1
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
Le Y, Chen J, Rossman P, Bolster B, Kannengiesser S, Manduca A, Glaser K, Sui Y, Huston J, Yin Z, Ehman RL. Wavelet MRE: Imaging propagating broadband acoustic waves with wavelet-based motion-encoding gradients. Magn Reson Med 2024; 91:1923-1935. [PMID: 38098427 PMCID: PMC10950519 DOI: 10.1002/mrm.29972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 03/20/2024]
Abstract
PURPOSE To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform. METHODS A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel. RESULTS In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study. CONCLUSION The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.
Collapse
Affiliation(s)
- Yuan Le
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Bradley Bolster
- MR Collaborations, Siemens Medical Solutions USA, Inc., Malvern, PA, USA
| | | | | | - Kevin Glaser
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Yi Sui
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Ziying Yin
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
3
|
The effects of geometry on stiffness measurements in high-field magnetic resonance elastography: A study on rodent cardiac phantoms. J Mech Behav Biomed Mater 2022; 133:105302. [DOI: 10.1016/j.jmbbm.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
|
4
|
Harbo MB, Stokke MK, Sjaastad I, Espe EKS. One step closer to myocardial physiology: From PV loop analysis to state-of-the-art myocardial imaging. Acta Physiol (Oxf) 2022; 234:e13759. [PMID: 34978759 DOI: 10.1111/apha.13759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 11/29/2022]
Abstract
Recent advances in cardiac imaging have revitalized the assessment of fundamental physiological concepts. In the field of cardiac physiology, invasive measurements with pressure-volume (PV) loops have served as the gold standard methodology for the characterization of left ventricular (LV) function. From PV loop data, fundamental aspects of LV chamber function are derived such as work, efficiency, stiffness and contractility. However, the parametrization of these aspects is limited because of the need for invasive procedures. Through the utilization of recent advances in echocardiography, magnetic resonance imaging and positron emission tomography, it has become increasingly feasible to quantify these fundamental aspects of LV function non-invasively. Importantly, state-of-the-art imaging technology enables direct assessment of myocardial performance, thereby extending functional assessment from the net function of the LV chamber, as is done with PV loops, to the myocardium itself. With a strong coupling to underlying myocardial physiology, imaging measurements of myocardial work, efficiency, stiffness and contractility could represent the next generation of functional parameters. The purpose of this review is to discuss how the new imaging parameters of myocardial work, efficiency, stiffness and contractility can bring cardiac physiologists, researchers and clinicians alike one step closer to underlying myocardial physiology.
Collapse
Affiliation(s)
- Markus Borge Harbo
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| |
Collapse
|
5
|
Childers RC, Trask AJ, Liu J, Lucchesi PA, Gooch KJ. Paired Pressure-Volume Loop Analysis and Biaxial Mechanical Testing Characterize Differences in Left Ventricular Tissue Stiffness of Volume Overload and Angiotensin-Induced Pressure Overload Hearts. J Biomech Eng 2021; 143:081003. [PMID: 33729495 PMCID: PMC10782875 DOI: 10.1115/1.4050541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Indexed: 12/18/2022]
Abstract
Pressure overload (PO) and volume overload (VO) of the heart result in distinctive changes to geometry, due to compensatory structural remodeling. This remodeling potentially leads to changes in tissue mechanical properties. Understanding such changes is important, as tissue modulus has an impact on cardiac performance, disease progression, and influences on cell phenotype. Pressure-volume (PV) loop analysis, a clinically relevant method for measuring left ventricular (LV) chamber stiffness, was performed in vivo on control rat hearts and rats subjected to either chronic PO through Angiotensin-II infusion (4-weeks) or VO (8-weeks). Immediately following PV loops, biaxial testing was performed on LV free wall tissue to directly measure tissue mechanical properties. The β coefficient, an index of chamber stiffness calculated from the PV loop analysis, increased 98% in PO (n = 4) and decreased 38% in VO (n = 5) compared to control (n = 6). Material constants of LV walls obtained from ex vivo biaxial testing (n = 9-10) were not changed in Angiotensin-II induced PO and decreased by about half in VO compared to control (47% in the circumferential and 57% the longitudinal direction). PV loop analysis showed the expected increase in chamber stiffness of PO and expected decrease in chamber stiffness of VO. Biaxial testing showed a decreased modulus of the myocardium of the VO model, but no changes in the PO model, this suggests the increased chamber stiffness in PO, as shown in the PV loop analysis, may be secondary to changes in tissue mass and/or geometry but not an increase in passive tissue mechanical properties.
Collapse
Affiliation(s)
- Rachel C. Childers
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Aaron J. Trask
- Center for Cardiovascular Research and The Heart Center, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205
| | - Jun Liu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Pamela A. Lucchesi
- Departments of Pharmacology and Physiology, New York Medical College, Valhalla, NY 10595
| | - Keith J. Gooch
- Institute Frick Center for Heart Failure, Department of Biomedical Engineering, Davis Heart Lung Research, The Ohio State University Fontana Labs, 140 W 19th Avenue, Columbus, OH 43210
| |
Collapse
|
6
|
Fiorito M, Fovargue D, Capilnasiu A, Hadjicharalambous M, Nordsletten D, Sinkus R, Lee J. Impact of axisymmetric deformation on MR elastography of a nonlinear tissue-mimicking material and implications in peri-tumour stiffness quantification. PLoS One 2021; 16:e0253804. [PMID: 34242296 PMCID: PMC8270167 DOI: 10.1371/journal.pone.0253804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022] Open
Abstract
Solid tumour growth is often associated with the accumulation of mechanical stresses acting on the surrounding host tissue. Due to tissue nonlinearity, the shear modulus of the peri-tumoural region inherits a signature from the tumour expansion which depends on multiple factors, including the soft tissue constitutive behaviour and its stress/strain state. Shear waves used in MR-elastography (MRE) sense the apparent change in shear modulus along their propagation direction, thereby probing the anisotropic stiffness field around the tumour. We developed an analytical framework for a heterogeneous shear modulus distribution using a thick-shelled sphere approximation of the tumour and soft tissue ensemble. A hyperelastic material (plastisol) was identified to validate the proposed theory in a phantom setting. A balloon-catheter connected to a pressure sensor was used to replicate the stress generated from tumour pressure and growth while MRE data were acquired. The shear modulus anisotropy retrieved from the reconstructed elastography data confirmed the analytically predicted patterns at various levels of inflation. An alternative measure, combining the generated deformation and the local wave direction and independent of the reconstruction strategy, was also proposed to correlate the analytical findings with the stretch probed by the waves. Overall, this work demonstrates that MRE in combination with non-linear mechanics, is able to identify the apparent shear modulus variation arising from the strain generated by a growth within tissue, such as an idealised model of tumour. Investigation in real tissue represents the next step to further investigate the implications of endogenous forces in tissue characterisation through MRE.
Collapse
Affiliation(s)
- Marco Fiorito
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Daniel Fovargue
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Adela Capilnasiu
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | | | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- U1148, INSERM, Hôpital Bichat, Paris, France
| | - Jack Lee
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
8
|
Lorentz force induced shear waves for magnetic resonance elastography applications. Sci Rep 2021; 11:12785. [PMID: 34140568 PMCID: PMC8211670 DOI: 10.1038/s41598-021-91895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
Quantitative mechanical properties of biological tissues can be mapped using the shear wave elastography technique. This technology has demonstrated a great potential in various organs but shows a limit due to wave attenuation in biological tissues. An option to overcome the inherent loss in shear wave magnitude along the propagation pathway may be to stimulate tissues closer to regions of interest using alternative motion generation techniques. The present study investigated the feasibility of generating shear waves by applying a Lorentz force directly to tissue mimicking samples for magnetic resonance elastography applications. This was done by combining an electrical current with the strong magnetic field of a clinical MRI scanner. The Local Frequency Estimation method was used to assess the real value of the shear modulus of tested phantoms from Lorentz force induced motion. Finite elements modeling of reported experiments showed a consistent behavior but featured wavelengths larger than measured ones. Results suggest the feasibility of a magnetic resonance elastography technique based on the Lorentz force to produce an shear wave source.
Collapse
|
9
|
Dong H, Jin N, Kannengiesser S, Raterman B, White RD, Kolipaka A. Magnetic resonance elastography for estimating in vivo stiffness of the abdominal aorta using cardiac-gated spin-echo echo-planar imaging: a feasibility study. NMR IN BIOMEDICINE 2021; 34:e4420. [PMID: 33021342 DOI: 10.1002/nbm.4420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ning Jin
- Siemens Medical Solution, Columbus, Ohio, USA
| | | | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Zeng W, Gordon-Wylie SW, Tan L, Solamen L, McGarry MDJ, Weaver JB, Paulsen KD. Nonlinear Inversion MR Elastography With Low-Frequency Actuation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1775-1784. [PMID: 31825863 PMCID: PMC7313386 DOI: 10.1109/tmi.2019.2958212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic resonance elastography (MRE) has been developed to noninvasively reconstruct mechanical properties for tissue and tissue-like materials over a frequency range of 10 ~200 Hz. In this work, low frequency (1~1.5 Hz) MRE activations were employed to estimate mechanical property distributions of simulated data and experimental phantoms. Nonlinear inversion (NLI) MRE algorithms based on viscoelastic and poroelastic material models were used to solve the inverse problems and recover images of the shear modulus and hydraulic conductivity. Data from a simulated phantom containing an inclusion with property contrast was carried out to study the feasibility of our low frequency actuated approach. To verify the stability of NLI algorithms for low frequency actuation, different levels of synthetic noise were added to the displacement data. Spatial distributions and property values were recovered well for noise level less than 5%. For the presented experimental phantom reconstructions with regularizations, the computed storage moduli from viscoelastic and poroelastic MRE gave similar results. Contrast was detected between inclusions and background in recovered hydraulic conductivity images. Results and findings confirm the feasibility of future in vivo neuroimaging examinations using natural cerebrovascular pulsations at cardiac frequencies, which can eliminate specialized equipment for high frequency actuation.
Collapse
|
11
|
Capilnasiu A, Hadjicharalambous M, Fovargue D, Patel D, Holub O, Bilston L, Screen H, Sinkus R, Nordsletten D. Magnetic resonance elastography in nonlinear viscoelastic materials under load. Biomech Model Mechanobiol 2019; 18:111-135. [PMID: 30151814 PMCID: PMC6373278 DOI: 10.1007/s10237-018-1072-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/10/2018] [Indexed: 12/27/2022]
Abstract
Characterisation of soft tissue mechanical properties is a topic of increasing interest in translational and clinical research. Magnetic resonance elastography (MRE) has been used in this context to assess the mechanical properties of tissues in vivo noninvasively. Typically, these analyses rely on linear viscoelastic wave equations to assess material properties from measured wave dynamics. However, deformations that occur in some tissues (e.g. liver during respiration, heart during the cardiac cycle, or external compression during a breast exam) can yield loading bias, complicating the interpretation of tissue stiffness from MRE measurements. In this paper, it is shown how combined knowledge of a material's rheology and loading state can be used to eliminate loading bias and enable interpretation of intrinsic (unloaded) stiffness properties. Equations are derived utilising perturbation theory and Cauchy's equations of motion to demonstrate the impact of loading state on periodic steady-state wave behaviour in nonlinear viscoelastic materials. These equations demonstrate how loading bias yields apparent material stiffening, softening and anisotropy. MRE sensitivity to deformation is demonstrated in an experimental phantom, showing a loading bias of up to twofold. From an unbiased stiffness of [Formula: see text] Pa in unloaded state, the biased stiffness increases to 9767.5 [Formula: see text]1949.9 Pa under a load of [Formula: see text] 34% uniaxial compression. Integrating knowledge of phantom loading and rheology into a novel MRE reconstruction, it is shown that it is possible to characterise intrinsic material characteristics, eliminating the loading bias from MRE data. The framework introduced and demonstrated in phantoms illustrates a pathway that can be translated and applied to MRE in complex deforming tissues. This would contribute to a better assessment of material properties in soft tissues employing elastography.
Collapse
Affiliation(s)
- Adela Capilnasiu
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Myrianthi Hadjicharalambous
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- KIOS Research and Innovation Centre of Excellence, University of Cyprus, Nicosia, Cyprus
| | - Daniel Fovargue
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Dharmesh Patel
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Ondrej Holub
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Lynne Bilston
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Hazel Screen
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Ralph Sinkus
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, 75018, Paris, France
| | - David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
12
|
Guenthner C, Kozerke S. Encoding and readout strategies in magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3919. [PMID: 29806865 DOI: 10.1002/nbm.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance elastography (MRE) has evolved significantly since its inception. Advances in motion-encoding gradient design and readout strategies have led to improved encoding and signal-to-noise ratio (SNR) efficiencies, which in turn allow for higher spatial resolution, increased coverage, and/or shorter scan times. The purpose of this review is to summarize MRE wave-encoding and readout approaches in a unified mathematical framework to allow for a comparative assessment of encoding and SNR efficiency of the various methods available. Besides standard full- and fractional-wave-encoding approaches, advanced techniques including flow compensation, sample interval modulation and multi-shot encoding are considered. Signal readout using fast k-space trajectories, reduced field of view, multi-slice, and undersampling techniques are summarized and put into perspective. The review is concluded with a foray into displacement and diffusion encoding as alternative and/or complementary techniques.
Collapse
Affiliation(s)
- Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Miller R, Kolipaka A, Nash MP, Young AA. Relative identifiability of anisotropic properties from magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3848. [PMID: 29106765 PMCID: PMC5936684 DOI: 10.1002/nbm.3848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 05/24/2023]
Abstract
Although magnetic resonance elastography (MRE) has been used to estimate isotropic stiffness in the heart, myocardium is known to have anisotropic properties. This study investigated the determinability of global transversely isotropic material parameters using MRE and finite-element modeling (FEM). A FEM-based material parameter identification method, using a displacement-matching objective function, was evaluated in a gel phantom and simulations of a left ventricular (LV) geometry with a histology-derived fiber field. Material parameter estimation was performed in the presence of Gaussian noise. Parameter sweeps were analyzed and characteristics of the Hessian matrix at the optimal solution were used to evaluate the determinability of each constitutive parameter. Four out of five material stiffness parameters (Young's modulii E1 and E3 , shear modulus G13 and damping coefficient s), which describe a transversely isotropic linear elastic material, were well determined from the MRE displacement field using an iterative FEM inversion method. However, the remaining parameter, Poisson's ratio, was less identifiable. In conclusion, Young's modulii, shear modulii and damping can theoretically be well determined from MRE data, but Poisson's ratio is not as well determined and could be set to a reasonable value for biological tissue (close to 0.5).
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Engineering Science, University of Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
14
|
Khan S, Fakhouri F, Majeed W, Kolipaka A. Cardiovascular magnetic resonance elastography: A review. NMR IN BIOMEDICINE 2018; 31:e3853. [PMID: 29193358 PMCID: PMC5975119 DOI: 10.1002/nbm.3853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 05/19/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. These cardiovascular diseases are associated with mechanical changes in the myocardium and aorta. It is known that stiffness is altered in many diseases, including the spectrum of ischemia, diastolic dysfunction, hypertension and hypertrophic cardiomyopathy. In addition, the stiffness of the aortic wall is altered in multiple diseases, including hypertension, coronary artery disease and aortic aneurysm formation. For example, in diastolic dysfunction in which the ejection fraction is preserved, stiffness can potentially be an important biomarker. Similarly, in aortic aneurysms, stiffness can provide valuable information with regard to rupture potential. A number of studies have addressed invasive and non-invasive approaches to test and measure the mechanical properties of the myocardium and aorta. One of the non-invasive approaches is magnetic resonance elastography (MRE). MRE is a phase-contrast magnetic resonance imaging technique that measures tissue stiffness non-invasively. This review article highlights the technical details and application of MRE in the quantification of myocardial and aortic stiffness in different disease states.
Collapse
Affiliation(s)
- Saad Khan
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Faisal Fakhouri
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Waqas Majeed
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Ito D, Numano T, Mizuhara K, Washio T, Misawa M, Nitta N. Development of a robust diffusion-MR elastography (dMRE) technique to mitigate intravoxel phase dispersion. Magn Reson Imaging 2018; 54:160-170. [PMID: 30171999 DOI: 10.1016/j.mri.2018.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Diffusion-magnetic resonance elastography (dMRE) is an emerging practical technique that can acquire diffusion magnetic resonance imaging and MRE simultaneously. However, a signal loss attributable to intravoxel phase dispersion (IVPD) interferes with the calculation of the apparent diffusion coefficient (ADC). This study presents an approach to dMRE that reduces the influence of IVPD by introducing a new pulse sequence. The existing and proposed techniques were performed using a phantom comprising five rods with different elasticities at 60 Hz vibration to investigate the accuracy of previous and proposed dMRE techniques. The measures of ADC and stiffness, obtained by using both dMRE techniques, were compared with conventional spin-echo (SE) diffusion and SE-MRE. Then, we evaluated those differences by using the mean of absolute differences (MAD) in each rod within the phantom. The results of the MAD of the stiffness from both dMRE techniques showed almost no difference. In contrast, the value of the ADC MAD (MAD ≒ 0.16 × 10-3 mm2/s), obtained in the soft region within the phantom with the previous dMRE technique, was large. This value was about 2.7 times that of the value produced by the proposed dMRE technique. This difference must reflect the degree of influence of IVPD in both techniques. These results demonstrate that our dMRE technique is a robust method for addressing the signal loss attributable to IVPD.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan.
| | - Kazuyuki Mizuhara
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan; Department of Mechanical Engineering, Tokyo Denki University, 5, Senju Asahicho, Adachi-ku, Tokyo 120-8551, Japan
| | - Toshikatsu Washio
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Masaki Misawa
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Naotaka Nitta
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| |
Collapse
|
16
|
Solamen LM, McGarry MD, Tan L, Weaver JB, Paulsen KD. Phantom evaluations of nonlinear inversion MR elastography. Phys Med Biol 2018; 63:145021. [PMID: 29877194 PMCID: PMC6095192 DOI: 10.1088/1361-6560/aacb08] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study evaluated non-linear inversion MRE (NLI-MRE) based on viscoelastic governing equations to determine its sensitivity to small, low contrast inclusions and interface changes in shear storage modulus and damping ratio. Reconstruction parameters identical to those used in recent in vivo MRE studies of mechanical property variations in small brain structures were applied. NLI-MRE was evaluated on four phantoms with contrast in stiffness and damping ratio. Image contrast to noise ratio was assessed as a function of inclusion diameter and property contrast, and edge and line spread functions were calculated as measures of imaging resolution. Phantoms were constructed from silicone, agar, and tofu materials. Reconstructed property estimates were compared with independent mechanical testing using dynamic mechanical analysis (DMA). The NLI-MRE technique detected inclusions as small as 8 mm with a stiffness contrast as low as 14%. Storage modulus images also showed an interface edge response distance of 11 mm. Damping ratio images distinguished inclusions with a diameter as small as 8 mm, and yielded an interface edge response distance of 10 mm. Property differences relative to DMA tests were in the 15%-20% range in most cases. In this study, NLI-MRE storage modulus estimates resolved the smallest inclusion with the lowest stiffness contrast, and spatial resolution of attenuation parameter images was quantified for the first time. These experiments and image quality metrics establish quantitative guidelines for the accuracy expected in vivo for MRE images of small brain structures, and provide a baseline for evaluating future improvements to the NLI-MRE pipeline.
Collapse
Affiliation(s)
| | | | - Likun Tan
- Thayer School of Engineering, Dartmouth College
| | - John B. Weaver
- Thayer School of Engineering, Dartmouth College
- Department of Radiology, Dartmouth Hitchcock Medical Center
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center
| |
Collapse
|
17
|
Miller R, Kolipaka A, Nash MP, Young AA. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34. [PMID: 29528568 PMCID: PMC5993646 DOI: 10.1002/cnm.2979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry.
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martyn P. Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Vejdani-Jahromi M, Freedman J, Kim YJ, Trahey GE, Wolf PD. Assessment of Diastolic Function Using Ultrasound Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:551-561. [PMID: 29331356 PMCID: PMC5873966 DOI: 10.1016/j.ultrasmedbio.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Shear wave elasticity imaging (SWEI) is a novel ultrasound elastography technique for assessing tissue stiffness. In this study, we investigate the potential of SWEI for providing diastolic functional assessment. In 11 isolated rabbit hearts, pressure-volume (PV) measurements were recorded simultaneously with SWEI recordings from the left ventricle free wall before and after induction of global ischemia. PV-based end diastolic stiffness increased by 100% after ischemia (p <0.05), and SWEI stiffness showed an increase of 103% (p <0.05). The relaxation time constant (τ) before and after ischemia derived from pressure and SWEI curves showed increases of 79% and 76%, respectively (p <0.05). A linear regression between pressure-derived and SWEI-based (τ) showed a slope of 1.164 with R2 = 0.80, indicating the near equivalence of the two assessments. SWEI can be used to derive (τ) values and myocardial end diastolic stiffness. In global conditions, these measurements are consistent with PV measurements of diastolic function.
Collapse
Affiliation(s)
| | - Jenna Freedman
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Young-Joong Kim
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Gregg E Trahey
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Patrick D Wolf
- Biomedical Engineering Department, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Arani A, Arunachalam SP, Chang ICY, Baffour F, Rossman PJ, Glaser KJ, Trzasko JD, McGee KP, Manduca A, Grogan M, Dispenzieri A, Ehman RL, Araoz PA. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging 2017; 46:1361-1367. [PMID: 28236336 PMCID: PMC5572539 DOI: 10.1002/jmri.25678] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose To evaluate if cardiac magnetic resonance elastography (MRE) can measure increased stiffness in patients with cardiac amyloidosis. Myocardial tissue stiffness plays an important role in cardiac function. A noninvasive quantitative imaging technique capable of measuring myocardial stiffness could aid in disease diagnosis, therapy monitoring, and disease prognostic strategies. We recently developed a high‐frequency cardiac MRE technique capable of making noninvasive stiffness measurements. Materials and Methods In all, 16 volunteers and 22 patients with cardiac amyloidosis were enrolled in this study after Institutional Review Board approval and obtaining formal written consent. All subjects were imaged head‐first in the supine position in a 1.5T closed‐bore MR imager. 3D MRE was performed using 5 mm isotropic resolution oblique short‐axis slices and a vibration frequency of 140 Hz to obtain global quantitative in vivo left ventricular stiffness measurements. The median stiffness was compared between the two cohorts. An octahedral shear strain signal‐to‐noise ratio (OSS‐SNR) threshold of 1.17 was used to exclude exams with insufficient motion amplitude. Results Five volunteers and six patients had to be excluded from the study because they fell below the 1.17 OSS‐SNR threshold. The myocardial stiffness of cardiac amyloid patients (median: 11.4 kPa, min: 9.2, max: 15.7) was significantly higher (P = 0.0008) than normal controls (median: 8.2 kPa, min: 7.2, max: 11.8). Conclusion This study demonstrates the feasibility of 3D high‐frequency cardiac MRE as a contrast‐agent‐free diagnostic imaging technique for cardiac amyloidosis. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1361–1367.
Collapse
Affiliation(s)
- Arvin Arani
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ian C Y Chang
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - Martha Grogan
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Medicine: Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
20
|
Hiscox LV, Johnson CL, Barnhill E, McGarry MDJ, Huston J, van Beek EJR, Starr JM, Roberts N. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Phys Med Biol 2016; 61:R401-R437. [DOI: 10.1088/0031-9155/61/24/r401] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Correia M, Provost J, Chatelin S, Villemain O, Tanter M, Pernot M. Ultrafast Harmonic Coherent Compound (UHCC) Imaging for High Frame Rate Echocardiography and Shear-Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:420-31. [PMID: 26890730 PMCID: PMC4878711 DOI: 10.1109/tuffc.2016.2530408] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transthoracic shear-wave elastography (SWE) of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as diverging-wave coherent compounding or focused harmonic imaging, have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging waves are emitted and coherently compounded, and show that such an approach can be used to enhance both SWE and high frame rate (FR) B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with a reduction of the imaging mean clutter level up to 13.8 dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high FR.
Collapse
|
22
|
Arani A, Glaser KL, Arunachalam SP, Rossman PJ, Lake DS, Trzasko JD, Manduca A, McGee KP, Ehman RL, Araoz PA. In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers. Magn Reson Med 2016; 77:351-360. [PMID: 26778442 DOI: 10.1002/mrm.26101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. METHODS The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). RESULTS The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. CONCLUSION This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin L Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - David S Lake
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Time-Resolved Analysis of Left Ventricular Shear Wave Amplitudes in Cardiac Elastography for the Diagnosis of Diastolic Dysfunction. Invest Radiol 2016; 51:1-6. [DOI: 10.1097/rli.0000000000000198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Affiliation(s)
- V.Y. Wang
- Auckland Bioengineering Institute and
| | - P.M.F. Nielsen
- Auckland Bioengineering Institute and
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1010, New Zealand; , ,
| | - M.P. Nash
- Auckland Bioengineering Institute and
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1010, New Zealand; , ,
| |
Collapse
|
25
|
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:32-48. [PMID: 26592944 PMCID: PMC4660259 DOI: 10.1016/j.pnmrs.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy.
Collapse
|
26
|
da Silveira JS, Scansen BA, Wassenaar PA, Raterman B, Eleswarpu C, Jin N, Mo X, White RD, Bonagura JD, Kolipaka A. Quantification of myocardial stiffness using magnetic resonance elastography in right ventricular hypertrophy: initial feasibility in dogs. Magn Reson Imaging 2015; 34:26-34. [PMID: 26471513 DOI: 10.1016/j.mri.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Myocardial stiffness is an important determinant of cardiac function and is currently invasively and indirectly assessed by catheter angiography. This study aims to demonstrate the feasibility of quantifying right ventricular (RV) stiffness noninvasively using cardiac magnetic resonance elastography (CMRE) in dogs with severe congenital pulmonary valve stenosis (PVS) causing RV hypertrophy, and compare it to remote myocardium in the left ventricle (LV). Additionally, correlations between stiffness and selected pathophysiologic indicators from transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging were explored. METHODS In-vivo CMRE was performed on nine dogs presenting severe congenital PVS using a 1.5T MRI scanner. T1-MOLLI, T2-prepared-bSSFP, gated-cine GRE-MRE and LGE (PSIR) sequences were used to acquire a basal short-axis slice. RV and LV-free-wall (FW) stiffness measurements were compared against each other and also correlated to ventricular mass, RV and LV FW thickness, T1 and T2 relaxation times, and extracellular volume fraction (ECV). Peak transpulmonary pressure gradient and myocardial strain were also acquired on eight dogs by TTE and correlated to RV-FW systolic stiffness. Potential correlations were evaluated by Spearman's rho (rs). RESULTS RV-FW stiffness was found to be significantly higher than the LV-FW stiffness both during end-systole (ES) (p=0.002) and end-diastole (ED) (p=0.029). Significant correlations were observed between RV-FW ES and LV-FW ED stiffness versus ECV (rs=0.75; p-value=0.05). Non-significant moderate correlations were found between LV-FW ES (rs=0.54) and RV-FW ED (rs=0.61) stiffness versus ECV. Furthermore, non-significant correlations were found between RV or LV-FW stiffness and the remaining variables (rs<0.54; p-value>0.05). CONCLUSION This study demonstrates the feasibility of determining RV stiffness. The positive correlations between stiffness and ECV might indicate some interdependence between stiffness and myocardial extracellular matrix alterations. However, further studies are warranted to validate our initial observations.
Collapse
Affiliation(s)
- Juliana S da Silveira
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brian A Scansen
- Department of Veterinary Clinical Sciences, OSU College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter A Wassenaar
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brian Raterman
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chethan Eleswarpu
- College of Biomedical Engineering, The Ohio State University, Columbus, OH, UTSA
| | - Ning Jin
- Siemens Medical Solutions, Malvern, PA USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Richard D White
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John D Bonagura
- Department of Veterinary Clinical Sciences, OSU College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Arunark Kolipaka
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, OSU College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Liu Y, Fite BZ, Mahakian LM, Johnson SM, Larrat B, Dumont E, Ferrara KW. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI. PLoS One 2015; 10:e0139667. [PMID: 26439259 PMCID: PMC4594908 DOI: 10.1371/journal.pone.0139667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 09/16/2015] [Indexed: 01/21/2023] Open
Abstract
Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States of America
| | - Brett Z. Fite
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States of America
| | - Lisa M. Mahakian
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States of America
| | - Sarah M. Johnson
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States of America
| | - Benoit Larrat
- UNité d’Imagerie par Résonance Magnétique et Spectroscopie, NeuroSpin, CEA, Gif Sur Yvette, France
| | | | - Katherine W. Ferrara
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States of America
- * E-mail:
| |
Collapse
|
28
|
McGarry MDJ, Johnson CL, Sutton BP, Georgiadis JG, Van Houten EEW, Pattison AJ, Weaver JB, Paulsen KD. Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography. Med Phys 2015; 42:947-57. [PMID: 25652507 DOI: 10.1118/1.4905048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Descriptions of the structure of brain tissue as a porous cellular matrix support application of a poroelastic (PE) mechanical model which includes both solid and fluid phases. However, the majority of brain magnetic resonance elastography (MRE) studies use a single phase viscoelastic (VE) model to describe brain tissue behavior, in part due to availability of relatively simple direct inversion strategies for mechanical property estimation. A notable exception is low frequency intrinsic actuation MRE, where PE mechanical properties are imaged with a nonlinear inversion algorithm. METHODS This paper investigates the effect of model choice at each end of the spectrum of in vivo human brain actuation frequencies. Repeat MRE examinations of the brains of healthy volunteers were used to compare image quality and repeatability for each inversion model for both 50 Hz externally produced motion and ≈1 Hz intrinsic motions. Additionally, realistic simulated MRE data were generated with both VE and PE finite element solvers to investigate the effect of inappropriate model choice for ideal VE and PE materials. RESULTS In vivo, MRE data revealed that VE inversions appear more representative of anatomical structure and quantitatively repeatable for 50 Hz induced motions, whereas PE inversion produces better results at 1 Hz. Reasonable VE approximations of PE materials can be derived by equating the equivalent wave velocities for the two models, provided that the timescale of fluid equilibration is not similar to the period of actuation. An approximation of the equilibration time for human brain reveals that this condition is violated at 1 Hz but not at 50 Hz. Additionally, simulation experiments when using the "wrong" model for the inversion demonstrated reasonable shear modulus reconstructions at 50 Hz, whereas cross-model inversions at 1 Hz were poor quality. Attenuation parameters were sensitive to changes in the forward model at both frequencies, however, no spatial information was recovered because the mechanisms of VE and PE attenuation are different. CONCLUSIONS VE inversions are simpler with fewer unknown properties and may be sufficient to capture the mechanical behavior of PE brain tissue at higher actuation frequencies. However, accurate modeling of the fluid phase is required to produce useful mechanical property images at the lower frequencies of intrinsic brain motions.
Collapse
Affiliation(s)
- M D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - C L Johnson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - B P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - J G Georgiadis
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - E E W Van Houten
- Department of Mechanical Engineering, University de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - A J Pattison
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - J B Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03755
| | - K D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03755
| |
Collapse
|
29
|
Vejdani-Jahromi M, Nagle M, Trahey GE, Wolf PD. Ultrasound shear wave elasticity imaging quantifies coronary perfusion pressure effect on cardiac compliance. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:465-73. [PMID: 25291788 PMCID: PMC4765376 DOI: 10.1109/tmi.2014.2360835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diastolic heart failure (DHF) is a major source of cardiac related morbidity and mortality in the world today. A major contributor to, or indicator of DHF is a change in cardiac compliance. Currently, there is no accepted clinical method to evaluate the compliance of cardiac tissue in diastolic dysfunction. Shear wave elasticity imaging (SWEI) is a novel ultrasound-based elastography technique that provides a measure of tissue stiffness. Coronary perfusion pressure affects cardiac stiffness during diastole; we sought to characterize the relationship between these two parameters using the SWEI technique. In this work, we demonstrate how changes in coronary perfusion pressure are reflected in a local SWEI measurement of stiffness during diastole. Eight Langendorff perfused isolated rabbit hearts were used in this study. Coronary perfusion pressure was changed in a randomized order (0-90 mmHg range) and SWEI measurements were recorded during diastole with each change. Coronary perfusion pressure and the SWEI measurement of stiffness had a positive linear correlation with the 95% confidence interval (CI) for the slope of 0.009-0.011 m/s/mmHg ( R(2) = 0.88 ). Furthermore, shear modulus was linearly correlated to the coronary perfusion pressure with the 95% CI of this slope of 0.035-0.042 kPa/mmHg ( R(2) = 0.83). In conclusion, diastolic SWEI measurements of stiffness can be used to characterize factors affecting cardiac compliance specifically the mechanical interaction (cross-talk) between perfusion pressure in the coronary vasculature and cardiac muscle. This relationship was found to be linear over the range of pressures tested.
Collapse
Affiliation(s)
| | - Matt Nagle
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| | - Gregg E. Trahey
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| | - Patrick D. Wolf
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| |
Collapse
|
30
|
|
31
|
Elgeti T, Knebel F, Hättasch R, Hamm B, Braun J, Sack I. Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology 2014; 271:681-7. [PMID: 24475861 DOI: 10.1148/radiol.13131605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To test whether shear-wave amplitudes (SWAs) in the myocardium measured with cardiac magnetic resonance (MR) elastography enable diagnosis of myocardial relaxation abnormalities in patients with diastolic dysfunction. MATERIALS AND METHODS Each subject gave written informed consent to participate in this institutional review board-approved prospective study. Electrocardiographically triggered SWA-based cardiac MR elastography with 24.13-Hz external vibration frequency was performed in 50 subjects grouped into asymptomatic young (n = 10, 18-39 years) and asymptomatic old (n = 10, 40-68 years) subjects and patients with echocardiographically proved mild, moderate, or severe diastolic dysfunction (n = 30, 44-73 years). SWA images were analyzed in the left ventricular (LV) region and were normalized against reference SWA of the thoracic wall. Analysis of variance with Bonferroni-corrected pairwise comparison and Pearson correlation were used for statistical evaluation. RESULTS Young and old control subjects had normalized mean LV SWA of 0.67 ± 0.04 (standard error of the mean) and 0.56 ± 0.04 (P = .18, F test), respectively. Compared with the control groups, patients with mild, moderate, and severe diastolic dysfunction displayed significantly reduced normalized mean LV SWA of 0.37 ± 0.04, 0.34 ± 0.04, and 0.29 ± 0.04 (P < .001, F test), respectively, which was inversely correlated to the severity of diastolic dysfunction (R = -0.61, P < .001). The best cutoff value to differentiate between asymptomatic volunteers and patients was 0.43, yielding an area under the receiver operating characteristic curve of 0.92, with 90% sensitivity and 89.7% specificity. CONCLUSION LV SWA measured with cardiac MR elastography provides image contrast sensitive to myocardial relaxation abnormalities and shows significantly lower values in patients with diastolic dysfunction.
Collapse
Affiliation(s)
- Thomas Elgeti
- From the Department of Radiology (T.E., B.H., I.S.), Department of Cardiology, Angiology and Pulmonology (F.K., R.H.), and Institute of Medical Informatics (J.B.), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Roubille F, Busseuil D, Merlet N, Kritikou EA, Rhéaume E, Tardif JC. Investigational drugs targeting cardiac fibrosis. Expert Rev Cardiovasc Ther 2013; 12:111-25. [DOI: 10.1586/14779072.2013.839942] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Tzschätzsch H, Hättasch R, Knebel F, Klaua R, Schultz M, Jenderka KV, Braun J, Sack I. Isovolumetric elasticity alteration in the human heart detected by in vivo time-harmonic elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2272-2278. [PMID: 24035628 DOI: 10.1016/j.ultrasmedbio.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/01/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Time harmonic elastography (THE) has recently been introduced for measurement of the periodic alteration in myocardial shear modulus based on externally induced low-frequency acoustic vibrations produced by a loudspeaker. In this study, we propose further developments of cardiac THE toward a clinical modality including integration of the vibration source into the patient bed and automated parameter extraction from harmonic shear wave amplitudes, wall motion profiles and synchronized electrocardiographic records. This method has enabled us to evaluate the delay between wall motion and wave amplitude alteration for the measurement of isovolumetric times of elasticity alteration during contraction (τ(C)) and relaxation (τ(R)) in a group of 32 healthy volunteers. On average, the wave amplitudes changed between systole and diastole by a factor of 1.7 ± 0.3, with a τ(C) of 137 ± 61 ms and a τ(R) of 68 ± 73 ms, which agrees with results obtained with the more time-consuming and expensive cardiac magnetic resonance elastography. Furthermore, because of the high sampling rate, elasto-morphometric parameters such as transition times and the area of wave amplitude-cardiac motion cycles can be processed in an automated way for the future clinical detection of myocardial relaxation abnormalities.
Collapse
Affiliation(s)
- Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Should there be sex-specific criteria for the diagnosis and treatment of heart failure? J Cardiovasc Transl Res 2013; 7:139-55. [PMID: 24214112 PMCID: PMC3935102 DOI: 10.1007/s12265-013-9514-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
All-cause mortality from cardiovascular disease is declining in the USA. However, there remains a significant difference in risk factors for disease and in mortality between men and women. For example, prevalence and outcomes for heart failure with preserved ejection fraction differ between men and women. The reasons for these differences are multifactorial, but reflect, in part, an incomplete understanding of sex differences in the etiology of cardiovascular diseases and a failure to account for sex differences in pre-clinical studies including those designed to develop new diagnostic and treatment modalities. This review focuses on the underlying physiology of these sex differences and provides evidence that inclusion of female animals in pre-clinical studies of heart failure and in development of imaging modalities to assess cardiac function might provide new information from which one could develop sex-specific diagnostic criteria and approaches to treatment.
Collapse
|
36
|
Garteiser P, Sahebjavaher RS, Ter Beek LC, Salcudean S, Vilgrain V, Van Beers BE, Sinkus R. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR IN BIOMEDICINE 2013; 26:1326-35. [PMID: 23712852 DOI: 10.1002/nbm.2958] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 05/16/2023]
Abstract
In MR elastography (MRE), periodic tissue motion is phase encoded using motion-encoding gradients synchronized to an externally applied periodic mechanical excitation. Conventional methods result in extended scan time for quality phase images, thus limiting the broad application of MRE in the clinic. For practical scan times, researchers have been relying on one-dimensional or two-dimensional motion-encoding, low-phase sampling and a limited number of slices, and artifact-prone, single-shot, echo planar imaging (EPI) readout. Here, we introduce a rapid multislice pulse sequence capable of three-dimensional motion encoding that is also suitable for simultaneously encoding motion with multiple frequency components. This sequence is based on a gradient-recalled echo (GRE) sequence and exploits the principles of fractional encoding. This GRE MRE pulse sequence was validated as capable of acquiring full three-dimensional motion encoding of isotropic voxels in a large volume within less than a minute. This sequence is suitable for monofrequency and multifrequency MRE experiments. In homogeneous paraffin phantoms, the eXpresso sequence yielded similar storage modulus values as those obtained with conventional methods, although with markedly reduced variances (7.11 ± 0.26 kPa for GRE MRE versus 7.16 ± 1.33 kPa for the conventional spin-echo EPI sequence). The GRE MRE sequence obtained better phase-to-noise ratios than the equivalent spin-echo EPI sequence (matched for identical acquisition time) in both paraffin phantoms and in vivo data in the liver (59.62 ± 11.89 versus 27.86 ± 3.81, 61.49 ± 14.16 versus 24.78 ± 2.48 and 58.23 ± 10.39 versus 23.48 ± 2.91 in the X, Y and Z components, respectively, in the case of liver experiments). Phase-to-noise ratios were similar between GRE MRE used in monofrequency or multifrequency experiments (75.39 ± 14.93 versus 86.13 ± 18.25 at 28 Hz, 71.52 ± 24.74 versus 86.96 ± 30.53 at 56 Hz and 95.60 ± 36.96 versus 61.35 ± 26.25 at 84Hz, respectively).
Collapse
|
37
|
Chen J, Yin M, Glaser KJ, Talwalkar JA, Ehman RL. MR elastography of liver disease: State of the art. APPLIED RADIOLOGY 2013. [DOI: 10.37549/ar1982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Chen J, Yin M, Glaser KJ, Talwalkar JA, Ehman RL. MR Elastography of Liver Disease: State of the Art. APPLIED RADIOLOGY 2013; 42:5-12. [PMID: 26366024 PMCID: PMC4564016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
39
|
Périé D, Dahdah N, Foudis A, Curnier D. Multi-parametric MRI as an indirect evaluation tool of the mechanical properties of in-vitro cardiac tissues. BMC Cardiovasc Disord 2013; 13:24. [PMID: 23537250 PMCID: PMC3617013 DOI: 10.1186/1471-2261-13-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/20/2013] [Indexed: 11/21/2022] Open
Abstract
Background Early detection of heart failure is essential to effectively reduce related mortality. The quantification of the mechanical properties of the myocardium, a primordial indicator of the viability of the cardiac tissue, is a key element in patient’s care. Despite an incremental utilization of multi-parametric magnetic resonance imaging (MRI) for cardiac tissue characteristics and function, the link between multi-parametric MRI and the mechanical properties of the heart has not been established. We sought to determine the parametric relationship between the myocardial mechanical properties and the MR parameters. The specific aim was to develop a reproducible evaluative quantitative tool of the mechanical properties of cardiac tissue using multi-parametric MRI associated to principal component analysis. Methods Samples from porcine hearts were submitted to a multi-parametric MRI acquisition followed by a uniaxial tensile test. Multi linear regressions were performed between dependent (Young’s modulus E) and independent (relaxation times T1, T2 and T2*, magnetization transfer ratio MTR, apparent diffusion coefficient ADC and fractional anisotropy FA) variables. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Results Values of 46.1±12.7 MPa for E, 729±21 ms for T1, 61±6 ms for T2, 26±7 for T2*, 35±5% for MTRx100, 33.8±4.7 for FAx10-2, and 5.85±0.21 mm2/s for ADCx10-4 were measured. Multi linear regressions showed that only 45% of E can be explained by the MRI parameters. The principal component analysis reduced our seven variables to two principal components with a cumulative variability of 63%, which increased to 80% when considering the third principal component. Conclusions The proposed multi-parametric MRI protocol associated to principal component analysis is a promising tool for the evaluation of mechanical properties within the left ventricle in the in vitro porcine model. Our in vitro experiments will now allow us focused in vivo testing on healthy and infracted hearts in order to determine useful quantitative MR-based biomarkers.
Collapse
Affiliation(s)
- Delphine Périé
- École Polytechnique, Mechanical Engineering, Montréal, QC, Canada.
| | | | | | | |
Collapse
|
40
|
Urban MW, Pislaru C, Nenadic IZ, Kinnick RR, Greenleaf JF. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:247-61. [PMID: 23060325 PMCID: PMC3562367 DOI: 10.1109/tmi.2012.2222656] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb wave dispersion ultrasound vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50-400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ(1), and viscosity, μ(2) as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle.
Collapse
Affiliation(s)
- Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
41
|
Kolipaka A, Aggarwal SR, McGee KP, Anavekar N, Manduca A, Ehman RL, Araoz PA. Magnetic resonance elastography as a method to estimate myocardial contractility. J Magn Reson Imaging 2012; 36:120-7. [PMID: 22334349 PMCID: PMC3355216 DOI: 10.1002/jmri.23616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 01/13/2012] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine whether increasing epinephrine infusion in an in vivo pig model is associated with an increase in end-systolic magnetic resonance elastography (MRE)-derived effective stiffness. MATERIALS AND METHODS Finite element modeling (FEM) was performed to determine the range of myocardial wall thicknesses that could be used for analysis. Then MRE was performed on five pigs to measure the end-systolic effective stiffness with epinephrine infusion. Epinephrine was continuously infused intravenously in each pig to increase the heart rate in increments of 20%. For each such increase end-systolic effective stiffness was measured using MRE. In each pig, Student's t-test was used to compare effective end-systolic stiffness at baseline and at initial infusion of epinephrine. Least-square linear regression was performed to determine the correlation between normalized end-systolic effective stiffness and increase in heart rate with epinephrine infusion. RESULTS FEM showed that phase gradient inversion could be performed on wall thickness ≈≥1.5 cm. In pigs, effective end-systolic stiffness significantly increased from baseline to the first infusion in all pigs (P = 0.047). A linear correlation was found between normalized effective end-systolic stiffness and percent increase in heart rate by epinephrine infusion with R(2) ranging from 0.86-0.99 in four pigs. In one of the pigs the R(2) value was 0.1. A linear correlation with R(2) = 0.58 was found between normalized effective end-systolic stiffness and percent increase in heart rate when pooling data points from all pigs. CONCLUSION Noninvasive MRE-derived end-systolic effective myocardial stiffness may be a surrogate for myocardial contractility.
Collapse
Affiliation(s)
| | | | | | - Nandan Anavekar
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | | | | | | |
Collapse
|
42
|
Kolipaka A, Woodrum D, Araoz PA, Ehman RL. MR elastography of the in vivo abdominal aorta: a feasibility study for comparing aortic stiffness between hypertensives and normotensives. J Magn Reson Imaging 2012; 35:582-6. [PMID: 22045617 PMCID: PMC3401065 DOI: 10.1002/jmri.22866] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To demonstrate feasibility of using MR elastography (MRE) to identify hypertensive changes in the abdominal aorta when compared with normotensives based on the stiffness measurements. MATERIALS AND METHODS MRE was performed on eight volunteers (four normotensives and four hypertensives) to measure the effective stiffness of the abdominal aorta. MRE wave images are directionally filtered and phase gradient analysis was performed to determine the stiffness of the aorta. Student's t-test was performed to determine significant difference in stiffness measurements between normotensives and hypertensives. RESULTS The normotensive group demonstrated a mean abdominal aortic stiffness of 3.7 ± 0.8 kPa, while the controlled-hypertensive demonstrated a mean abdominal aortic stiffness of 9.3 ± 1.9 kPa. MRE effective stiffness of abdominal aorta in hypertensives was significantly greater than that of normotensives with p = 0.02. CONCLUSION Feasibility of in vivo aortic MRE is demonstrated. Hypertensives have significantly higher aortic stiffness assessed through MRE than normotensives.
Collapse
|
43
|
Elgeti T, Tzschätzsch H, Hirsch S, Krefting D, Klatt D, Niendorf T, Braun J, Sack I. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes. Magn Reson Med 2012; 67:919-24. [DOI: 10.1002/mrm.24185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/18/2011] [Accepted: 01/05/2012] [Indexed: 12/27/2022]
|
44
|
Abstract
Often compared to the practice of manual palpation, magnetic resonance elastography is an emerging technology for quantitatively assessing the mechanical properties of tissue as a basis for characterizing disease. The potential of MRE as a diagnostic tool is rooted in the fact that normal and diseased tissues often differ significantly in terms of their intrinsic mechanical properties. MRE uses magnetic resonance imaging (MRI) in conjunction with the application of mechanical shear waves to probe tissue mechanics. This process can be broken down into three essential steps: inducing shear waves in the tissue,imaging the propagating shear waves with MRI, andanalyzing the wave data to generate quantitative images of tissue stiffness MRE has emerged as a safe, reliable and noninvasive method for staging hepatic liver fibrosis, and is now used in some locations as an alternative to biopsy. MRE is also being used in the ongoing investigations of numerous other organs and tissues, including, for example, the spleen, kidney, pancreas, brain, heart, breast, skeletal muscle, prostate, vasculature, lung, spinal cord, eye, bone, and cartilage. In the article that follows, some fundamental techniques and applications of MRE are summarized.
Collapse
|
45
|
McGrath DM, Foltz WD, Al-Mayah A, Niu CJ, Brock KK. Quasi-static magnetic resonance elastography at 7 T to measure the effect of pathology before and after fixation on tissue biomechanical properties. Magn Reson Med 2011; 68:152-65. [DOI: 10.1002/mrm.23223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 01/22/2023]
|
46
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
47
|
Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation. Invest Radiol 2011; 45:782-7. [PMID: 20829709 DOI: 10.1097/rli.0b013e3181ec4b63] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To assess the potential of cardiac magnetic resonance elastography (MRE) for elasticity-based detection of abnormal left ventricular (LV) relaxation. MATERIALS AND METHODS Cardiac MRE was performed in 3 groups: young volunteers (n = 11; mean age, 31.7 years), older volunteers (n = 5; mean age, 54.8 years), and a group with relaxation abnormalities (n = 11; mean age, 58 years) identified by transthoracic echocardiography. Cine MR imaging served to measure LV volumes and global LV systolic function. Wave-amplitude-sensitive electrocardiograph-gated steady-state MRE was performed using an extended piston driver attached to the anterior chest wall. Phase contrast shear wave images were acquired in all 3 Cartesian components and combined to generate amplitude maps. This was done using the time-gradient operator for linear high-pass filtering and phase unwrapping followed by temporal Fourier transformation for extracting externally induced 24.13-Hz shear oscillations from intrinsic motion and blood flow. Amplitudes were evaluated in the left ventricle and normalized by wave amplitudes outside the heart, adjacent to the right ventricle. RESULTS One patient and 1 young volunteer had to be excluded from final analysis because of considerable body movement during the acquisition of the MRE scans. Mean wave amplitudes in the remaining subjects were 0.22 ± 0.05 mm in young volunteers, 0.23 ± 0.09 in older volunteers, and 0.14 ± 0.03 mm in patients. The mean ratio of amplitudes inside the ventricle to the anterior chest wall was 0.62 ± 0.15 for young volunteers, 0.50 ± 0.09 for older volunteers, and 0.33 ± 0.08 for patients. CONCLUSION MRE identifies significantly reduced LV shear wave amplitudes in patients with mild relaxation abnormality. Thus, cardiac MRE provides a promising modality for an elasticity-based diagnosis of dysfunctional myocardial relaxation.
Collapse
|
48
|
Warner L, Yin M, Glaser KJ, Woollard JA, Carrascal CA, Korsmo MJ, Crane JA, Ehman RL, Lerman LO. Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Invest Radiol 2011; 46:509-14. [PMID: 21467945 PMCID: PMC3128234 DOI: 10.1097/rli.0b013e3182183a95] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES : Magnetic resonance elastography (MRE) allows noninvasive assessment of tissue stiffness in vivo. Renal arterial stenosis (RAS), a narrowing of the renal artery, promotes irreversible tissue fibrosis that threatens kidney viability and may elevate tissue stiffness. However, kidney stiffness may also be affected by hemodynamic factors. This study tested the hypothesis that renal blood flow (RBF) is an important determinant of renal stiffness as measured by MRE. MATERIAL AND METHODS : In 6 anesthetized pigs MRE studies were performed to determine cortical and medullary elasticity during acute graded decreases in RBF (by 20%, 40%, 60%, 80%, and 100% of baseline) achieved by a vascular occluder. Three sham-operated swine served as time control. Additional pigs were studied with MRE 6 weeks after induction of chronic unilateral RAS (n = 6) or control (n = 3). Kidney fibrosis was subsequently evaluated histologically by trichrome staining. RESULTS : During acute RAS the stenotic cortex stiffness decreased (from 7.4 ± 0.3 to 4.8 ± 0.6 kPa, P = 0.02 vs. baseline) as RBF decreased. Furthermore, in pigs with chronic RAS (80% ± 5.4% stenosis) in which RBF was decreased by 60% ± 14% compared with controls, cortical stiffness was not significantly different from normal (7.4 ± 0.3 vs. 7.6 ± 0.3 kPa, P = 0.3), despite histologic evidence of renal tissue fibrosis. CONCLUSION : Hemodynamic variables modulate kidney stiffness measured by MRE and may mask the presence of fibrosis. These results suggest that kidney turgor should be considered during interpretation of elasticity assessments.
Collapse
Affiliation(s)
- Lizette Warner
- The Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin J. Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John A. Woollard
- The Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Michael J. Korsmo
- The Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - John A. Crane
- The Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lilach O. Lerman
- The Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
McGee KP, Lake D, Mariappan Y, Hubmayr RD, Manduca A, Ansell K, Ehman RL. Calculation of shear stiffness in noise dominated magnetic resonance elastography data based on principal frequency estimation. Phys Med Biol 2011; 56:4291-309. [PMID: 21701049 PMCID: PMC3144863 DOI: 10.1088/0031-9155/56/14/006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic resonance elastography (MRE) is a non-invasive phase-contrast-based method for quantifying the shear stiffness of biological tissues. Synchronous application of a shear wave source and motion encoding gradient waveforms within the MRE pulse sequence enable visualization of the propagating shear wave throughout the medium under investigation. Encoded shear wave-induced displacements are then processed to calculate the local shear stiffness of each voxel. An important consideration in local shear stiffness estimates is that the algorithms employed typically calculate shear stiffness using relatively high signal-to-noise ratio (SNR) MRE images and have difficulties at an extremely low SNR. A new method of estimating shear stiffness based on the principal spatial frequency of the shear wave displacement map is presented. Finite element simulations were performed to assess the relative insensitivity of this approach to decreases in SNR. Additionally, ex vivo experiments were conducted on normal rat lungs to assess the robustness of this approach in low SNR biological tissue. Simulation and experimental results indicate that calculation of shear stiffness by the principal frequency method is less sensitive to extremely low SNR than previously reported MRE inversion methods but at the expense of loss of spatial information within the region of interest from which the principal frequency estimate is derived.
Collapse
Affiliation(s)
- K P McGee
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang H, Weaver JB, Perreard II, Doyley MM, Paulsen KD. A three-dimensional quality-guided phase unwrapping method for MR elastography. Phys Med Biol 2011; 56:3935-52. [PMID: 21666289 DOI: 10.1088/0031-9155/56/13/012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magnetic resonance elastography (MRE) uses accumulated phases that are acquired at multiple, uniformly spaced relative phase offsets, to estimate harmonic motion information. Heavily wrapped phase occurs when the motion is large and unwrapping procedures are necessary to estimate the displacements required by MRE. Two unwrapping methods were developed and compared in this paper. The first method is a sequentially applied approach. The three-dimensional MRE phase image block for each slice was processed by two-dimensional unwrapping followed by a one-dimensional phase unwrapping approach along the phase-offset direction. This unwrapping approach generally works well for low noise data. However, there are still cases where the two-dimensional unwrapping method fails when noise is high. In this case, the baseline of the corrupted regions within an unwrapped image will not be consistent. Instead of separating the two-dimensional and one-dimensional unwrapping in a sequential approach, an interleaved three-dimensional quality-guided unwrapping method was developed to combine both the two-dimensional phase image continuity and one-dimensional harmonic motion information. The quality of one-dimensional harmonic motion unwrapping was used to guide the three-dimensional unwrapping procedures and it resulted in stronger guidance than in the sequential method. In this work, in vivo results generated by the two methods were compared.
Collapse
Affiliation(s)
- Huifang Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|