH, Ma T, Dong Z, Xu XY. Hemodynamic parameters impact the stability of distal stent graft-induced new entry. Sci Rep 2023; 13:12123. [PMID: 37495611 PMCID: PMC10372056 DOI: 10.1038/s41598-023-39130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Stent graft-induced new entry tear (SINE) is a serious complication in aortic dissection patients caused by the stent-graft itself after thoracic endovascular aortic repair (TEVAR). The stability of SINE is a key indicator for the need and timing of reinterventions. This study aimed to understand the role of hemodynamics in SINE stability by means of computational fluid dynamics (CFD) analysis based on patient-specific anatomical information. Four patients treated with TEVAR who developed a distal SINE (dSINE) were included; two patients had a stable dSINE and two patients experienced expansion of the dSINE upon follow-up examinations. CFD simulations were performed on geometries reconstructed from computed tomography scans acquired upon early detection of dSINE in these patients. Computational results showed that stable dSINEs presented larger regions with low time-averaged wall shear stress (TAWSS) and high relative residence time (RRT), and partial thrombosis was observed at subsequent follow-ups. Furthermore, significant systolic antegrade flow was observed in the unstable dSINE which also had a larger retrograde flow fraction (RFF) on the SINE plane. In conclusion, this pilot study suggested that high RRT and low TAWSS may indicate stable dSINE by promoting thrombosis, whereas larger RFF and antegrade flows inside dSINE might be associated with its expansion.
Collapse
Affiliation(s)
- Kaihong Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Chlӧe H Armour
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tao Ma
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
21
|
Ramaekers MJFG, Westenberg JJM, Adriaans BP, Nijssen EC, Wildberger JE, Lamb HJ, Schalla S. A clinician's guide to understanding aortic 4D flow MRI. Insights Imaging 2023; 14:114. [PMID: 37395817 DOI: 10.1186/s13244-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Four-dimensional flow magnetic resonance imaging is an emerging technique which may play a role in diagnosis and risk-stratification of aortic disease. Some knowledge of flow dynamics and related parameters is necessary to understand and apply this technique in clinical workflows. The purpose of the current review is to provide a guide for clinicians to the basics of flow imaging, frequently used flow-related parameters, and their relevance in the context of aortic disease.Clinical relevance statement Understanding normal and abnormal aortic flow could improve clinical care in patients with aortic disease.
Collapse
Affiliation(s)
- Mitch J F G Ramaekers
- Department of Cardiology and Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bouke P Adriaans
- Department of Cardiology and Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Estelle C Nijssen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Simon Schalla
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
22
|
Barrera-Naranjo A, Marin-Castrillon DM, Decourselle T, Lin S, Leclerc S, Morgant MC, Bernard C, De Oliveira S, Boucher A, Presles B, Bouchot O, Christophe JJ, Lalande A. Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets. J Imaging 2023; 9:123. [PMID: 37367471 DOI: 10.3390/jimaging9060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
A thoracic aortic aneurysm is an abnormal dilatation of the aorta that can progress and lead to rupture. The decision to conduct surgery is made by considering the maximum diameter, but it is now well known that this metric alone is not completely reliable. The advent of 4D flow magnetic resonance imaging has allowed for the calculation of new biomarkers for the study of aortic diseases, such as wall shear stress. However, the calculation of these biomarkers requires the precise segmentation of the aorta during all phases of the cardiac cycle. The objective of this work was to compare two different methods for automatically segmenting the thoracic aorta in the systolic phase using 4D flow MRI. The first method is based on a level set framework and uses the velocity field in addition to 3D phase contrast magnetic resonance imaging. The second method is a U-Net-like approach that is only applied to magnitude images from 4D flow MRI. The used dataset was composed of 36 exams from different patients, with ground truth data for the systolic phase of the cardiac cycle. The comparison was performed based on selected metrics, such as the Dice similarity coefficient (DSC) and Hausdorf distance (HD), for the whole aorta and also three aortic regions. Wall shear stress was also assessed and the maximum wall shear stress values were used for comparison. The U-Net-based approach provided statistically better results for the 3D segmentation of the aorta, with a DSC of 0.92 ± 0.02 vs. 0.86 ± 0.5 and an HD of 21.49 ± 24.8 mm vs. 35.79 ± 31.33 mm for the whole aorta. The absolute difference between the wall shear stress and ground truth slightly favored the level set method, but not significantly (0.754 ± 1.07 Pa vs. 0.737 ± 0.79 Pa). The results showed that the deep learning-based method should be considered for the segmentation of all time steps in order to evaluate biomarkers based on 4D flow MRI.
Collapse
Affiliation(s)
| | | | | | - Siyu Lin
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
| | - Sarah Leclerc
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
| | - Marie-Catherine Morgant
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
- Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, 21078 Dijon, France
| | - Chloé Bernard
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
- Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, 21078 Dijon, France
| | | | - Arnaud Boucher
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
| | - Benoit Presles
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
| | - Olivier Bouchot
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
- Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, 21078 Dijon, France
| | | | - Alain Lalande
- IFTIM, ICMUB Laboratory, University of Burgundy, 21078 Dijon, France
- Department of Medical Imaging, University Hospital of Dijon, 21078 Dijon, France
| |
Collapse
|
23
|
Huang A, Roberts GS, Roldán-Alzate A, Wieben O, Reeder SB, Oechtering TH. Reference values for 4D flow magnetic resonance imaging of the portal venous system. Abdom Radiol (NY) 2023; 48:2049-2059. [PMID: 37016247 PMCID: PMC10518803 DOI: 10.1007/s00261-023-03892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE The purpose of this work was to establish normal reference values for 4D flow MRI-derived flow, velocity, and vessel diameters, and to define characteristic flow patterns in the portal venous system of healthy adult subjects. METHODS For this retrospective study, we screened all available 4D flow MRI exams of the upper abdomen in healthy adults acquired at our institution between 2012 and 2022 at either 1.5 T or 3.0 T MRI after ≥ 5 h fasting. Flow, velocity, and effective diameter were quantified in the 8 planes in the portal venous system (splenic vein, superior mesenteric vein, main, right, and left portal veins). Vessel delineation was manually adjusted over time. Reference ranges for were defined as the mean ± 2 standard deviations. Three readers noted helical and vortical flow on time-resolved pathline visualizations. Conservation of mass flow analysis was performed for quality assurance. RESULTS We included 44 healthy subjects (26 female, 18-74 years) in the analysis. We report reference values for mean and peak flow, mean velocity, and vessel diameter in the healthy portal vein using 4D flow MRI. Normal flow patterns in the portal vein included faint helical (66%) or linear flow (34%). Conservation of mass analysis demonstrated a relative error of 1.1 ± 4.6% standard deviation (SD) at the splenomesenteric confluence and - 1.4 ± 4.1% SD at the portal bifurcation. CONCLUSION We have reported normal hemodynamic values that are necessary baseline data for emerging clinical applications of 4D flow MRI in the portal venous system. Results are consistent with previously published values from smaller cohorts.
Collapse
Affiliation(s)
- Andrew Huang
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, WI, USA
| | - Thekla H Oechtering
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany.
| |
Collapse
|
24
|
El Sayed R, Sharifi A, Park CC, Haussen DC, Allen JW, Oshinski JN. Optimization of 4D Flow MRI Spatial and Temporal Resolution for Examining Complex Hemodynamics in the Carotid Artery Bifurcation. Cardiovasc Eng Technol 2023; 14:476-488. [PMID: 37156900 PMCID: PMC10524741 DOI: 10.1007/s13239-023-00667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Three-dimensional, ECG-gated, time-resolved, three-directional, velocity-encoded phase-contrast MRI (4D flow MRI) has been applied extensively to measure blood velocity in great vessels but has been much less used in diseased carotid arteries. Carotid artery webs (CaW) are non-inflammatory intraluminal shelf-like projections into the internal carotid artery (ICA) bulb that are associated with complex flow and cryptogenic stroke. PURPOSE Optimize 4D flow MRI for measuring the velocity field of complex flow in the carotid artery bifurcation model that contains a CaW. METHODS A 3D printed phantom model created from computed tomography angiography (CTA) of a subject with CaW was placed in a pulsatile flow loop within the MRI scanner. 4D Flow MRI images of the phantom were acquired with five different spatial resolutions (0.50-2.00 mm3) and four different temporal resolutions (23-96 ms) and compared to a computational fluid dynamics (CFD) solution of the flow field as a reference. We examined four planes perpendicular to the vessel centerline, one in the common carotid artery (CCA) and three in the internal carotid artery (ICA) where complex flow was expected. At these four planes pixel-by-pixel velocity values, flow, and time average wall shear stress (TAWSS) were compared between 4D flow MRI and CFD. HYPOTHESIS An optimized 4D flow MRI protocol will provide a good correlation with CFD velocity and TAWSS values in areas of complex flow within a clinically feasible scan time (~ 10 min). RESULTS Spatial resolution affected the velocity values, time average flow, and TAWSS measurements. Qualitatively, a spatial resolution of 0.50 mm3 resulted in higher noise, while a lower spatial resolution of 1.50-2.00 mm3 did not adequately resolve the velocity profile. Isotropic spatial resolutions of 0.50-1.00 mm3 showed no significant difference in total flow compared to CFD. Pixel-by-pixel velocity correlation coefficients between 4D flow MRI and CFD were > 0.75 for 0.50-1.00 mm3 but were < 0.5 for 1.50 and 2.00 mm3. Regional TAWSS values determined from 4D flow MRI were generally lower than CFD and decreased at lower spatial resolutions (larger pixel sizes). TAWSS differences between 4D flow and CFD were not statistically significant at spatial resolutions of 0.50-1.00 mm3 but were different at 1.50 and 2.00 mm3. Differences in temporal resolution only affected the flow values when temporal resolution was > 48.4 ms; temporal resolution did not affect TAWSS values. CONCLUSION A spatial resolution of 0.74-1.00 mm3 and a temporal resolution of 23-48 ms (1-2 k-space segments) provides a 4D flow MRI protocol capable of imaging velocity and TAWSS in regions of complex flow within the carotid bifurcation at a clinically acceptable scan time.
Collapse
Affiliation(s)
- Retta El Sayed
- Department of Biomedical Engineering, The Wallace H. Coulter, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Alireza Sharifi
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Charlie C Park
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | | | - Jason W Allen
- Department of Biomedical Engineering, The Wallace H. Coulter, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - John N Oshinski
- Department of Biomedical Engineering, The Wallace H. Coulter, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Radiology & Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
25
|
Schäfer M, Carroll A, Carmody KK, Hunter KS, Barker AJ, Aftab M, Reece TB. Aortic shape variation after frozen elephant trunk procedure predicts aortic events: Principal component analysis study. JTCVS OPEN 2023; 14:26-35. [PMID: 37425456 PMCID: PMC10328758 DOI: 10.1016/j.xjon.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 07/11/2023]
Abstract
Objective The frozen elephant trunk procedure is a well-established technique for the repair of type A ascending aortic dissection and complex aortic arch pathology. The ultimate shape created by the repair may have consequences in long-term complications. The purpose of this study was to apply a machine learning technique to comprehensively describe 3-dimensional aortic shape variations after the frozen elephant trunk procedure and associate these variations with aortic events. Methods Computed tomography angiography acquired before discharge of patients (n = 93) who underwent the frozen elephant trunk procedure for type A ascending aortic dissection or ascending aortic arch aneurysm was preprocessed to yield patient-specific aortic models and centerlines. Aortic centerlines were subjected to principal component analysis to describe principal components and aortic shape modulators. Patient-specific shape scores were correlated with outcomes defined by composite aortic event, including aortic rupture, aortic root dissection or pseudoaneurysm, new type B dissection, new thoracic or thoracoabdominal pathologies, residual descending aortic dissection with residual false lumen flow, or thoracic endovascular aortic repair complications. Results The first 3 principal components accounted for 36.4%, 26.4%, and 11.6% of aortic shape variance, respectively, and cumulatively for 74.5% of the total shape variation in all patients. The first principal component described variation in arch height-to-length ratio, the second principal component described angle at the isthmus, and the third principal component described variation in anterior-to-posterior arch tilt. Twenty-one aortic events (22.6%) were encountered. The degree of aortic angle at the isthmus described by the second principal component was associated with aortic events in logistic regression (hazard ratio, 0.98; 95% confidence interval, 0.97-0.99; P = .046). Conclusions The second principal component, describing angulation at the region of the aortic isthmus, was associated with adverse aortic events. Observed shape variation should be evaluated in the context of aortic biomechanical properties and flow hemodynamics.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| | - Adam Carroll
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| | - Kody K. Carmody
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| | - Kendall S. Hunter
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| | - Alex J. Barker
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
- Department of Radiology, Children's Hospital Colorado, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| | - T. Brett Reece
- Division of Cardiothoracic Surgery, University of Colorado Denver Anschutz Medical Campus, Denver, Colo
| |
Collapse
|
26
|
Oechtering TH, Nowak A, Sieren MM, Stroth AM, Kirschke N, Wegner F, Balks M, König IR, Jin N, Graessner J, Kooijman-Kurfuerst H, Hennemuth A, Barkhausen J, Frydrychowicz A. Repeatability and reproducibility of various 4D Flow MRI postprocessing software programs in a multi-software and multi-vendor cross-over comparison study. J Cardiovasc Magn Reson 2023; 25:22. [PMID: 36978131 PMCID: PMC10052852 DOI: 10.1186/s12968-023-00921-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Different software programs are available for the evaluation of 4D Flow cardiovascular magnetic resonance (CMR). A good agreement of the results between programs is a prerequisite for the acceptance of the method. Therefore, the goal was to compare quantitative results from a cross-over comparison in individuals examined on two scanners of different vendors analyzed with four postprocessing software packages. METHODS Eight healthy subjects (27 ± 3 years, 3 women) were each examined on two 3T CMR systems (Ingenia, Philips Healthcare; MAGNETOM Skyra, Siemens Healthineers) with a standardized 4D Flow CMR sequence. Six manually placed aortic contours were evaluated with Caas (Pie Medical Imaging, SW-A), cvi42 (Circle Cardiovascular Imaging, SW-B), GTFlow (GyroTools, SW-C), and MevisFlow (Fraunhofer Institute MEVIS, SW-D) to analyze seven clinically used parameters including stroke volume, peak flow, peak velocity, and area as well as typically scientifically used wall shear stress values. Statistical analysis of inter- and intrareader variability, inter-software and inter-scanner comparison included calculation of absolute and relative error (ER), intraclass correlation coefficient (ICC), Bland-Altman analysis, and equivalence testing based on the assumption that inter-software differences needed to be within 80% of the range of intrareader differences. RESULTS SW-A and SW-C were the only software programs showing agreement for stroke volume (ICC = 0.96; ER = 3 ± 8%), peak flow (ICC: 0.97; ER = -1 ± 7%), and area (ICC = 0.81; ER = 2 ± 22%). Results from SW-A/D and SW-C/D were equivalent only for area and peak flow. Other software pairs did not yield equivalent results for routinely used clinical parameters. Especially peak maximum velocity yielded poor agreement (ICC ≤ 0.4) between all software packages except SW-A/D that showed good agreement (ICC = 0.80). Inter- and intrareader consistency for clinically used parameters was best for SW-A and SW-D (ICC = 0.56-97) and worst for SW-B (ICC = -0.01-0.71). Of note, inter-scanner differences per individual tended to be smaller than inter-software differences. CONCLUSIONS Of all tested software programs, only SW-A and SW-C can be used equivalently for determination of stroke volume, peak flow, and vessel area. Irrespective of the applied software and scanner, high intra- and interreader variability for all parameters have to be taken into account before introducing 4D Flow CMR in clinical routine. Especially in multicenter clinical trials a single image evaluation software should be applied.
Collapse
Affiliation(s)
- Thekla H Oechtering
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany.
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - André Nowak
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Malte M Sieren
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Andreas M Stroth
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Nicolas Kirschke
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Franz Wegner
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Maren Balks
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, Universität zu Lübeck, Lübeck, Germany
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Cleveland, OH, USA
| | | | | | - Anja Hennemuth
- Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Amrumer Str. 32, 13353, Berlin, Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Nguyen KD, Bonner BP, Foster AN, Sadighi M, Nguyen CT. Asynchronous magnetic resonance elastography: Shear wave speed reconstruction using noise correlation of incoherent waves. Magn Reson Med 2023; 89:990-1001. [PMID: 36300861 PMCID: PMC9792433 DOI: 10.1002/mrm.29502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The noninvasive measurement of biological tissue elasticity is an evolving technology that enables the robust characterization of soft tissue mechanics for a wide array of biomedical engineering and clinical applications. We propose, design, and implement here a new MRI technique termed asynchronous magnetic resonance elastography (aMRE) that pushes the measurement technology toward a driverless implementation. This technique can be added to clinical MRI scanners without any additional specialized hardware. THEORY Asynchronous MRE is founded on the theory of diffuse wavefields and noise correlation previously developed in ultrasound to reconstruct shear wave speeds using seemingly incoherent wavefields. Unlike conventional elastography methods that solve an inverse problem, aMRE directly reconstructs a pixel-wise mapping of wave speed using the spatial-temporal statistics of the measured wavefield. METHODS Incoherent finger tapping served as the wave-generating source for all aMRE measurements. Asynchronous MRE was performed on a phantom using a Siemens Prismafit as an experimental validation of the theory. It was further performed on thigh muscles as a proof-of-concept implementation of in vivo imaging using a Siemens Skyra scanner. RESULTS Numerical and phantom experiments show an accurate reconstruction of wave speeds from seemingly noisy wavefields. The proof-of-concept thigh experiments also show that the aMRE protocol can reconstruct a pixel-wise mapping of wave speeds. CONCLUSION Asynchronous MRE is shown to accurately reconstruct shear wave speeds in phantom experiments and remains at the proof-of-concept stage for in vivo imaging. After further validation and improvements, it has the potential to lower both the technical and monetary barriers of entry to measuring tissue elasticity.
Collapse
Affiliation(s)
- Khoi D. Nguyen
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Benjamin P. Bonner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Anna N. Foster
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Mehdi Sadighi
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Christopher T. Nguyen
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,Department of Diagnostic Radiology Imaging, Imaging Institute, Cleveland Clinic, Cleveland, OH,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,Corresponding author.
| |
Collapse
|
28
|
Franco P, Ma L, Schnell S, Carrillo H, Montalba C, Markl M, Bertoglio C, Uribe S. Comparison of Improved Unidirectional Dual Velocity-Encoding MRI Methods. J Magn Reson Imaging 2023; 57:763-773. [PMID: 35716109 DOI: 10.1002/jmri.28305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND In phase-contrast (PC) MRI, several dual velocity encoding methods have been proposed to robustly increase velocity-to-noise ratio (VNR), including a standard dual-VENC (SDV), an optimal dual-VENC (ODV), and bi- and triconditional methods. PURPOSE To develop a correction method for the ODV approach and to perform a comparison between methods. STUDY TYPE Case-control study. POPULATION Twenty-six volunteers. FIELD STRENGTH/SEQUENCE 1.5 T phase-contrast MRI with VENCs of 50, 75, and 150 cm/second. ASSESSMENT Since we acquired single-VENC protocols, we used the background phase from high-VENC (VENCH ) to reconstruct the low-VENC (VENCL ) phase. We implemented and compared the unwrapping methods for different noise levels and also developed a correction of the ODV method. STATISTICAL TESTS Shapiro-Wilk's normality test, two-way analysis of variance with homogeneity of variances was performed using Levene's test, and the significance level was adjusted by Tukey's multiple post hoc analysis with Bonferroni (P < 0.05). RESULTS Statistical analysis revealed no extreme outliers, normally distributed residuals, and homogeneous variances. We found statistically significant interaction between noise levels and the unwrapping methods. This implies that the number of non-unwrapped pixels increased with the noise level. We found that for β = VENCL /VENCH = 1/2, unwrapping methods were more robust to noise. The post hoc test showed a significant difference between the ODV corrected and the other methods, offering the best results regarding the number of unwrapped pixels. DATA CONCLUSIONS All methods performed similarly without noise, but the ODV corrected method was more robust to noise at the price of a higher computational time. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Pamela Franco
- Biomedical Imaging Center, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Electrical Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.,Instituto Milenio Intelligent Healthcare Engineering, Santiago, Chile
| | - Liliana Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Susanne Schnell
- Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Hugo Carrillo
- Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Inria Chile Research Center, Santiago, Chile
| | - Cristian Montalba
- Biomedical Imaging Center, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.,Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | | | - Sergio Uribe
- Biomedical Imaging Center, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.,Instituto Milenio Intelligent Healthcare Engineering, Santiago, Chile.,Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Jonnagiri R, Sundström E, Gutmark E, Anderson S, Pednekar AS, Taylor MD, Tretter JT, Gutmark-Little I. Influence of aortic valve morphology on vortical structures and wall shear stress. Med Biol Eng Comput 2023; 61:1489-1506. [PMID: 36763231 DOI: 10.1007/s11517-023-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
The aim of this paper is to assess the association between valve morphology and vortical structures quantitatively and to highlight the influence of valve morphology/orientation on aorta's susceptibility to shear stress, both proximal and distal. Four-dimensional phase-contrast magnetic resonance imaging (4D PCMRI) data of 6 subjects, 3 with tricuspid aortic valve (TAV) and 3 with functionally bicuspid aortic values (BAV) with right-left coronary leaflet fusion, were processed and analyzed for vorticity and wall shear stress trends. Computational fluid dynamics (CFD) has been used with moving TAV and BAV valve designs in patient-specific aortae to compare with in vivo shear stress data. Vorticity from 4D PCMRI data about the aortic centerline demonstrated that TAVs had a higher number of vortical flow structures than BAVs at peak systole. Coalescing of flow structures was shown to be possible in the arch region of all subjects. Wall shear stress (WSS) distribution from CFD results at the aortic root is predominantly symmetric for TAVs but highly asymmetric for BAVs with the region opposite the raphe (fusion location of underdeveloped leaflets) being subjected to higher WSS. Asymmetry in the size and number of leaflets in BAVs and TAVs significantly influence vortical structures and WSS in the proximal aorta for all valve types and distal aorta for certain valve orientations of BAV. Analysis of vortical structures using 4D PCMRI data (on the left side) and wall shear stress data using CFD (on the right side).
Collapse
Affiliation(s)
- Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Elias Sundström
- Department of Engineering Mechanics, Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Shae Anderson
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amol S Pednekar
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Iris Gutmark-Little
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
30
|
Hurd ER, Han M, Mendes JK, Hadley JR, Johnson CR, DiBella EVR, Oshinski JN, Timmins LH. Comparison of Prospective and Retrospective Gated 4D Flow Cardiac MR Image Acquisitions in the Carotid Bifurcation. Cardiovasc Eng Technol 2023; 14:1-12. [PMID: 35618870 DOI: 10.1007/s13239-022-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques. METHODS Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions. RESULTS Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components ([Formula: see text], [Formula: see text], [Formula: see text]) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; [Formula: see text] < 0.05). CONCLUSION Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.
Collapse
Affiliation(s)
- Elliott R Hurd
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
| | - Mengjiao Han
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Jason K Mendes
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - J Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chris R Johnson
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Edward V R DiBella
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - John N Oshinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA.
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
31
|
Hurd ER, Iffrig E, Jiang D, Oshinski JN, Timmins LH. Flow-based method demonstrates improved accuracy for calculating wall shear stress in arterial flows from 4D flow MRI data. J Biomech 2023; 146:111413. [PMID: 36535100 PMCID: PMC9845191 DOI: 10.1016/j.jbiomech.2022.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Four-dimensional flow magnetic resonance imaging (i.e., 4D flow MRI) has become a valuable tool for the in vivo assessment of blood flow within large vessels and cardiac chambers. As wall shear stress (WSS) has been correlated with the development and progression of cardiovascular disease, focus has been directed at developing techniques to quantify WSS directly from 4D flow MRI data. The goal of this study was to compare the accuracy of two such techniques - termed the velocity and flow-based methods - in the setting of simplified and complex flow scenarios. Synthetic MR data were created from exact solutions to the Navier-Stokes equations for the steady and pulsatile flow of an incompressible, Newtonian fluid through a rigid cylinder. In addition, synthetic MR data were created from the predicted velocity fields derived from a fluid-structure interaction (FSI) model of pulsatile flow through a thick-walled, multi-layered model of the carotid bifurcation. Compared to the analytical solutions for steady and pulsatile flow, the flow-based method demonstrated greater accuracy than the velocity-based method in calculating WSS across all changes in fluid velocity/flow rate, tube radius, and image signal-to-noise (p < 0.001). Furthermore, the velocity-based method was more sensitive to boundary segmentation than the flow-based method. When compared to results from the FSI model, the flow-based method demonstrated greater accuracy than the velocity-based method with average differences in time-averaged WSS of 0.31 ± 1.03 Pa and 0.45 ± 1.03 Pa, respectively (p <0.005). These results have implications on the utility, accuracy, and clinical translational of methods to determine WSS from 4D flow MRI.
Collapse
Affiliation(s)
- Elliott R Hurd
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth Iffrig
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David Jiang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Zhang K, Xu H, Li K. Molecular Imaging for Early-Stage Disease Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:39-58. [PMID: 37460726 DOI: 10.1007/978-981-32-9902-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
With the development of cellular biology, molecular biology, and other subjects, targeted molecular probe was combined with medical imaging technologies to launch a new scientific discipline of molecular imaging that is a research discipline to visualize, characterize, and analyze biological process at the cellular and molecular levels for real-time tracking and precision therapy, also termed as the medical imaging in the twenty-first century. An array of imaging techniques has been developed to image specific targets of living cells or tissues by molecular probes, including optical molecular imaging (OI), magnetic resonance molecular imaging, ultrasound (US) molecular imaging, nuclear medicine molecular imaging, X-ray molecular imaging, and multi-mode molecular imaging. These imaging techniques make the early diagnosis of various diseases possible by means of visualization of gene expression, interactions between proteins, signal transduction, cell metabolism, cell traces, and other physiological or pathological processes in the living system, which bridge the gap between molecular biology and clinical medicine. This chapter will lay the emphasis on the early-stage diagnosis of fatal diseases, such as malignant tumors, cardio- or cerebrovascular diseases, digestive system disease, central nervous system disease, and other diseases employing molecular imaging in a real-time visualized manner.
Collapse
Affiliation(s)
- Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Haiyan Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Kai Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
33
|
Peper ES, van Ooij P, Jung B, Huber A, Gräni C, Bastiaansen JAM. Advances in machine learning applications for cardiovascular 4D flow MRI. Front Cardiovasc Med 2022; 9:1052068. [PMID: 36568555 PMCID: PMC9780299 DOI: 10.3389/fcvm.2022.1052068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Four-dimensional flow magnetic resonance imaging (MRI) has evolved as a non-invasive imaging technique to visualize and quantify blood flow in the heart and vessels. Hemodynamic parameters derived from 4D flow MRI, such as net flow and peak velocities, but also kinetic energy, turbulent kinetic energy, viscous energy loss, and wall shear stress have shown to be of diagnostic relevance for cardiovascular diseases. 4D flow MRI, however, has several limitations. Its long acquisition times and its limited spatio-temporal resolutions lead to inaccuracies in velocity measurements in small and low-flow vessels and near the vessel wall. Additionally, 4D flow MRI requires long post-processing times, since inaccuracies due to the measurement process need to be corrected for and parameter quantification requires 2D and 3D contour drawing. Several machine learning (ML) techniques have been proposed to overcome these limitations. Existing scan acceleration methods have been extended using ML for image reconstruction and ML based super-resolution methods have been used to assimilate high-resolution computational fluid dynamic simulations and 4D flow MRI, which leads to more realistic velocity results. ML efforts have also focused on the automation of other post-processing steps, by learning phase corrections and anti-aliasing. To automate contour drawing and 3D segmentation, networks such as the U-Net have been widely applied. This review summarizes the latest ML advances in 4D flow MRI with a focus on technical aspects and applications. It is divided into the current status of fast and accurate 4D flow MRI data generation, ML based post-processing tools for phase correction and vessel delineation and the statistical evaluation of blood flow.
Collapse
Affiliation(s)
- Eva S. Peper
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland,*Correspondence: Eva S. Peper,
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands,Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bernd Jung
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Adrian Huber
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jessica A. M. Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
34
|
Kissas G, Hwuang E, Thompson EW, Schwartz N, Detre JA, Witschey WR, Perdikaris P. Feasibility of Vascular Parameter Estimation for Assessing Hypertensive Pregnancy Disorders. J Biomech Eng 2022; 144:121011. [PMID: 36128759 PMCID: PMC9836050 DOI: 10.1115/1.4055679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Indexed: 01/19/2023]
Abstract
Hypertensive pregnancy disorders (HPDs), such as pre-eclampsia, are leading sources of both maternal and fetal morbidity in pregnancy. Noninvasive imaging, such as ultrasound (US) and magnetic resonance imaging (MRI), is an important tool for predicting and monitoring these high risk pregnancies. While imaging can measure hemodynamic parameters, such as uterine artery pulsatility and resistivity indices (PI and RI), the interpretation of such metrics for disease assessment relies on ad hoc standards, which provide limited insight to the physical mechanisms underlying the emergence of hypertensive pregnancy disorders. To provide meaningful interpretation of measured hemodynamic data in patients, advances in computational fluid dynamics can be brought to bear. In this work, we develop a patient-specific computational framework that combines Bayesian inference with a reduced-order fluid dynamics model to infer parameters, such as vascular resistance, compliance, and vessel cross-sectional area, known to be related to the development of hypertension. The proposed framework enables the prediction of hemodynamic quantities of interest, such as pressure and velocity, directly from sparse and noisy MRI measurements. We illustrate the effectiveness of this approach in two systemic arterial network geometries: an aorta with branching carotid artery and a maternal pelvic arterial network. For both cases, the model can reconstruct the provided measurements and infer parameters of interest. In the case of the maternal pelvic arteries, the model can make a distinction between the pregnancies destined to develop hypertension and those that remain normotensive, expressed through the value range of the predicted absolute pressure.
Collapse
Affiliation(s)
- Georgios Kissas
- Department of Mechanical Engineering Applied Mechanics,
University of Pennsylvania, Philadelphia, PA
19104
| | - Eileen Hwuang
- Department of Bioengineering, University of
Pennsylvania, Philadelphia, PA 19104
| | | | - Nadav Schwartz
- Maternal Fetal Medicine, Department of Obstetrics and
Gynecology, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA 19104
| | - John A. Detre
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
19104; Department of Neurology, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA
19104
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
19104
| | - Paris Perdikaris
- Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, PA
19104
| |
Collapse
|
35
|
Zhang J, Rothenberger SM, Brindise MC, Markl M, Rayz VL, Vlachos PP. Wall Shear Stress Estimation for 4D Flow MRI Using Navier-Stokes Equation Correction. Ann Biomed Eng 2022; 50:1810-1825. [PMID: 35943617 PMCID: PMC10263099 DOI: 10.1007/s10439-022-02993-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
This study introduces a novel wall shear stress (WSS) estimation method for 4D flow MRI. The method improves the WSS accuracy by using the reconstructed pressure gradient and the flow-physics constraints to correct velocity gradient estimation. The method was tested on synthetic 4D flow data of analytical Womersley flow and flow in cerebral aneurysms and applied to in vivo 4D flow data acquired in cerebral aneurysms and aortas. The proposed method's performance was compared to the state-of-the-art method based on smooth-spline fitting of velocity profile and the WSS calculated from uncorrected velocity gradient. The proposed method improved the WSS accuracy by as much as 100% for the Womersley flow and reduced the underestimation of mean WSS by 39 to 50% for the synthetic aneurysmal flow. The predicted mean WSS from the in vivo aneurysmal data using the proposed method was 31 to 50% higher than the other methods. The predicted aortic WSS using the proposed method was 3 to 6 times higher than the other methods and was consistent with previous CFD studies and the results from recently developed methods that take into account the limited spatial resolution of 4D flow MRI. The proposed method improves the accuracy of WSS estimation from 4D flow MRI, which can help predict blood vessel remodeling and progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean M Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Melissa C Brindise
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael Markl
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vitaliy L Rayz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
36
|
Richards CE, Parker AE, Alfuhied A, McCann GP, Singh A. The role of 4-dimensional flow in the assessment of bicuspid aortic valve and its valvulo-aortopathies. Br J Radiol 2022; 95:20220123. [PMID: 35852109 PMCID: PMC9793489 DOI: 10.1259/bjr.20220123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bicuspid aortic valve is the most common congenital cardiac malformation and the leading cause of aortopathy and aortic stenosis in younger patients. Aortic wall remodelling secondary to altered haemodynamic flow patterns, changes in peak velocity, and wall shear stress may be implicated in the development of aortopathy in the presence of bicuspid aortic valve and dysfunction. Assessment of these parameters as potential predictors of disease severity and progression is thus desirable. The anatomic and functional information acquired from 4D flow MRI can allow simultaneous visualisation and quantification of the pathological geometric and haemodynamic changes of the aorta. We review the current clinical utility of haemodynamic quantities including velocity, wall sheer stress and energy losses, as well as visual descriptors such as vorticity and helicity, and flow direction in assessing the aortic valve and associated aortopathies.
Collapse
Affiliation(s)
- Caryl Elizabeth Richards
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alex E Parker
- Leicester Medical School, University of Leicester, Leicester, UK
| | - Aseel Alfuhied
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anvesha Singh
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
37
|
Rabineau J, Issertine M, Hoffmann F, Gerlach D, Caiani EG, Haut B, van de Borne P, Tank J, Migeotte PF. Cardiovascular deconditioning and impact of artificial gravity during 60-day head-down bed rest—Insights from 4D flow cardiac MRI. Front Physiol 2022; 13:944587. [PMID: 36277205 PMCID: PMC9586290 DOI: 10.3389/fphys.2022.944587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Microgravity has deleterious effects on the cardiovascular system. We evaluated some parameters of blood flow and vascular stiffness during 60 days of simulated microgravity in head-down tilt (HDT) bed rest. We also tested the hypothesis that daily exposure to 30 min of artificial gravity (1 g) would mitigate these adaptations. 24 healthy subjects (8 women) were evenly distributed in three groups: continuous artificial gravity, intermittent artificial gravity, or control. 4D flow cardiac MRI was acquired in horizontal position before (−9 days), during (5, 21, and 56 days), and after (+4 days) the HDT period. The false discovery rate was set at 0.05. The results are presented as median (first quartile; third quartile). No group or group × time differences were observed so the groups were combined. At the end of the HDT phase, we reported a decrease in the stroke volume allocated to the lower body (−30% [−35%; −22%]) and the upper body (−20% [−30%; +11%]), but in different proportions, reflected by an increased share of blood flow towards the upper body. The aortic pulse wave velocity increased (+16% [+9%; +25%]), and so did other markers of arterial stiffness (CAVI; CAVI0). In males, the time-averaged wall shear stress decreased (−13% [−17%; −5%]) and the relative residence time increased (+14% [+5%; +21%]), while these changes were not observed among females. Most of these parameters tended to or returned to baseline after 4 days of recovery. The effects of the artificial gravity countermeasure were not visible. We recommend increasing the load factor, the time of exposure, or combining it with physical exercise. The changes in blood flow confirmed the different adaptations occurring in the upper and lower body, with a larger share of blood volume dedicated to the upper body during (simulated) microgravity. The aorta appeared stiffer during the HDT phase, however all the changes remained subclinical and probably the sole consequence of reversible functional changes caused by reduced blood flow. Interestingly, some wall shear stress markers were more stable in females than in males. No permanent cardiovascular adaptations following 60 days of HDT bed rest were observed.
Collapse
Affiliation(s)
- Jeremy Rabineau
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Jeremy Rabineau,
| | - Margot Issertine
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Darius Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Enrico G. Caiani
- Electronic, Information and Biomedical Engineering Department, Politecnico di Milano, Milan, Italy
| | - Benoit Haut
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | |
Collapse
|
38
|
Park J, Kim J, Hyun S, Lee J. Hemodynamics in a three-dimensional printed aortic model: a comparison of four-dimensional phase-contrast magnetic resonance and image-based computational fluid dynamics. MAGMA (NEW YORK, N.Y.) 2022; 35:719-732. [PMID: 35133539 DOI: 10.1007/s10334-021-00984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This study aims to compare an electrocardiogram (ECG)-gated four-dimensional (4D) phase-contrast (PC) magnetic resonance imaging (MRI) technique and computational fluid dynamics (CFD) using variables controlled in a laboratory environment to minimize bias factors. MATERIALS AND METHODS Data from 4D PC-MRI were compared with computational fluid dynamics using steady and pulsatile flows at various inlet velocities. Anatomically realistic models for a normal aorta, a penetrating atherosclerotic ulcer, and an abdominal aortic aneurysm were constructed using a three-dimensional printer. RESULTS For the normal aorta model, the errors in the peak and the average velocities were within 5%. The peak velocities of the penetrating atherosclerotic ulcer and the abdominal aortic aneurysm models displayed a more extensive range of differences because of the high-speed and vortical fluid flows generated by the shape of the blood vessel. However, the average velocities revealed only relatively minor differences. CONCLUSIONS This study compared the characteristics of PC-MRI and CFD through a phantom study that only included controllable experimental parameters. Based on these results, 4D PC-MRI and CFD are powerful tools for analyzing blood flow patterns in vivo. However, there is room for future developments to improve velocity measurement accuracy.
Collapse
Affiliation(s)
- Jieun Park
- Nonlinear Dynamics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Junghun Kim
- Bio-Medical Research Institute, Kyungpook National University and Hospital, Daegu, Korea.
| | - Sinjae Hyun
- Department of Biomedical Engineering, Mercer University, Macon, GA, 31207, USA
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University and Hospital, 50, Sam-Duk 2 Ga, Jung Gu, Daegu, 700-721, Republic of Korea.
| |
Collapse
|
39
|
Cherry M, Khatir Z, Khan A, Bissell M. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta. Sci Rep 2022; 12:15128. [PMID: 36068322 PMCID: PMC9448751 DOI: 10.1038/s41598-022-19347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging technologies as it allows for accurate imaging of blood vessels. 4-Dimensional Flow Magnetic Resonance Imaging (4D-Flow MRI) is built on conventional MRI, and provides flow data in the three vector directions and a time resolved magnitude data set. As such it can be used to retrospectively calculate haemodynamic parameters of interest, such as Wall Shear Stress (WSS). However, multiple studies have indicated that a significant limitation of the imaging technique is the spatiotemporal resolution that is currently available. Recent advances have proposed and successfully integrated 4D-Flow MRI imaging techniques with Computational Fluid Dynamics (CFD) to produce patient-specific simulations that have the potential to aid in treatments,surgical decision making, and risk stratification. However, the consequences of using insufficient 4D-Flow MRI spatial resolutions on any patient-specific CFD simulations is currently unclear, despite being a recognised limitation. The research presented in this study aims to quantify the inaccuracies in patient-specific 4D-Flow MRI based CFD simulations that can be attributed to insufficient spatial resolutions when acquiring 4D-Flow MRI data. For this research, a patient has undergone four 4D-Flow MRI scans acquired at various isotropic spatial resolutions and patient-specific CFD simulations have subsequently been run using geometry and velocity data produced from each scan. It was found that compared to CFD simulations based on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm, using a spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4\,{\text {mm}} \times 4\,{\text {mm}} \times 4\,{\text {mm}}$$\end{document}4mm×4mm×4mm substantially underestimated the maximum velocity magnitude at peak systole by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$110.55\%$$\end{document}110.55%. The impacts of 4D-Flow MRI spatial resolution on WSS calculated from CFD simulations have been investigated and it has been shown that WSS is underestimated in CFD simulations that are based on a coarse 4D-Flow MRI spatial resolution. The authors have concluded that a minimum 4D-Flow MRI spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm must be used when acquiring 4D-Flow MRI data to perform patient-specific CFD simulations. A coarser spatial resolution will produce substantial differences within the flow field and geometry.
Collapse
Affiliation(s)
- Molly Cherry
- CDT in Fluid Dynamics, School of Computing, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zinedine Khatir
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, B4 7XG, UK.,School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amirul Khan
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
40
|
Garrido-Oliver J, Aviles J, Córdova MM, Dux-Santoy L, Ruiz-Muñoz A, Teixido-Tura G, Maso Talou GD, Morales Ferez X, Jiménez G, Evangelista A, Ferreira-González I, Rodriguez-Palomares J, Camara O, Guala A. Machine learning for the automatic assessment of aortic rotational flow and wall shear stress from 4D flow cardiac magnetic resonance imaging. Eur Radiol 2022; 32:7117-7127. [PMID: 35976395 DOI: 10.1007/s00330-022-09068-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Three-dimensional (3D) time-resolved phase-contrast cardiac magnetic resonance (4D flow CMR) allows for unparalleled quantification of blood velocity. Despite established potential in aortic diseases, the analysis is time-consuming and requires expert knowledge, hindering clinical application. The present research aimed to develop and test a fully automatic machine learning-based pipeline for aortic 4D flow CMR analysis. METHODS Four hundred and four subjects were prospectively included. Ground-truth to train the algorithms was generated by experts. The cohort was divided into training (323 patients) and testing (81) sets and used to train and test a 3D nnU-Net for segmentation and a Deep Q-Network algorithm for landmark detection. In-plane (IRF) and through-plane (SFRR) rotational flow descriptors and axial and circumferential wall shear stress (WSS) were computed at ten planes covering the ascending aorta and arch. RESULTS Automatic aortic segmentation resulted in a median Dice score (DS) of 0.949 and average symmetric surface distance of 0.839 (0.632-1.071) mm, comparable with the state of the art. Aortic landmarks were located with a precision comparable with experts in the sinotubular junction and first and third supra-aortic vessels (p = 0.513, 0.592 and 0.905, respectively) but with lower precision in the pulmonary bifurcation (p = 0.028), resulting in precise localisation of analysis planes. Automatic flow assessment showed excellent (ICC > 0.9) agreement with manual quantification of SFRR and good-to-excellent agreement (ICC > 0.75) in the measurement of IRF and axial and circumferential WSS. CONCLUSION Fully automatic analysis of complex aortic flow dynamics from 4D flow CMR is feasible. Its implementation could foster the clinical use of 4D flow CMR. KEY POINTS • 4D flow CMR allows for unparalleled aortic blood flow analysis but requires aortic segmentation and anatomical landmark identification, which are time-consuming, limiting 4D flow CMR widespread use. • A fully automatic machine learning pipeline for aortic 4D flow CMR analysis was trained with data of 323 patients and tested in 81 patients, ensuring a balanced distribution of aneurysm aetiologies. • Automatic assessment of complex flow characteristics such as rotational flow and wall shear stress showed good-to-excellent agreement with manual quantification.
Collapse
Affiliation(s)
| | - Jordina Aviles
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marcos Mejía Córdova
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Gisela Teixido-Tura
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Xabier Morales Ferez
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Guillermo Jiménez
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Arturo Evangelista
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Ferreira-González
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-ESP, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Jose Rodriguez-Palomares
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Oscar Camara
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andrea Guala
- Vall d'Hebron Institute of Research, Barcelona, Spain.
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Shit S, Zimmermann J, Ezhov I, Paetzold JC, Sanches AF, Pirkl C, Menze BH. SRflow: Deep learning based super-resolution of 4D-flow MRI data. Front Artif Intell 2022; 5:928181. [PMID: 36034591 PMCID: PMC9411720 DOI: 10.3389/frai.2022.928181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve in vivo 4D-flow MRI data at a post-processing level. We propose a deep convolutional neural network (CNN) that learns the inter-scale relationship of the velocity vector map and leverages an efficient residual learning scheme to make it computationally feasible. A novel, direction-sensitive, and robust loss function is crucial to learning vector-field data. We present a detailed comparative study between the proposed super-resolution and the conventional cubic B-spline based vector-field super-resolution. Our method improves the peak-velocity to noise ratio of the flow field by 10 and 30% for in vivo cardiovascular and cerebrovascular data, respectively, for 4 × super-resolution over the state-of-the-art cubic B-spline. Significantly, our method offers 10x faster inference over the cubic B-spline. The proposed approach for super-resolution of 4D-flow data would potentially improve the subsequent calculation of hemodynamic quantities.
Collapse
Affiliation(s)
- Suprosanna Shit
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Suprosanna Shit
| | - Judith Zimmermann
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University of Munich, Munich, Germany
| | | | - Augusto F. Sanches
- Institute of Neuroradiology, University Hospital LMU Munich, Munich, Germany
| | - Carolin Pirkl
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Bjoern H. Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Rothenberger SM, Zhang J, Brindise MC, Schnell S, Markl M, Vlachos PP, Rayz VL. Modeling Bias Error in 4D Flow MRI Velocity Measurements. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1802-1812. [PMID: 35130153 PMCID: PMC9247036 DOI: 10.1109/tmi.2022.3149421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a model to estimate the bias error of 4D flow magnetic resonance imaging (MRI) velocity measurements. The local instantaneous bias error is defined as the difference between the expectation of the voxel's measured velocity and actual velocity at the voxel center. The model accounts for bias error introduced by the intra-voxel velocity distribution and partial volume (PV) effects. We assess the intra-voxel velocity distribution using a 3D Taylor Series expansion. PV effects and numerical errors are considered using a Richardson extrapolation. The model is applied to synthetic Womersley flow and in vitro and in vivo 4D flow MRI measurements in a cerebral aneurysm. The bias error model is valid for measurements with at least 3.75 voxels across the vessel diameter and signal-to-noise ratio greater than 5. All test cases exceeded this diameter to voxel size ratio with diameters, isotropic voxel sizes, and velocity ranging from 3-15mm, 0.5-1mm, and 0-60cm/s, respectively. The model accurately estimates the bias error in voxels not affected by PV effects. In PV voxels, the bias error is an order of magnitude higher, and the accuracy of the bias error estimation in PV voxels ranges from 67.3% to 108% relative to the actual bias error. The bias error estimated for in vivo measurements increased two-fold at systole compared to diastole in partial volume and non-partial volume voxels, suggesting the bias error varies over the cardiac cycle. This bias error model quantifies 4D flow MRI measurement accuracy and can help plan 4D flow MRI scans.
Collapse
|
43
|
Fu M, Peng F, Zhang M, Chen S, Niu H, He X, Xu B, Liu A, Li R. Aneurysmal wall enhancement and hemodynamics: pixel-level correlation between spatial distribution. Quant Imaging Med Surg 2022; 12:3692-3704. [PMID: 35782262 PMCID: PMC9246729 DOI: 10.21037/qims-21-1203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/29/2022] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inflammation and hemodynamics are interrelated risk factors for intracranial aneurysm rupture. This study aimed to identify the relationship between these risk factors from an individual-patient perspective using biomarkers of aneurysm wall enhancement (AWE) derived from high-resolution magnetic resonance imaging (HR-MRI) and hemodynamic parameters by four-dimensional flow MRI (4D-flow MRI). METHODS A total of 29 patients with 29 unruptured intracranial aneurysms larger than 4 mm were included in this prospective cross-sectional study. A total of 24 aneurysms had AWE and 5 did not have AWE. A three-dimensional (3D) vessel model of each individual aneurysm was generated with 3D time-of-flight magnetic resonance angiography (3D TOF-MRA). Quantification of AWE was sampled with HR-MRI. Time-averaged wall shear stress (WSS) and oscillatory shear index (OSI) were calculated from the 4D-flow MRI. The correlation between spatial distribution of AWE and hemodynamic parameters measured at pixel-level was evaluated for each aneurysm. RESULTS In aneurysms with AWE, the spatial distribution of WSS was negatively correlated with AWE in 100% (24/24) of aneurysms, though 2 had an absolute value of the correlation coefficient <0.1. The OSI was positively correlated with AWE in 91.7% (22/24) of aneurysms; the other 2 aneurysms showed a negative correlation with AWE. In aneurysms with no AWE, there was no correlation between WSS (100%, 5/5), OSI (80%, 4/5), and wall inflammation. CONCLUSIONS The spatial distribution of WSS was negatively correlated with AWE in aneurysms with AWE, and OSI was positively correlated with AWE in most aneurysms with AWE. While aneurysms that did not contain AWE showed no correlation between hemodynamics and wall inflammation.
Collapse
Affiliation(s)
- Mingzhu Fu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoxin He
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Boya Xu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Ebel S, Kühn A, Aggarwal A, Köhler B, Behrendt B, Gohmann R, Riekena B, Lücke C, Ziegert J, Vogtmann C, Preim B, Kropf S, Jung B, Denecke T, Grothoff M, Gutberlet M. Quantitative normal values of helical flow, flow jets and wall shear stress of healthy volunteers in the ascending aorta. Eur Radiol 2022; 32:8597-8607. [PMID: 35612663 DOI: 10.1007/s00330-022-08866-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 4D flow MRI enables quantitative assessment of helical flow. We sought to generate normal values and elucidate changes of helical flow (duration, volume, length, velocities and rotational direction) and flow jet (displacement, flow angle) as well as wall shear stress (WSS). METHODS We assessed the temporal helical existence (THEX), maximum helical volume (HVmax), accumulated helical volume (HVacc), accumulated helical volume length (HVLacc), maximum forward velocity (maxVfor), maximum circumferential velocity (maxVcirc), rotational direction (RD) and maximum wall shear stress (WSS) as reported elsewhere using the software tool Bloodline in 86 healthy volunteers (46 females, mean age 41 ± 13 years). RESULTS WSS decreased by 42.1% and maxVfor by 55.7% across age. There was no link between age and gender regarding the other parameters. CONCLUSION This study provides age-dependent normal values regarding WSS and maxVfor and age- and gender-independent normal values regarding THEX, HVmax, HVacc, HVLacc, RD and maxVcirc. KEY POINTS • 4D flow provides numerous new parameters; therefore, normal values are mandatory. • Wall shear stress decreases over age. • Maximum helical forward velocity decreases over age.
Collapse
Affiliation(s)
- Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany.
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - Alexander Kühn
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Abhinav Aggarwal
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
- Department of Radiology, Mata Chanan Devi Hospital of New Delhi, New Delhi, India
| | - Benjamin Köhler
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Benjamin Behrendt
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Robin Gohmann
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Boris Riekena
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Christian Lücke
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Juliane Ziegert
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Charlotte Vogtmann
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Department for Biometry and Medical Informatics, University of Magdeburg, Magdeburg, Germany
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Matthias Grothoff
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| |
Collapse
|
45
|
Non-invasive assessment of mesenteric hemodynamics in patients with suspected chronic mesenteric ischemia using 4D flow MRI. Abdom Radiol (NY) 2022; 47:1684-1698. [PMID: 33547918 DOI: 10.1007/s00261-020-02900-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic mesenteric ischemia (CMI) is a rare disease with a particularly difficult diagnosis. In this study, 4D flow MRI is used to quantitatively evaluate mesenteric hemodynamics before and after a meal in patients suspected of having CMI and healthy individuals. METHODS Nineteen patients suspected of CMI and twenty control subjects were analyzed. Subjects were scanned using a radially undersampled 4D flow MR sequence (PC-VIPR). Flow rates were assessed in the supraceliac (SCAo) and infrarenal aorta, celiac artery, superior mesenteric artery (SMA), left and right renal arteries, superior mesenteric vein (SMV), splenic vein, and portal vein (PV) in a fasting state (preprandial) and 20 min after a 700-kcal meal (postprandial). Patients were subcategorized into positive diagnosis (CMI+, N = 6) and negative diagnosis (CMI-, N = 13) groups based on imaging and clinical findings. Preprandial, postprandial, and percent change in flow rates were compared between subgroups using a Welch t test. RESULTS In controls and CMI- patients, SCAo, SMA, SMV, and PV flow increased significantly after meal ingestion. No significant flow increases were observed in CMI+ patients. Percent changes in SMA, SMV, and PV flow were significantly greater in controls compared to CMI+ patients. Additionally, percent changes in flow in the SMV and PV were significantly greater in CMI- patients compared to CMI+ patients. CONCLUSIONS 4D flow MRI with large volumetric coverage demonstrated significant differences in the redistribution of blood flow in SMA, SMV, and PV in CMI+ patients after a meal challenge. This approach may assist in the challenging diagnosis of CMI.
Collapse
|
46
|
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. APPLIED SCIENCES-BASEL 2022; 12:3954. [PMID: 36911244 PMCID: PMC10004130 DOI: 10.3390/app12083954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inverse modeling approaches in cardiovascular medicine are a collection of methodologies that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads, and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs. These methods have become available for medical applications mainly due to the continuing development of image-based kinematic techniques, the maturity of the associated theories describing cardiovascular function, and recent progress in computer science, modeling, and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored solutions to the available clinical data, pathology of interest, and available computational resources. Herein, we review biomechanical modeling and simulation principles, methods of solving inverse problems, and techniques for image-based kinematic analysis. In the final section, the major advances in inverse modeling of human cardiovascular mechanics since its early development in the early 2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the incorporation of tissue mechanics, hemodynamics, and fluid-structure interaction methods paired with patient-specific data acquired with medical imaging in inverse modeling approaches.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John S. Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Uyen T. Truong
- Department of Pediatrics, School of Medicine, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
47
|
Ruiz-Muñoz A, Guala A, Dux-Santoy L, Teixidó-Turà G, Servato ML, Valente F, Garrido-Oliver J, Galian-Gay L, Gutiérrez L, Fernandez-Galera R, Casas G, González-Alujas T, Cuéllar-Calabria H, Johnson KM, Wieben O, Ferreira-Gonzalez I, Evangelista A, Rodriguez-Palomares J. False lumen rotational flow and aortic stiffness are associated with aortic growth rate in patients with chronic aortic dissection of the descending aorta: a 4D flow cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2022; 24:20. [PMID: 35346239 PMCID: PMC8962590 DOI: 10.1186/s12968-022-00852-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Patency of the false lumen in chronic aortic dissection (AD) is associated with aortic dilation and long-term aortic events. However, predictors of adverse outcomes in this population are limited. The aim of this study was to evaluate the relationship between aortic growth rate and false lumen flow dynamics and biomechanics in patients with chronic, patent AD. METHODS Patients with a chronic AD with patent false lumen in the descending aorta and no genetic connective tissue disorder underwent an imaging follow-up including a contrast-enhanced 4D flow cardiovascular magnetic resonance (CMR) protocol and two consecutive computed tomography angiograms (CTA) acquired at least 1 year apart. A comprehensive analysis of anatomical features (including thrombus quantification), and false lumen flow dynamics and biomechanics (pulse wave velocity) was performed. RESULTS Fifty-four consecutive patients with a chronic, patent false lumen in the descending aorta were included (35 surgically-treated type A AD with residual tear and 19 medically-treated type B AD). Median follow-up was 40 months. The in-plane rotational flow, pulse wave velocity and the percentage of thrombus in the false lumen were positively related to aortic growth rate (p = 0.006, 0.017, and 0.037, respectively), whereas wall shear stress showed a trend for a positive association (p = 0.060). These results were found irrespectively of the type of AD. CONCLUSIONS In patients with chronic AD and patent false lumen of the descending aorta, rotational flow, pulse wave velocity and wall shear stress are positively related to aortic growth rate, and should be implemented in the follow-up algorithm of these patients. Further prospective studies are needed to confirm if the assessment of these parameters helps to identify patients at higher risk of adverse clinical events.
Collapse
Affiliation(s)
- Aroa Ruiz-Muñoz
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gisela Teixidó-Turà
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - Maria Luz Servato
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - Filipa Valente
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - Laura Gutiérrez
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | - Guillem Casas
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | - Hug Cuéllar-Calabria
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Kevin M. Johnson
- Departments of Medical Physics & Radiology, University of Wisconsin, Madison, WI USA
| | - Oliver Wieben
- Departments of Medical Physics & Radiology, University of Wisconsin, Madison, WI USA
| | - Ignacio Ferreira-Gonzalez
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Arturo Evangelista
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto del Corazón. Quirónsalud-Teknon, Barcelona, Spain
| | - Jose Rodriguez-Palomares
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
48
|
Isoda H, Fukuyama A. Quality Control for 4D Flow MR Imaging. Magn Reson Med Sci 2022; 21:278-292. [PMID: 35197395 PMCID: PMC9680545 DOI: 10.2463/mrms.rev.2021-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
In recent years, 4D flow MRI has become increasingly important in clinical applications for the blood vessels in the whole body, heart, and cerebrospinal fluid. 4D flow MRI has advantages over 2D cine phase-contrast (PC) MRI in that any targeted area of interest can be analyzed post-hoc, but there are some factors to be considered, such as ensuring measurement accuracy, a long imaging time and post-processing complexity, and interobserver variability.Due to the partial volume phenomenon caused by low spatial and temporal resolutions, the accuracy of flow measurement in 4D flow MRI is reduced. For spatial resolution, it is recommended to include at least four voxels in the vessel of interest, and if possible, six voxels. In large vessels such as the aorta, large voxels can be secured and SNR can be maintained, but in small cerebral vessels, SNR is reduced, resulting in reduced accuracy. A temporal resolution of less than 40 ms is recommended. The velocity-to-noise ratio (VNR) of low-velocity blood flow is low, resulting in poor measurement accuracy. The use of dual velocity encoding (VENC) or multi-VENC is recommended to avoid velocity wrap around and to increase VNR. In order to maintain sufficient spatio-temporal resolution, a longer imaging time is required, leading to potential patient movement during examination and a corresponding decrease in measurement accuracy.For the clinical application of new technologies, including various acceleration techniques, in vitro and in vivo accuracy verification based on existing accuracy-validated 2D cine PC MRI and 4D flow MRI, as well as accuracy verification on the conservation of mass' principle, should be performed, and intraobserver repeatability, interobserver reproducibility, and test-retest reproducibility should be checked.
Collapse
Affiliation(s)
- Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
- Biomedical Imaging Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsushi Fukuyama
- Faculty of Health Sciences, Department of Radiological Sciences, Japan Healthcare University, Sapporo, Hokkaido, Japan
| |
Collapse
|
49
|
Pravdivtseva MS, Gaidzik F, Berg P, Ulloa P, Larsen N, Jansen O, Hövener JB, Salehi Ravesh M. Influence of Spatial Resolution and Compressed SENSE Acceleration Factor on Flow Quantification with 4D Flow MRI at 3 Tesla. Tomography 2022; 8:457-478. [PMID: 35202203 PMCID: PMC8880336 DOI: 10.3390/tomography8010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Four-dimensional (4D) flow MRI allows quantifying flow in blood vessels–non invasively and in vivo. The clinical use of 4D flow MRI in small vessels, however, is hampered by long examination times and limited spatial resolution. Compressed SENSE (CS-SENSE) is a technique that can accelerate 4D flow dramatically. Here, we investigated the effect of spatial resolution and CS acceleration on flow measurements by using 4D flow MRI in small vessels in vitro at 3 T. We compared the flow in silicon tubes (inner diameters of 2, 3, 4, and 5 mm) measured with 4D flow MRI, accelerated with four CS factors (CS = 2.5, 4.5, 6.5, and 13) and three voxel sizes (0.5, 1, and 1.5 mm3) to 2D flow MRI and a flow sensor. Additionally, the velocity field in an aneurysm model acquired with 4D flow MRI was compared to the one simulated with computational fluid dynamics (CFD). A strong correlation was observed between flow sensor, 2D flow MRI, and 4D flow MRI (rho > 0.94). The use of fewer than seven voxels per vessel diameter (nROI) resulted in an overestimation of flow in more than 5% of flow measured with 2D flow MRI. A negative correlation (rho = −0.81) between flow error and nROI were found for CS = 2.5 and 4.5. No statistically significant impact of CS factor on differences in flow rates was observed. However, a trend of increased flow error with increased CS factor was observed. In an aneurysm model, the peak velocity and stagnation zone were detected by CFD and all 4D flow MRI variants. The velocity difference error in the aneurysm sac did not exceed 11% for CS = 4.5 in comparison to CS = 2.5 for all spatial resolutions. Therefore, CS factors from 2.5–4.5 can appear suitable to improve spatial or temporal resolution for accurate quantification of flow rate and velocity. We encourage reporting the number of voxels per vessel diameter to standardize 4D flow MRI protocols.
Collapse
Affiliation(s)
- Mariya S. Pravdivtseva
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
- Correspondence: ; Tel.: +49-(0)-431-500-16-533
| | - Franziska Gaidzik
- Department of Fluid Dynamics and Technical Flows, Research Campus STIMULATE, Magdeburg University, 39106 Magdeburg, Germany; (F.G.); (P.B.)
| | - Philipp Berg
- Department of Fluid Dynamics and Technical Flows, Research Campus STIMULATE, Magdeburg University, 39106 Magdeburg, Germany; (F.G.); (P.B.)
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany; (N.L.); (O.J.)
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany; (N.L.); (O.J.)
| | - Jan-Bernd Hövener
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
| | - Mona Salehi Ravesh
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
| |
Collapse
|
50
|
Bartolo MA, Qureshi MU, Colebank MJ, Chesler NC, Olufsen MS. Numerical predictions of shear stress and cyclic stretch in pulmonary hypertension due to left heart failure. Biomech Model Mechanobiol 2022; 21:363-381. [PMID: 35037114 PMCID: PMC10174274 DOI: 10.1007/s10237-021-01538-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Isolated post-capillary pulmonary hypertension (Ipc-PH) occurs due to left heart failure, which contributes to 1 out of every 9 deaths in the United States. In some patients, through unknown mechanisms, Ipc-PH transitions to combined pre-/post-capillary PH (Cpc-PH) and is associated with a dramatic increase in mortality. Altered mechanical forces and subsequent biological signaling in the pulmonary vascular bed likely contribute to the transition from Ipc-PH to Cpc-PH. However, even in a healthy pulmonary circulation, the mechanical forces in the smallest vessels (the arterioles, capillary bed, and venules) have not been quantitatively defined. This study is the first to examine this question via a computational fluid dynamics model of the human pulmonary arteries, arterioles, venules, and veins. Using this model, we predict temporal and spatial dynamics of cyclic stretch and wall shear stress with healthy and diseased hemodynamics. In the normotensive case for large vessels, numerical simulations show that large arteries have higher pressure and flow than large veins, as well as more pronounced changes in area throughout the cardiac cycle. In the microvasculature, shear stress increases and cyclic stretch decreases as vessel radius decreases. When we impose an increase in left atrial pressure to simulate Ipc-PH, shear stress decreases and cyclic stretch increases as compared to the healthy case. Overall, this model predicts pressure, flow, shear stress, and cyclic stretch that providing a way to analyze and investigate hypotheses related to disease progression in the pulmonary circulation.
Collapse
Affiliation(s)
- Michelle A Bartolo
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - M Umar Qureshi
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mitchel J Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697, USA
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|