1
|
Kosińska A, Mrózek M, Łopyta-Mirocha M, Tomsia M. The smallest traces of crime: Trace elements in forensic science. J Trace Elem Med Biol 2024; 86:127527. [PMID: 39288558 DOI: 10.1016/j.jtemb.2024.127527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Securing the evidence in various investigative situations is often associated with trace analysis, including fingerprints or blood groups. However, when classic and conventional methods fail, trace elements, such as copper, zinc, fluorine, and many others found in exceedingly insignificant amounts in organisms, may prove useful and effective. METHODS The presented work reviews articles published between 2003 and 2023, describing the use of trace elements and the analytical methods employed for their analysis in forensic medicine and related sciences. RESULTS & CONCLUSION Trace elements can be valuable as traces collected at crime scenes and during corpse examination, aiding in determining characteristics like the sex or age of the deceased. Additionally, trace elements levels in the body can serve as alcohol or drug poisoning markers. In traumatology, trace elements enable the identification of various instruments and the injuries caused by their use.
Collapse
Affiliation(s)
- Agnieszka Kosińska
- School of Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| | - Marcella Mrózek
- School of Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| | - Marta Łopyta-Mirocha
- School of Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| |
Collapse
|
2
|
Naji N, Gee M, Jickling GC, Emery DJ, Saad F, McCreary CR, Smith EE, Camicioli R, Wilman AH. Quantifying cerebral microbleeds using quantitative susceptibility mapping from magnetization-prepared rapid gradient-echo. NMR IN BIOMEDICINE 2024; 37:e5139. [PMID: 38465729 DOI: 10.1002/nbm.5139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) is commonly included in brain studies for structural imaging using magnitude images; however, its phase images can provide an opportunity to assess microbleed burden using quantitative susceptibility mapping (QSM). This potential application for MPRAGE-based QSM was evaluated using in vivo and simulated measurements. Possible factors affecting image quality were also explored. Detection sensitivity was evaluated against standard multiecho gradient echo (MEGE) QSM using 3-T in vivo data of 15 subjects with a combined total of 108 confirmed microbleeds. The two methods were compared based on the microbleed size and susceptibility measurements. In addition, simulations explored the detection sensitivity of MPRAGE-QSM at different representative magnetic field strengths and echo times using microbleeds of different size, susceptibility, and location. Results showed that in vivo microbleeds appeared to be smaller (× 0.54) and of higher mean susceptibility (× 1.9) on MPRAGE-QSM than on MEGE-QSM, but total susceptibility estimates were in closer agreement (slope: 0.97, r2: 0.94), and detection sensitivity was comparable. In simulations, QSM at 1.5 T had a low contrast-to-noise ratio that obscured the detection of many microbleeds. Signal-to-noise ratio (SNR) levels at 3 T and above resulted in better contrast and increased detection. The detection rates for microbleeds of minimum one-voxel diameter and 0.4-ppm susceptibility were 0.55, 0.80, and 0.88 at SNR levels of 1.5, 3, and 7 T, respectively. Size and total susceptibility estimates were more consistent than mean susceptibility estimates, which showed size-dependent underestimation. MPRAGE-QSM provides an opportunity to detect and quantify the size and susceptibility of microbleeds of at least one-voxel diameter at B0 of 3 T or higher with no additional time cost, when standard T2*-weighted images are not available or have inadequate spatial resolution. The total susceptibility measure is more robust against sequence variations and might allow combining data from different protocols.
Collapse
Affiliation(s)
- Nashwan Naji
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Myrlene Gee
- Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Glen C Jickling
- Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Derek J Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Feryal Saad
- Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cheryl R McCreary
- Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Eric E Smith
- Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Camicioli
- Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Ventura-Antunes L, Nackenoff A, Romero-Fernandez W, Bosworth AM, Prusky A, Wang E, Carvajal-Tapia C, Shostak A, Harmsen H, Mobley B, Maldonado J, Solopova E, Caleb Snider J, David Merryman W, Lippmann ES, Schrag M. Arteriolar degeneration and stiffness in cerebral amyloid angiopathy are linked to β-amyloid deposition and lysyl oxidase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583563. [PMID: 38659767 PMCID: PMC11042178 DOI: 10.1101/2024.03.08.583563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular β-amyloid (Aβ) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aβ, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aβ, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aβ deposits. At sites of microhemorrhage, Aβ was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aβ deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by β-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aβ deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.
Collapse
Affiliation(s)
| | - Alex Nackenoff
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alex Prusky
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emmeline Wang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah Harmsen
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jose Maldonado
- Vanderbilt Neurovisualization Lab, Vanderbilt University, Nashville, TN, USA
| | - Elena Solopova
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J. Caleb Snider
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
5
|
Ferreira A, Neves P, Gozzelino R. Multilevel Impacts of Iron in the Brain: The Cross Talk between Neurophysiological Mechanisms, Cognition, and Social Behavior. Pharmaceuticals (Basel) 2019; 12:ph12030126. [PMID: 31470556 PMCID: PMC6789770 DOI: 10.3390/ph12030126] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is a critical element for most organisms, which plays a fundamental role in the great majority of physiological processes. So much so, that disruption of iron homeostasis has severe multi-organ impacts with the brain being particularly sensitive to such modifications. More specifically, disruption of iron homeostasis in the brain can affect neurophysiological mechanisms, cognition, and social behavior, which eventually contributes to the development of a diverse set of neuro-pathologies. This article starts by exploring the mechanisms of iron action in the brain and follows with a discussion on cognitive and behavioral implications of iron deficiency and overload and how these are framed by the social context. Subsequently, we scrutinize the implications of the disruption of iron homeostasis for the onset and progression of psychosocial disorders. Lastly, we discuss the links between biological, psychological, and social dimensions and outline potential avenues of research. The study of these interactions could ultimately contribute to a broader understanding of how individuals think and act under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ana Ferreira
- Centro Interdisciplinar de Ciências Sociais (CICS.NOVA), Faculdade de Ciências Sociais e Humanas da Universidade NOVA de Lisboa (NOVA FCSH), 1069-061 Lisbon, Portugal
| | - Pedro Neves
- School of Business and Economics, NOVA University of Lisbon, 2775-405 Lisbon, Portugal
| | - Raffaella Gozzelino
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, 1180-052, 1150-082 Lisbon, Portugal.
| |
Collapse
|
6
|
Abstract
PURPOSE Cerebral amyloid angiopathy is a vasculopathy caused by β-amyloid deposition in cerebral arterioles and capillaries. It is closely linked to Alzheimer's disease and predisposes elderly patients to intracerebral hemorrhage, transient focal neurological episodes, and cognitive impairment. Because of a predilection for symptomatic hemorrhage, particularly in the frontal lobes, cerebral amyloid angiopathy may also cause a dysexecutive syndrome. RECENT FINDINGS In this case series, we describe presentations of classic clinical dementia syndromes which are not are widely thought to be associated with cerebral amyloid angiopathy, namely logopenic variant primary progressive aphasia (n = 3), normal pressure hydrocephalus (n = 3), and Lewy body dementia (n = 2). In every case, after a clinical diagnosis was established, neuroimaging, brain biopsy, and/or autopsy confirmed the presence of cerebral amyloid angiopathy. Cerebral amyloid angiopathy has significant clinical implications, and its ability to mimic and/or contribute to other clinical dementia syndromes can complicate its diagnosis. This series of cases broadens the range of clinical scenarios associated with cerebral amyloid angiopathy.
Collapse
|
7
|
|
8
|
Abstract
Cerebral amyloid angiopathy is a condition of the cerebral arterioles and to a lesser extent capillaries and veins, wherein beta-amyloid is deposited. In arterioles, this preferentially targets vascular smooth muscle cells and in the later stages undermines the stability of the vessel. This condition is frequently comorbid with Alzheimer's disease and its role in cognitive impairment and dementia is a topic of considerable recent research. This article reviews recent literature which confirms that CAA independently contributes to cognitive impairment by potentiating the neurodegeneration of Alzheimer's disease, by predisposing to microhemorrhagic and microischemic injury to the brain parenchyma, and by interfering with the autoregulation of CNS blood flow. In this review, we discuss the clinical presentation of cerebral amyloid angiopathy, with a focus on the neuropsychological manifestations of this vasculopathy.
Collapse
Affiliation(s)
- Matthew Schrag
- Dept of Neurology, Vanderbilt University School of Medicine, 1301 Medical Center Dr, TVC Neurology Suite, Nashville, TN, 37232, USA
| | - Howard Kirshner
- Dept of Neurology, Vanderbilt University School of Medicine, 1301 Medical Center Dr, TVC Neurology Suite, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 2014; 33:1-25. [PMID: 25267705 DOI: 10.1016/j.mri.2014.09.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of QSM from data acquisition to individual data processing steps. We also show preliminary results of several new concepts introduced in this review in an attempt to improve the quality and accuracy for certain steps. The uncertainties in estimating susceptibility differences using susceptibility maps, phase images, and T2* maps are analyzed and compared. Finally, example clinical applications are presented. We conclude that QSM holds great promise in quantifying iron and becoming a standard clinical tool.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| | - Saifeng Liu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sagar Buch
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Weili Zheng
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities. Neuroimage 2014; 105:332-46. [PMID: 25451469 PMCID: PMC4275576 DOI: 10.1016/j.neuroimage.2014.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/08/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022] Open
Abstract
Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. A novel method segmented focal T2*-weighted MRI hypointensities automatically. The method was validated with MRI of a novel phantom and 98 elderly subjects. The subject masks from the method and an experienced rater overlapped substantially. The method is potentially useful for research into small vessel disease and ageing.
Collapse
|
11
|
2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds. Neuroimage 2014; 104:287-300. [PMID: 25149849 DOI: 10.1016/j.neuroimage.2014.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022] Open
Abstract
Cerebral microbleeds (CMBs) have emerged as a new imaging marker of small vessel disease. Composed of hemosiderin, CMBs are paramagnetic and can be detected with MRI sequences sensitive to magnetic susceptibility (typically, gradient recalled echo T2* weighted images). Nevertheless, their identification remains challenging on T2* magnitude images because of confounding structures and lesions. In this context, T2* phase image may play a key role in better characterizing CMBs because of its direct relationship with local magnetic field variations due to magnetic susceptibility difference. To address this issue, susceptibility-based imaging techniques were proposed, such as Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). But these techniques have not yet been validated for 2D clinical data in multicenter settings. Here, we introduce 2DHF, a fast 2D phase processing technique embedding both unwrapping and harmonic filtering designed for data acquired in 2D, even with slice-to-slice inconsistencies. This method results in internal field maps which reveal local field details due to magnetic inhomogeneity within the region of interest only. This technique is based on the physical properties of the induced magnetic field and should yield consistent results. A synthetic phantom was created for numerical simulations. It simulates paramagnetic and diamagnetic lesions within a 'brain-like' tissue, within a background. The method was evaluated on both this synthetic phantom and multicenter 2D datasets acquired in standardized clinical setting, and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we finally illustrate that it is possible to find a magnetic signature of CMBs and CMCs on internal field maps generated with 2DHF on 2D clinical datasets that give consistent results with CT-scans in a subsample of 10 subjects acquired with both modalities.
Collapse
|
12
|
Nisenbaum EJ, Novikov DS, Lui YW. The presence and role of iron in mild traumatic brain injury: an imaging perspective. J Neurotrauma 2014; 31:301-7. [PMID: 24295521 DOI: 10.1089/neu.2013.3102] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mild traumatic brain injury (mTBI), although often presenting without the gross structural abnormalities seen in more severe forms of brain trauma, can nonetheless result in lingering cognitive and behavioral problems along with subtle alterations in brain structure and function. Repeated injuries are associated with brain atrophy and dementia in the form of chronic traumatic encephalopathy (CTE). The mechanisms underlying these dysfunctions are poorly understood. There is a growing body of evidence that brain iron is abnormal after TBI, and brain iron has also been implicated in a host of neurodegenerative disorders. The purpose of this article is to review evidence about the function of iron in the pathophysiology of mTBI and the role that advanced imaging modalities can play in further elucidating said function. MRI techniques sensitive to field inhomogeneities provide supporting evidence for both deep gray matter non-heme iron accumulation as well as focal microhemorrhage resulting from mTBI. In addition, there is evidence that iron may contribute to pathology after mTBI through a number of mechanisms, including generation of reactive oxygen species (ROS), exacerbation of oxidative stress from other sources, and encouragement of tau phosphorylation and the formation of neurofibrillary tangles. Finally, recent animal studies suggest that iron may serve as a therapeutic target in mitigating the effects of mTBI. However, research on the presence and role of iron in mTBI and CTE is still relatively sparse, and further work is necessary to elucidate issues such as the sources of increased iron and the chain of secondary injury.
Collapse
Affiliation(s)
- Eric J Nisenbaum
- Department of Radiology, NYU Langone Medical Center , New York, New York
| | | | | |
Collapse
|
13
|
Glatz A, Valdés Hernández MC, Kiker AJ, Bastin ME, Deary IJ, Wardlaw JM. Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. Neuroimage 2013; 82:470-80. [PMID: 23769704 PMCID: PMC3776225 DOI: 10.1016/j.neuroimage.2013.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 12/29/2022] Open
Abstract
Multifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3 ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12 mm3 and median in-plane area of 4 mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the characteristic spatial distribution and appearance of multifocal basal ganglia T2*w hypointensities in our elderly cohort on structural MRI appear to support the suggested association with mineralized proximal lenticulostriate arterioles and perivascular spaces. A rater segmented focal hypointensities on T2*w brain MRI from 98 elderly subjects. On average 3 focal hypointensities were found in the basal ganglia of 75 subjects. Their spatial distribution suggests an association with lenticulostriate arterioles. Signal intensity distributions suggest an underlying inhomogeneous tissue structure.
Collapse
Affiliation(s)
- Andreas Glatz
- Brain Research Imaging Centre (BRIC), Neuroimaging Sciences, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Patel B, Lawrence AJ, Chung AW, Rich P, MacKinnon AD, Morris RG, Barrick TR, Markus HS. Cerebral Microbleeds and Cognition in Patients With Symptomatic Small Vessel Disease. Stroke 2013; 44:356-61. [DOI: 10.1161/strokeaha.112.670216] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bhavini Patel
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Andrew J. Lawrence
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Ai Wern Chung
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Philip Rich
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Andrew D. MacKinnon
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Robin G. Morris
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Thomas R. Barrick
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| | - Hugh S. Markus
- From the Stroke and Dementia Research Centre, St George’s, University of London, London, United Kingdom (B.P., A.J.L., A.W.C., T.R.B., H.S.M.); Department of Neuroradiology, Atkinson Morley Neuroscience Centre, St George’s Hospital, London, United Kingdom (P.R., A.D.M.); and Department of Psychology, Institute of Psychiatry, London, United Kingdom (R.G.M.)
| |
Collapse
|
16
|
Graphite furnace atomic absorption spectrophotometry—A novel method to quantify blood volume in experimental models of intracerebral hemorrhage. J Neurosci Methods 2013; 213:147-50. [DOI: 10.1016/j.jneumeth.2012.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022]
|
17
|
Allard-Vannier E, Cohen-Jonathan S, Gautier J, Hervé-Aubert K, Munnier E, Soucé M, Legras P, Passirani C, Chourpa I. Pegylated magnetic nanocarriers for doxorubicin delivery: A quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm 2012; 81:498-505. [DOI: 10.1016/j.ejpb.2012.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
18
|
Liu S, Neelavalli J, Cheng YCN, Tang J, Mark Haacke E. Quantitative susceptibility mapping of small objects using volume constraints. Magn Reson Med 2012; 69:716-23. [PMID: 22570268 DOI: 10.1002/mrm.24305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 11/11/2022]
Abstract
Microbleeds have been implicated to play a role in many neurovascular and neurodegenerative diseases. The diameter of each microbleed has been used previously as a possible quantitative measure for grading microbleeds. We propose that magnetic susceptibility provides a new quantitative measure of extravasated blood. Recently, a Fourier-based method has been used that allows susceptibility quantification from phase images for any arbitrarily shaped structures. However, when very small objects, such as microbleeds, are considered, the accuracy of this susceptibility mapping method still remains to be evaluated. In this article, air bubbles and glass beads are taken as microbleed surrogates to evaluate the quantitative accuracy of the susceptibility mapping method. We show that when an object occupies only a few voxels, an estimate of the true volume of the object is necessary for accurate susceptibility quantification. Remnant errors in the quantified susceptibilities and their sources are evaluated. We show that quantifying magnetic moment, rather than the susceptibility of these small structures, may be a better and more robust alternative.
Collapse
Affiliation(s)
- Saifeng Liu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Efficient detection of cerebral microbleeds on 7.0T MR images using the radial symmetry transform. Neuroimage 2012; 59:2266-73. [DOI: 10.1016/j.neuroimage.2011.09.061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/16/2011] [Accepted: 09/22/2011] [Indexed: 11/23/2022] Open
|
20
|
McAuley G, Schrag M, Barnes S, Obenaus A, Dickson A, Kirsch W. In vivo iron quantification in collagenase-induced microbleeds in rat brain. Magn Reson Med 2011; 67:711-7. [PMID: 21721041 DOI: 10.1002/mrm.23045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/18/2011] [Accepted: 05/21/2011] [Indexed: 01/02/2023]
Abstract
Brain microbleeds (BMB) are associated with chronic and acute cerebrovascular disease. Because BMB present in the brain is a source of potentially cytotoxic iron proportional to the volume of extravasated blood, BMB iron content is a potentially valuable biomarker both to assess tissue risk and small cerebral vessel health. We recently reported methods to quantify focal iron sources using phase images that were tested in phantoms and BMB in postmortem tissue. In this study, we applied our methods to small hemorrhagic lesions induced in the in vivo rat brain using bacterial collagenase. As expected by theory, measurements of geometric features in phase images correlated with lesion iron content measured by graphite furnace atomic absorption spectrometry. Iron content estimation following BMB in an in vivo rodent model could shed light on the role and temporal evolution of iron-mediated tissue damage and efficacy of potential treatments in cerebrovascular diseases associated with BMB.
Collapse
Affiliation(s)
- Grant McAuley
- Neurosurgery Center for Research, Training and Education, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | | | |
Collapse
|