1
|
Mishra A, Cleveland RO. Rheological properties of porcine organs: measurements and fractional viscoelastic model. Front Bioeng Biotechnol 2024; 12:1386955. [PMID: 39148944 PMCID: PMC11324450 DOI: 10.3389/fbioe.2024.1386955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
The rheological properties of porcine heart, kidney, liver and brain were measured using dynamic oscillatory shear tests over a range of frequencies and shear strains. Frequency sweep tests were performed from 0.1 Hz to a maximum of 9.5 Hz at a shear strain of 0.1%, and strain sweep tests were carried out from 0.01% to 10% at 1 Hz. The effect of pre-compression of samples up to 10% axial strain was considered. The experimental measurements were fit to a Semi-Fractional Kelvin Voight (S-FKV) model. The model was then used to predict the stress relaxation in response to a step strain of 0.1%. The prediction was compared to experimental relaxation data for the porcine organ samples, and the results agreed to within 30%. In conclusion, this study measured the rheological properties of porcine organs and used a fractional viscoelastic model to describe the response in frequency and time domain.
Collapse
Affiliation(s)
- Aadarsh Mishra
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Zampini MA, Guidetti M, Royston TJ, Klatt D. Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and low magnetic field intensity. J Mech Behav Biomed Mater 2021; 120:104587. [PMID: 34034077 DOI: 10.1016/j.jmbbm.2021.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique which involves motion-encoding MRI for the estimation of the shear viscoelastic properties of soft tissues through the study of shear wave propagation. The technique has been found informative for disease diagnosis, as well as for monitoring of the effects of therapies. The development of MRE and its validation have been supported by the use of tissue-mimicking phantoms. In this paper we present our new MRE protocol using a low magnetic field tabletop MRI device at 0.5 T and sinusoidal uniaxial excitation in a geometrical focusing condition. Results obtained for gelatin are compared to those previously obtained using high magnetic field MRE at 11.7 T. A multi-frequency investigation is also provided via a comparison of commonly used rheological models: Maxwell, Springpot, Voigt, Zener, Jeffrey, fractional Voigt and fractional Zener. Complex shear modulus values were comparable when processed from images acquired with the tabletop low field scanner and the high field scanner. This study serves as a validation of the presented tabletop MRE protocol and paves the way for MRE experiments on ex-vivo tissue samples in both normal and pathological conditions.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA; MR Solutions Ltd, Ashbourne House, Old Portsmouth Rd, Guildford, United Kingdom; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - Martina Guidetti
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thomas J Royston
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Dieter Klatt
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
3
|
Neumann W, Bichert A, Fleischhauer J, Stern A, Figuli R, Wilhelm M, Schad LR, Zöllner FG. A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom. PLoS One 2018; 13:e0205442. [PMID: 30296308 PMCID: PMC6175527 DOI: 10.1371/journal.pone.0205442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
This work demonstrates a new method for the generation of mechanical shear wave during magnetic resonance elastography (MRE) that creates greater forces at higher vibrational frequencies as opposed to conventionally used pneumatic transducers. We developed an MR-compatible pneumatic turbine with an eccentric mass that creates a sinusoidal centrifugal force. The turbine was assessed with respect to its technical parameters and evaluated for MRE on a custom-made anthropomorphic prostate phantom. The silicone-based tissue-mimicking materials of the phantom were selected with regard to their complex shear moduli examined by rheometric testing. The tissue-mimicking materials closely matched human soft tissue elasticity values with a complex shear modulus ranging from 3.21 kPa to 7.29 kPa. We acquired MRE images on this phantom at 3 T with actuation frequencies of 50, 60 Hz, 70 Hz, and 80 Hz. The turbine generated vibrational wave amplitudes sufficiently large to entirely penetrate the phantoms during the feasibility study. Increased wave length in the stiffer inclusions compared to softer background material were detected. Our initial results suggest that silicone-based phantoms are useful for the evaluation of elasticities during MRE. Furthermore, our turbine seems suitable for the mechanical assessment of soft tissue during MRE.
Collapse
Affiliation(s)
- Wiebke Neumann
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Bichert
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonas Fleischhauer
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Stern
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roxana Figuli
- Institute for Chemical Technology and Polymer Chemistry of Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry of Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Lothar R. Schad
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G. Zöllner
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Khan S, Fakhouri F, Majeed W, Kolipaka A. Cardiovascular magnetic resonance elastography: A review. NMR IN BIOMEDICINE 2018; 31:e3853. [PMID: 29193358 PMCID: PMC5975119 DOI: 10.1002/nbm.3853] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 05/19/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. These cardiovascular diseases are associated with mechanical changes in the myocardium and aorta. It is known that stiffness is altered in many diseases, including the spectrum of ischemia, diastolic dysfunction, hypertension and hypertrophic cardiomyopathy. In addition, the stiffness of the aortic wall is altered in multiple diseases, including hypertension, coronary artery disease and aortic aneurysm formation. For example, in diastolic dysfunction in which the ejection fraction is preserved, stiffness can potentially be an important biomarker. Similarly, in aortic aneurysms, stiffness can provide valuable information with regard to rupture potential. A number of studies have addressed invasive and non-invasive approaches to test and measure the mechanical properties of the myocardium and aorta. One of the non-invasive approaches is magnetic resonance elastography (MRE). MRE is a phase-contrast magnetic resonance imaging technique that measures tissue stiffness non-invasively. This review article highlights the technical details and application of MRE in the quantification of myocardial and aortic stiffness in different disease states.
Collapse
Affiliation(s)
- Saad Khan
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Faisal Fakhouri
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Waqas Majeed
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Miller R, Kolipaka A, Nash MP, Young AA. Relative identifiability of anisotropic properties from magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3848. [PMID: 29106765 PMCID: PMC5936684 DOI: 10.1002/nbm.3848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 05/24/2023]
Abstract
Although magnetic resonance elastography (MRE) has been used to estimate isotropic stiffness in the heart, myocardium is known to have anisotropic properties. This study investigated the determinability of global transversely isotropic material parameters using MRE and finite-element modeling (FEM). A FEM-based material parameter identification method, using a displacement-matching objective function, was evaluated in a gel phantom and simulations of a left ventricular (LV) geometry with a histology-derived fiber field. Material parameter estimation was performed in the presence of Gaussian noise. Parameter sweeps were analyzed and characteristics of the Hessian matrix at the optimal solution were used to evaluate the determinability of each constitutive parameter. Four out of five material stiffness parameters (Young's modulii E1 and E3 , shear modulus G13 and damping coefficient s), which describe a transversely isotropic linear elastic material, were well determined from the MRE displacement field using an iterative FEM inversion method. However, the remaining parameter, Poisson's ratio, was less identifiable. In conclusion, Young's modulii, shear modulii and damping can theoretically be well determined from MRE data, but Poisson's ratio is not as well determined and could be set to a reasonable value for biological tissue (close to 0.5).
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Engineering Science, University of Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
6
|
Feng Y, Zhu M, Qiu S, Shen P, Ma S, Zhao X, Hu CH, Guo L. A multi-purpose electromagnetic actuator for magnetic resonance elastography. Magn Reson Imaging 2018; 51:29-34. [DOI: 10.1016/j.mri.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/15/2018] [Indexed: 01/17/2023]
|
7
|
Solamen LM, McGarry MD, Tan L, Weaver JB, Paulsen KD. Phantom evaluations of nonlinear inversion MR elastography. Phys Med Biol 2018; 63:145021. [PMID: 29877194 PMCID: PMC6095192 DOI: 10.1088/1361-6560/aacb08] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study evaluated non-linear inversion MRE (NLI-MRE) based on viscoelastic governing equations to determine its sensitivity to small, low contrast inclusions and interface changes in shear storage modulus and damping ratio. Reconstruction parameters identical to those used in recent in vivo MRE studies of mechanical property variations in small brain structures were applied. NLI-MRE was evaluated on four phantoms with contrast in stiffness and damping ratio. Image contrast to noise ratio was assessed as a function of inclusion diameter and property contrast, and edge and line spread functions were calculated as measures of imaging resolution. Phantoms were constructed from silicone, agar, and tofu materials. Reconstructed property estimates were compared with independent mechanical testing using dynamic mechanical analysis (DMA). The NLI-MRE technique detected inclusions as small as 8 mm with a stiffness contrast as low as 14%. Storage modulus images also showed an interface edge response distance of 11 mm. Damping ratio images distinguished inclusions with a diameter as small as 8 mm, and yielded an interface edge response distance of 10 mm. Property differences relative to DMA tests were in the 15%-20% range in most cases. In this study, NLI-MRE storage modulus estimates resolved the smallest inclusion with the lowest stiffness contrast, and spatial resolution of attenuation parameter images was quantified for the first time. These experiments and image quality metrics establish quantitative guidelines for the accuracy expected in vivo for MRE images of small brain structures, and provide a baseline for evaluating future improvements to the NLI-MRE pipeline.
Collapse
Affiliation(s)
| | | | - Likun Tan
- Thayer School of Engineering, Dartmouth College
| | - John B. Weaver
- Thayer School of Engineering, Dartmouth College
- Department of Radiology, Dartmouth Hitchcock Medical Center
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center
| |
Collapse
|
8
|
Miller R, Kolipaka A, Nash MP, Young AA. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34. [PMID: 29528568 PMCID: PMC5993646 DOI: 10.1002/cnm.2979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry.
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martyn P. Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
da Silveira JS, Scansen BA, Wassenaar PA, Raterman B, Eleswarpu C, Jin N, Mo X, White RD, Bonagura JD, Kolipaka A. Quantification of myocardial stiffness using magnetic resonance elastography in right ventricular hypertrophy: initial feasibility in dogs. Magn Reson Imaging 2015; 34:26-34. [PMID: 26471513 DOI: 10.1016/j.mri.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Myocardial stiffness is an important determinant of cardiac function and is currently invasively and indirectly assessed by catheter angiography. This study aims to demonstrate the feasibility of quantifying right ventricular (RV) stiffness noninvasively using cardiac magnetic resonance elastography (CMRE) in dogs with severe congenital pulmonary valve stenosis (PVS) causing RV hypertrophy, and compare it to remote myocardium in the left ventricle (LV). Additionally, correlations between stiffness and selected pathophysiologic indicators from transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging were explored. METHODS In-vivo CMRE was performed on nine dogs presenting severe congenital PVS using a 1.5T MRI scanner. T1-MOLLI, T2-prepared-bSSFP, gated-cine GRE-MRE and LGE (PSIR) sequences were used to acquire a basal short-axis slice. RV and LV-free-wall (FW) stiffness measurements were compared against each other and also correlated to ventricular mass, RV and LV FW thickness, T1 and T2 relaxation times, and extracellular volume fraction (ECV). Peak transpulmonary pressure gradient and myocardial strain were also acquired on eight dogs by TTE and correlated to RV-FW systolic stiffness. Potential correlations were evaluated by Spearman's rho (rs). RESULTS RV-FW stiffness was found to be significantly higher than the LV-FW stiffness both during end-systole (ES) (p=0.002) and end-diastole (ED) (p=0.029). Significant correlations were observed between RV-FW ES and LV-FW ED stiffness versus ECV (rs=0.75; p-value=0.05). Non-significant moderate correlations were found between LV-FW ES (rs=0.54) and RV-FW ED (rs=0.61) stiffness versus ECV. Furthermore, non-significant correlations were found between RV or LV-FW stiffness and the remaining variables (rs<0.54; p-value>0.05). CONCLUSION This study demonstrates the feasibility of determining RV stiffness. The positive correlations between stiffness and ECV might indicate some interdependence between stiffness and myocardial extracellular matrix alterations. However, further studies are warranted to validate our initial observations.
Collapse
Affiliation(s)
- Juliana S da Silveira
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brian A Scansen
- Department of Veterinary Clinical Sciences, OSU College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter A Wassenaar
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brian Raterman
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chethan Eleswarpu
- College of Biomedical Engineering, The Ohio State University, Columbus, OH, UTSA
| | - Ning Jin
- Siemens Medical Solutions, Malvern, PA USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Richard D White
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, OSU College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John D Bonagura
- Department of Veterinary Clinical Sciences, OSU College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Arunark Kolipaka
- Department of Radiology, OSU College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, OSU College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Kenyhercz WE, Raterman B, Illapani VSP, Dowell J, Mo X, White RD, Kolipaka A. Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age. Magn Reson Med 2015; 75:1920-6. [PMID: 26096227 DOI: 10.1002/mrm.25719] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE To assess MR elastography (MRE)-derived aortic shear stiffness (μMRE ) measurements for: 1) reproducibility, 2) comparison to pulse wave velocity, 3) changes over the cardiac cycle, and 4) relationship with age. METHODS Cardiac-gated aortic MRE was performed on 20 healthy volunteers (aged 20-73 years). For assessing reproducibility of stiffness measurements, scans were repeated per volunteer. MRE wave images were analyzed to obtain stiffness of the abdominal aorta across the cardiac cycle, and comparisons were made with subject age. RESULTS Analysis of concordance correlation coefficient between scans 1 and 2 showed that rc = 0.86 (95% confidence interval, 0.77, 0.94) with P < 0.0001. Significantly higher μMRE was observed for all volunteers during end-systole when compared to end-diastole (P < 0.0001). μMRE increased with age; end-systolic stiffness demonstrated a relatively stronger correlation with age (r = 0.62, P = 0.003) when compared to end-diastolic stiffness (r = 0.51, P = 0.023); and the slopes of end-systole and end-diastole were found to be significantly different (P = 0.011). [Formula: see text] at end-systole and end-diastole correlated linearly with pulse wave velocity, with an r = 0.54 (P = 0.013) and r = 0.58 (P = 0.008), respectively. CONCLUSION The results of this study indicate that MRE-derived aortic shear stiffness measurements are robust (reproducible and comparable to similar techniques). Mean μMRE was higher during end-systole when compared to end-diastole. μMRE was found to increase with age and showed a stronger correlation with end-systolic stiffness than with end-diastolic stiffness.
Collapse
Affiliation(s)
- William E Kenyhercz
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian Raterman
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Sita Priyanka Illapani
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Joshua Dowell
- Department of Internal Medicine, Division of Cardiovascular Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Wassenaar PA, Eleswarpu CN, Schroeder SA, Mo X, Raterman BD, White RD, Kolipaka A. Measuring age-dependent myocardial stiffness across the cardiac cycle using MR elastography: A reproducibility study. Magn Reson Med 2015; 75:1586-93. [PMID: 26010456 DOI: 10.1002/mrm.25760] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using MR elastography (MRE) and to determine its correlation with age. METHODS Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. RESULTS Concordance correlation coefficient revealed good interscan agreement with rc of 0.77, with P-value < 0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared with end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. CONCLUSION CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared with ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two.
Collapse
Affiliation(s)
- Peter A Wassenaar
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chethanya N Eleswarpu
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Samuel A Schroeder
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Brian D Raterman
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
12
|
|
13
|
|
14
|
Garteiser P, Sahebjavaher RS, Ter Beek LC, Salcudean S, Vilgrain V, Van Beers BE, Sinkus R. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR IN BIOMEDICINE 2013; 26:1326-35. [PMID: 23712852 DOI: 10.1002/nbm.2958] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 05/16/2023]
Abstract
In MR elastography (MRE), periodic tissue motion is phase encoded using motion-encoding gradients synchronized to an externally applied periodic mechanical excitation. Conventional methods result in extended scan time for quality phase images, thus limiting the broad application of MRE in the clinic. For practical scan times, researchers have been relying on one-dimensional or two-dimensional motion-encoding, low-phase sampling and a limited number of slices, and artifact-prone, single-shot, echo planar imaging (EPI) readout. Here, we introduce a rapid multislice pulse sequence capable of three-dimensional motion encoding that is also suitable for simultaneously encoding motion with multiple frequency components. This sequence is based on a gradient-recalled echo (GRE) sequence and exploits the principles of fractional encoding. This GRE MRE pulse sequence was validated as capable of acquiring full three-dimensional motion encoding of isotropic voxels in a large volume within less than a minute. This sequence is suitable for monofrequency and multifrequency MRE experiments. In homogeneous paraffin phantoms, the eXpresso sequence yielded similar storage modulus values as those obtained with conventional methods, although with markedly reduced variances (7.11 ± 0.26 kPa for GRE MRE versus 7.16 ± 1.33 kPa for the conventional spin-echo EPI sequence). The GRE MRE sequence obtained better phase-to-noise ratios than the equivalent spin-echo EPI sequence (matched for identical acquisition time) in both paraffin phantoms and in vivo data in the liver (59.62 ± 11.89 versus 27.86 ± 3.81, 61.49 ± 14.16 versus 24.78 ± 2.48 and 58.23 ± 10.39 versus 23.48 ± 2.91 in the X, Y and Z components, respectively, in the case of liver experiments). Phase-to-noise ratios were similar between GRE MRE used in monofrequency or multifrequency experiments (75.39 ± 14.93 versus 86.13 ± 18.25 at 28 Hz, 71.52 ± 24.74 versus 86.96 ± 30.53 at 56 Hz and 95.60 ± 36.96 versus 61.35 ± 26.25 at 84Hz, respectively).
Collapse
|
15
|
Kolipaka A, Aggarwal SR, McGee KP, Anavekar N, Manduca A, Ehman RL, Araoz PA. Magnetic resonance elastography as a method to estimate myocardial contractility. J Magn Reson Imaging 2012; 36:120-7. [PMID: 22334349 PMCID: PMC3355216 DOI: 10.1002/jmri.23616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 01/13/2012] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine whether increasing epinephrine infusion in an in vivo pig model is associated with an increase in end-systolic magnetic resonance elastography (MRE)-derived effective stiffness. MATERIALS AND METHODS Finite element modeling (FEM) was performed to determine the range of myocardial wall thicknesses that could be used for analysis. Then MRE was performed on five pigs to measure the end-systolic effective stiffness with epinephrine infusion. Epinephrine was continuously infused intravenously in each pig to increase the heart rate in increments of 20%. For each such increase end-systolic effective stiffness was measured using MRE. In each pig, Student's t-test was used to compare effective end-systolic stiffness at baseline and at initial infusion of epinephrine. Least-square linear regression was performed to determine the correlation between normalized end-systolic effective stiffness and increase in heart rate with epinephrine infusion. RESULTS FEM showed that phase gradient inversion could be performed on wall thickness ≈≥1.5 cm. In pigs, effective end-systolic stiffness significantly increased from baseline to the first infusion in all pigs (P = 0.047). A linear correlation was found between normalized effective end-systolic stiffness and percent increase in heart rate by epinephrine infusion with R(2) ranging from 0.86-0.99 in four pigs. In one of the pigs the R(2) value was 0.1. A linear correlation with R(2) = 0.58 was found between normalized effective end-systolic stiffness and percent increase in heart rate when pooling data points from all pigs. CONCLUSION Noninvasive MRE-derived end-systolic effective myocardial stiffness may be a surrogate for myocardial contractility.
Collapse
Affiliation(s)
| | | | | | - Nandan Anavekar
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | | | | | | |
Collapse
|
16
|
Leclerc GE, Debernard L, Foucart F, Robert L, Pelletier KM, Charleux F, Ehman R, Tho MCHB, Bensamoun SF. Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with magnetic resonance elastography (MRE). J Biomech 2012; 45:952-7. [PMID: 22284992 PMCID: PMC3310328 DOI: 10.1016/j.jbiomech.2012.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/10/2011] [Accepted: 01/11/2012] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE.
Collapse
Affiliation(s)
- Gwladys E. Leclerc
- Université de Technologie de Compiègne, UMR CNRS 6600, BioMécanique etBioIngénierie, France
| | - Laetitia Debernard
- Université de Technologie de Compiègne, UMR CNRS 6600, BioMécanique etBioIngénierie, France
| | - Félix Foucart
- Université de Technologie de Compiègne, UMR CNRS 6253, Laboratoire Roberval de Mécanique, France
| | | | - Kay M. Pelletier
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Richard Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Sabine F. Bensamoun
- Université de Technologie de Compiègne, UMR CNRS 6600, BioMécanique etBioIngénierie, France
| |
Collapse
|
17
|
Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation. Invest Radiol 2011; 45:782-7. [PMID: 20829709 DOI: 10.1097/rli.0b013e3181ec4b63] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To assess the potential of cardiac magnetic resonance elastography (MRE) for elasticity-based detection of abnormal left ventricular (LV) relaxation. MATERIALS AND METHODS Cardiac MRE was performed in 3 groups: young volunteers (n = 11; mean age, 31.7 years), older volunteers (n = 5; mean age, 54.8 years), and a group with relaxation abnormalities (n = 11; mean age, 58 years) identified by transthoracic echocardiography. Cine MR imaging served to measure LV volumes and global LV systolic function. Wave-amplitude-sensitive electrocardiograph-gated steady-state MRE was performed using an extended piston driver attached to the anterior chest wall. Phase contrast shear wave images were acquired in all 3 Cartesian components and combined to generate amplitude maps. This was done using the time-gradient operator for linear high-pass filtering and phase unwrapping followed by temporal Fourier transformation for extracting externally induced 24.13-Hz shear oscillations from intrinsic motion and blood flow. Amplitudes were evaluated in the left ventricle and normalized by wave amplitudes outside the heart, adjacent to the right ventricle. RESULTS One patient and 1 young volunteer had to be excluded from final analysis because of considerable body movement during the acquisition of the MRE scans. Mean wave amplitudes in the remaining subjects were 0.22 ± 0.05 mm in young volunteers, 0.23 ± 0.09 in older volunteers, and 0.14 ± 0.03 mm in patients. The mean ratio of amplitudes inside the ventricle to the anterior chest wall was 0.62 ± 0.15 for young volunteers, 0.50 ± 0.09 for older volunteers, and 0.33 ± 0.08 for patients. CONCLUSION MRE identifies significantly reduced LV shear wave amplitudes in patients with mild relaxation abnormality. Thus, cardiac MRE provides a promising modality for an elasticity-based diagnosis of dysfunctional myocardial relaxation.
Collapse
|
18
|
Kolipaka A, McGee KP, Manduca A, Anavekar N, Ehman RL, Araoz PA. In vivo assessment of MR elastography-derived effective end-diastolic myocardial stiffness under different loading conditions. J Magn Reson Imaging 2011; 33:1224-8. [PMID: 21509882 PMCID: PMC3080706 DOI: 10.1002/jmri.22531] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To compare magnetic resonance elastography (MRE) effective stiffness to end-diastolic pressure at different loading conditions to demonstrate a relationship between myocardial MRE effective stiffness and end-diastolic left ventricular (LV) pressure. MATERIALS AND METHODS MRE was performed on four pigs to measure the end-diastolic effective stiffness under different loading conditions. End-diastolic pressure was increased by infusing Dextran-40 (20% of blood volume). For each infusion of Dextran-40, end-diastolic pressure was recorded and end-diastolic effective stiffness was measured using MRE. In each pig, least-square linear regression was performed to determine the correlation between end-diastolic effective stiffness and end-diastolic LV pressure. RESULTS A linear correlation was found between end-diastolic LV pressure and end-diastolic effective stiffness with R(2) ranging from 0.73-0.9. A linear correlation with R(2) = 0.26 was found between end-diastolic LV pressure and end-diastolic effective stiffness when pooling data points from all pigs. CONCLUSION End-diastolic effective myocardial stiffness increases linearly with end-diastolic LV pressure.
Collapse
Affiliation(s)
| | | | | | - Nandan Anavekar
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | | | | |
Collapse
|
19
|
Nenadic IZ, Urban MW, Mitchell SA, Greenleaf JF. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids. Phys Med Biol 2011; 56:2245-64. [PMID: 21403186 DOI: 10.1088/0031-9155/56/7/021] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Basic Ultrasound Research Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
20
|
Kolipaka A, Araoz PA, McGee KP, Manduca A, Ehman RL. Magnetic resonance elastography as a method for the assessment of effective myocardial stiffness throughout the cardiac cycle. Magn Reson Med 2010; 64:862-70. [PMID: 20578052 PMCID: PMC3035166 DOI: 10.1002/mrm.22467] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 03/10/2010] [Indexed: 12/28/2022]
Abstract
MR elastography (MRE) is a noninvasive technique in which images of externally generated waves propagating in tissue are used to measure stiffness. The first aim is to determine, from a range of driver configurations, the optimal driver for the purpose of generating waves within the heart in vivo. The second aim is to quantify the shear stiffness of normal myocardium throughout the cardiac cycle using MRE and to compare MRE stiffness to left ventricular chamber pressure in an in vivo pig model. MRE was performed in six pigs with six different driver setups, including no motion, three noninvasive drivers, and two invasive drivers. MRE wave displacement amplitudes were calculated for each driver. During the same MRI examination, left ventricular pressure and MRI-measured left ventricular volume were obtained, and MRE myocardial stiffness was calculated for 20 phases of the cardiac cycle. No discernible waves were imaged when no external motion was applied, and a single pneumatic drum driver produced higher amplitude waves than the other noninvasive drivers (P < 0.05). Pressure-volume loops overlaid onto stiffness-volume loops showed good visual agreement. Pressure and MRE-measured effective stiffness showed good correlation (R(2) = 0.84). MRE shows potential as a noninvasive method for estimating effective myocardial stiffness throughout the cardiac cycle.
Collapse
|