1
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Xie J, Li H, Zhang H, Zhao X, Shi L, Zhang M, Xiao S, Deng H, Wang K, Yang H, Sun X, Wu G, Ye C, Zhou X. Single breath-hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129 Xe MR. NMR IN BIOMEDICINE 2019; 32:e4068. [PMID: 30843292 DOI: 10.1002/nbm.4068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Pulmonary diseases usually result in changes of the blood-gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129 Xe MR via chemical shift saturation recovery (CSSR) and diffusion-weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood-gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath-hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g ), is proposed to evaluate the gas exchange function. Hyperpolarized 129 Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age-matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
Collapse
Affiliation(s)
- Junshuai Xie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianping Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Chan HF, Collier GJ, Weatherley ND, Wild JM. Comparison of in vivo lung morphometry models from 3D multiple b-value3He and129Xe diffusion-weighted MRI. Magn Reson Med 2018; 81:2959-2971. [DOI: 10.1002/mrm.27608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ho-Fung Chan
- POLARIS, Academic Unit of Radiology, Infection, Immunity & Cardiovascular Disease; University of Sheffield; Sheffield United Kingdom
| | - Guilhem J. Collier
- POLARIS, Academic Unit of Radiology, Infection, Immunity & Cardiovascular Disease; University of Sheffield; Sheffield United Kingdom
| | - Nicholas D. Weatherley
- POLARIS, Academic Unit of Radiology, Infection, Immunity & Cardiovascular Disease; University of Sheffield; Sheffield United Kingdom
- Academic Directorate of Respiratory Medicine; Sheffield Teaching Hospitals NHS Foundation Trust; Sheffield United Kingdom
| | - Jim M. Wild
- POLARIS, Academic Unit of Radiology, Infection, Immunity & Cardiovascular Disease; University of Sheffield; Sheffield United Kingdom
- Insigneo, Institute for in Silico Medicine; University of Sheffield; Sheffield United Kingdom
| |
Collapse
|
4
|
Zhang H, Xie J, Xiao S, Zhao X, Zhang M, Shi L, Wang K, Wu G, Sun X, Ye C, Zhou X. Lung morphometry using hyperpolarized
129
Xe multi‐
b
diffusion
MRI
with compressed sensing in healthy subjects and patients with
COPD. Med Phys 2018; 45:3097-3108. [DOI: 10.1002/mp.12944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Huiting Zhang
- School of Physics Huazhong University of Science and Technology Wuhan 430074China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Junshuai Xie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Ming Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Lei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Ke Wang
- Department of Magnetic Resonance Imaging Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Guangyao Wu
- Department of Magnetic Resonance Imaging Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Xianping Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Chaohui Ye
- School of Physics Huazhong University of Science and Technology Wuhan 430074China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071China
| |
Collapse
|
5
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
6
|
Yablonskiy DA, Sukstanskii AL, Quirk JD, Woods JC, Conradi MS. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 2016; 71:486-505. [PMID: 23554008 DOI: 10.1002/mrm.24729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of hyperpolarized gases ((3)He and (129)Xe) has opened the door to applications for which gaseous agents are uniquely suited-lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade-long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface-to-volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three-dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials.
Collapse
|
7
|
Walkup LL, Woods JC. Translational applications of hyperpolarized 3He and 129Xe. NMR IN BIOMEDICINE 2014; 27:1429-1438. [PMID: 24953709 DOI: 10.1002/nbm.3151] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Clinical magnetic resonance imaging of the lung is technologically challenging, yet over the past two decades hyperpolarized noble gas ((3)He and (129)Xe) imaging has demonstrated the ability to measure multiple pulmonary functional biomarkers. There is a growing need for non-ionizing, non-invasive imaging techniques due to increased concern about cancer risk from ionizing radiation, but the translation of hyperpolarized gas imaging to the pulmonary clinic has been stunted by limited access to the technology. New developments may open doors to greater access and more translation to clinical studies. Here we briefly review a few translational applications of hyperpolarized gas MRI in the contexts of ventilation, diffusion, and dissolved-phase imaging, as well as comparing and contrasting (3)He and (129)Xe gases for these applications. Simple static ventilation MRI reveals regions of the lung not participating in normal ventilation, and these defects have been observed in many pulmonary diseases. Biomarkers related to airspace size and connectivity can be quantified by apparent diffusion coefficient measurements of hyperpolarized gas, and have been shown to be more sensitive to small changes in lung morphology than standard clinical pulmonary functional tests and have been validated by quantitative histology. Parameters related to gas uptake and exchange and lung tissue density can be determined using (129)Xe dissolved-phase MRI. In most cases functional biomarkers can be determined via MRI of either gas, but for some applications one gas may be preferred, such as (3)He for long-range diffusion measurements and (129)Xe for dissolved-phase imaging. Greater access to hyperpolarized gas imaging coupled with newly developing therapeutics makes pulmonary medicine poised for a potential revolution, further adding to the prospects of personalized medicine already evidenced by advancements in molecular biology. Hyperpolarized gas researchers have the opportunity to contribute to this revolution, particularly if greater clinical application of hyperpolarized gas imaging is realized.
Collapse
Affiliation(s)
- Laura L Walkup
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
8
|
Ruppert K. Biomedical imaging with hyperpolarized noble gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:116701. [PMID: 25360484 DOI: 10.1088/0034-4885/77/11/116701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.
Collapse
|
9
|
Mugler JP, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 2013; 37:313-31. [PMID: 23355432 DOI: 10.1002/jmri.23844] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 08/29/2012] [Indexed: 11/07/2022] Open
Abstract
By permitting direct visualization of the airspaces of the lung, magnetic resonance imaging (MRI) using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized (3)He, recent contraction in the supply of (3)He and consequent increases in price have turned attention to the alternative agent, hyperpolarized (129) Xe. Compared to (3)He, (129)Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized (129)Xe comparable to those previously demonstrated using hyperpolarized (3)He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized (129)Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using (3)He. Preliminary results from methods for imaging (129) Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research laboratory.
Collapse
Affiliation(s)
- John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
10
|
Cadman RV, Lemanske RF, Evans MD, Jackson DJ, Gern JE, Sorkness RL, Fain SB. Pulmonary 3He magnetic resonance imaging of childhood asthma. J Allergy Clin Immunol 2012; 131:369-76.e1-5. [PMID: 23246019 DOI: 10.1016/j.jaci.2012.10.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) with (3)He does not require ionizing radiation and has been shown to detect regional abnormalities in lung ventilation and structure in adults with asthma, but the method has not been extended to children with asthma. Measurements of regional lung ventilation and microstructure in subjects with childhood asthma could advance our understanding of disease mechanisms. OBJECTIVE We sought to determine whether (3)He MRI in children can identify abnormalities related to the diagnosis of asthma or prior history of respiratory illness. METHODS Forty-four children aged 9 to 10 years were recruited from a birth cohort at increased risk of asthma and allergic diseases. For each subject, a time-resolved 3-dimensional image series and a 3-dimensional diffusion-weighted image were acquired in separate breathing maneuvers. The numbers and sizes of ventilation defects were scored, and regional maps and statistics of average (3)He diffusion lengths were calculated. RESULTS Children with mild-to-moderate asthma had lower average root-mean-square diffusion length (X(rms)) values (P = .004), increased regional SD of diffusion length values (P = .03), and higher defect scores (P = .03) than those without asthma. Children with histories of wheezing illness with rhinovirus infection before the third birthday had lower X(rms) values (P = .01) and higher defect scores (P = .05). CONCLUSION MRI with (3)He detected more and larger regions of ventilation defect and a greater degree of restricted gas diffusion in children with asthma compared with those seen in children without asthma. These measures are consistent with regional obstruction and smaller and more regionally variable dimensions of the peripheral airways and alveolar spaces.
Collapse
Affiliation(s)
- Robert V Cadman
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis 53705, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Dregely I, Ruset IC, Mata JF, Ketel J, Ketel S, Distelbrink J, Altes TA, Mugler JP, Miller GW, Hersman FW, Ruppert K. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers. Magn Reson Med 2012; 67:943-53. [PMID: 22213334 PMCID: PMC3771697 DOI: 10.1002/mrm.23066] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 04/15/2011] [Accepted: 06/02/2011] [Indexed: 11/10/2022]
Abstract
Hyperpolarized xenon-129 is a noninvasive contrast agent for lung MRI, which upon inhalation dissolves in parenchymal structures, thus mirroring the gas-exchange process for oxygen in the lung. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI is an implementation of the XTC MRI technique in four dimensions (three spatial dimensions plus exchange time). The aim of this study was to evaluate the sensitivity of MXTC MRI for the detection of microstructural deformations of the healthy lung in response to gravity-induced tissue compression and the degree of lung inflation. MXTC MRI was performed in four rabbits and in three healthy human volunteers. Two lung function parameters, one related to tissue- to alveolar-volume ratio and the other to average septal-wall thickness, were determined regionally. A significant gradient in MXTC MRI parameters, consistent with gravity-induced lung tissue deformation in the supine imaging position, was found at low lung volumes. At high lung volumes, parameters were generally lower and the gradient in parameter values was less pronounced. Results show that MXTC MRI permits the quantification of subtle changes in healthy lung microstructure. Further, only structures participating in gas exchange are represented in MXTC MRI data, which potentially makes the technique especially sensitive to pathological changes in lung microstructure affecting gas exchange.
Collapse
Affiliation(s)
- Isabel Dregely
- Physics Department, University of New Hampshire, Durham, NH
| | | | - Jaime F. Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA
| | | | | | | | - Talissa A. Altes
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA
| | - John P. Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA
| | - G. Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA
| | - F. William Hersman
- Physics Department, University of New Hampshire, Durham, NH
- Xemed LLC, Durham, NH
| | - Kai Ruppert
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
12
|
Ajraoui S, Parra-Robles J, Marshall H, Deppe MH, Clemence M, Wild JM. Acquisition of ³He ventilation images, ADC, T₂* and B₁ maps in a single scan with compressed sensing. NMR IN BIOMEDICINE 2012; 25:44-51. [PMID: 22241670 DOI: 10.1002/nbm.1710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 01/26/2011] [Accepted: 02/15/2011] [Indexed: 05/31/2023]
Abstract
In imaging of human lungs with hyperpolarised noble gases, measurements of apparent diffusion coefficient (ADC) and relaxation time provide valuable information for the assessment of lung microstructure. In this work, a sequence was developed for interleaved acquisition of ventilation images, ADC, T(2)* and flip angle maps in a single scan from the human lungs with a single dose of inhaled (3)He at 3 T. Spatially registered ventilation images with parametric maps were obtained. The total acquisition time was reduced by random undersampling of the k-space and reconstruction using compressed sensing (CS). The gain in speed was used for an increase in spatial resolution. Mean ADC values from the fully sampled and undersampled CS data exhibit no statistically significant difference in a given subject. The mean T(2)* values, however, were found to differ significantly, which is attributed to the combined effect of low signal-to-noise ratio (SNR) of the fully sampled data and the smoothing effect inherent in CS reconstruction.
Collapse
Affiliation(s)
- S Ajraoui
- Section of Academic Radiology, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|
13
|
Peterson ET, Dai J, Holmes JH, Fain SB. Measurement of lung airways in three dimensions using hyperpolarized helium-3 MRI. Phys Med Biol 2011; 56:3107-22. [PMID: 21521907 DOI: 10.1088/0031-9155/56/10/014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Large airway measurement is clinically important in cases of airway disease and trauma. The gold standard is computed tomography (CT), which allows for airway measurement. However, the ionizing radiation dose associated with CT is a major limitation in longitudinal studies and trauma. To avoid ionizing radiation from CT, we present a method for measuring the large airway diameter in humans using hyperpolarized helium-3 (HPHe) MRI in conjunction with a dynamic 3D radial acquisition. An algorithm is introduced which utilizes the significant airway contrast for semi-automated segmentation and skeletonization which is used to derive the airway lumen diameter. The HPHe MRI method was validated with quantitative CT in an excised and desiccated porcine lung (linear regression R(2) = 0.974 and slope = 0.966 over 32 airway segments). The airway lumen diameters were then compared in 24 human subjects (22 asthmatics and 2 normals; linear regression R(2) value of 0.799 and slope = 0.768 over 309 airway segments). The feasibility for airway path analysis to areas of ventilation defect is also demonstrated.
Collapse
Affiliation(s)
- Eric T Peterson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|