1
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Reynolds LA, Morris SR, Vavasour IM, Barlow L, Laule C, MacKay AL, Michal CA. Nonaqueous magnetization following adiabatic and selective pulses in brain: T1 and cross-relaxation dynamics. NMR IN BIOMEDICINE 2023:e4936. [PMID: 36973767 DOI: 10.1002/nbm.4936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Inversion pulses are commonly employed in MRI for T 1 $$ {T}_1 $$ -weighted contrast and relaxation measurements. In the brain, it is often assumed that adiabatic pulses saturate the nonaqueous magnetization. We investigated this assumption using solid-state NMR to monitor the nonaqueous signal directly following adiabatic inversion and compared this with signals following hard and soft inversion pulses. The effects of the different preparations on relaxation dynamics were explored. Inversion recovery experiments were performed on ex vivo bovine and porcine brains using 360-MHz (8.4 T) and 200-MHz (4.7 T) NMR spectrometers, respectively, using broadband rectangular, adiabatic, and sinc inversion pulses as well as a long rectangular saturation pulse. Analogous human brain MRI experiments were performed at 3 T using single-slice echo-planar imaging. Relaxation data were fitted by mono- and biexponential decay models. Further fitting analysis was performed using only two inversion delay times. Adiabatic and sinc inversion left much of the nonaqueous magnetization along B 0 $$ {B}_0 $$ and resulted in biexponential relaxation. Saturation of both aqueous and nonaqueous magnetization components led to effectively monoexponential T 1 $$ {T}_1 $$ relaxation. Typical adiabatic inversion pulses do not, as has been widely assumed, saturate the nonaqueous proton magnetization in white matter. Unequal magnetization states in aqueous and nonaqueous 1 H reservoirs prepared by soft and adiabatic pulses result in biexponential T 1 $$ {T}_1 $$ relaxation. Both pools must be prepared in the same magnetization state (e.g., saturated or inverted) in order to observe consistent monoexponential relaxation.
Collapse
Affiliation(s)
- Luke A Reynolds
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Sarah R Morris
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Laura Barlow
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alex L MacKay
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Michal
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Jung S, Yun J, Kim DY, Kim D. Improved multi‐echo gradient echo myelin water fraction mapping using complex‐valued neural network analysis. Magn Reson Med 2022; 88:492-500. [DOI: 10.1002/mrm.29192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Soozy Jung
- Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea
| | - JiSu Yun
- Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea
| | - Deog Young Kim
- Department and Research Institute of Rehabilitation Medicine Yonsei University College of Medicine Seoul Republic of Korea
| | - Dong‐Hyun Kim
- Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea
| |
Collapse
|
4
|
Kiely M, Triebswetter C, Cortina LE, Gong Z, Alsameen MH, Spencer RG, Bouhrara M. Insights into human cerebral white matter maturation and degeneration across the adult lifespan. Neuroimage 2022; 247:118727. [PMID: 34813969 PMCID: PMC8792239 DOI: 10.1016/j.neuroimage.2021.118727] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) microstructural properties change across the adult lifespan and with neuronal diseases. Understanding microstructural changes due to aging is paramount to distinguish them from neuropathological changes. Conducted on a large cohort of 147 cognitively unimpaired subjects, spanning a wide age range of 21 to 94 years, our study evaluated sex- and age-related differences in WM microstructure. Specifically, we used diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) indices, sensitive measures of myelin and axonal density in WM, and myelin water fraction (MWF), a measure of the fraction of the signal of water trapped within the myelin sheets, to probe these differences. Furthermore, we examined regional correlations between MWF and DTI indices to evaluate whether the DTI metrics provide information complementary to MWF. While sexual dimorphism was, overall, nonsignificant, we observed region-dependent differences in MWF, that is, myelin content, and axonal density with age and found that both exhibit nonlinear, but distinct, associations with age. Furthermore, DTI indices were moderately correlated with MWF, indicating their good sensitivity to myelin content as well as to other constituents of WM tissue such as axonal density. The microstructural differences captured by our MRI metrics, along with their weak to moderate associations with MWF, strongly indicate the potential value of combining these outcome measures in a multiparametric approach. Furthermore, our results support the last-in-first-out and the gain-predicts-loss hypotheses of WM maturation and degeneration. Indeed, our results indicate that the posterior WM regions are spared from neurodegeneration as compared to anterior regions, while WM myelination follows a temporally symmetric time course across the adult life span.
Collapse
Affiliation(s)
- Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Maryam H Alsameen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA.
| |
Collapse
|
5
|
Khattar N, Triebswetter C, Kiely M, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging. Neuroimage 2021; 239:118267. [PMID: 34139358 PMCID: PMC8370037 DOI: 10.1016/j.neuroimage.2021.118267] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and maintenance. An emerging hypothesis in Alzheimer’s disease research suggests that myelin breakdown releases substantial stores of iron that may accumulate, leading to further myelin breakdown and neurodegeneration. We assessed associations between iron content and myelin content in critical brain regions using quantitative magnetic resonance imaging (MRI) on a cohort of cognitively unimpaired adults ranging in age from 21 to 94 years. We measured whole-brain myelin water fraction (MWF), a surrogate of myelin content, using multicomponent relaxometry, and whole-brain iron content using susceptibility weighted imaging in all individuals. MWF was negatively associated with iron content in most brain regions evaluated indicating that lower myelin content corresponds to higher iron content. Moreover, iron content was significantly higher with advanced age in most structures, with men exhibiting a trend towards higher iron content as compared to women. Finally, relationship between MWF and age, in all brain regions investigated, suggests that brain myelination continues until middle age, followed by degeneration at older ages. This work establishes a foundation for further investigations of the etiology and sequelae of myelin breakdown and iron accumulation in neurodegeneration and may lead to new imaging markers for disease progression and treatment.
Collapse
Affiliation(s)
- Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States.
| |
Collapse
|
6
|
Manning AP, MacKay AL, Michal CA. Understanding aqueous and non-aqueous proton T 1 relaxation in brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106909. [PMID: 33453678 DOI: 10.1016/j.jmr.2020.106909] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A full picture of longitudinal relaxation in complex heterogeneous environments like white matter brain tissue remains elusive. In tissue, successive approximations, from the solvation layer model to the two pool model, have highlighted how longitudinal magnetization evolution depends on both inter-compartmental exchange and spin-lattice relaxation. In white matter, however, these models fail to capture the behaviour of the two distinct aqueous pools, myelin water and intra/extra-cellular water. A challenge with testing more comprehensive multi-pool models lies in directly observing all pools, both aqueous and non-aqueous. In this work, we advance these efforts by integrating three main experimental and analytical elements: direct observation of the longitudinal relaxation of both the aqueous and the non-aqueous protons in white matter, a wide range of different initial conditions, and application of an analysis pipeline which includes lineshape, CPMG, and fitting of a four pool model. An eigenvector interpretation of the four pool model highlights how longitudinal relaxation in white matter depends on initial conditions. We find that a single set of model parameters is able to describe the entire range of relaxation behaviour observed in all the separable aqueous and non-aqueous pools in experiments involving six different initial conditions. Understanding of the nature and connectedness of the tissue components is crucial in the design and interpretation of many MRI measurements, especially those based on magnetization transfer and longitudinal relaxation. In particular, the dependency of relaxation behaviour on initial conditions is likely the basis for understanding method-dependent discrepancies in in vivo T1.
Collapse
Affiliation(s)
- Alan P Manning
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Alex L MacKay
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Department of Radiology, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
7
|
Myelin development in visual scene-network tracts beyond late childhood: A multimethod neuroimaging study. Cortex 2021; 137:18-34. [PMID: 33588130 DOI: 10.1016/j.cortex.2020.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/30/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The visual scene-network-comprising the parahippocampal place area (PPA), retrosplenial cortex (RSC), and occipital place area (OPA)-shows a prolonged functional development. Structural development of white matter that underlies the scene-network has not been investigated despite its potential influence on scene-network function. The key factor for white matter maturation is myelination. However, research on myelination using the gold standard method of post-mortem histology is scarce. In vivo alternatives diffusion-weighted imaging (DWI) and myelin water imaging (MWI) so far report broad-scale findings that prohibit inferences concerning the scene-network. Here, we combine MWI, DWI tractography, and fMRI to investigate myelination in scene-network tracts in middle childhood, late childhood, and adulthood. We report increasing myelin from middle childhood to adulthood in right PPA-OPA, and trends towards increases in the left and right RSC-OPA tracts. Investigating tracts to regions highly connected with the scene-network, such as early visual cortex and the hippocampus, did not yield any significant age group differences. Our findings indicate that structural development coincides with functional development in the scene-network, possibly enabling structure-function interactions.
Collapse
|
8
|
Wang Y, van Gelderen P, de Zwart JA, Duyn JH. B 0-field dependence of MRI T 1 relaxation in human brain. Neuroimage 2020; 213:116700. [PMID: 32145438 PMCID: PMC7165058 DOI: 10.1016/j.neuroimage.2020.116700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
Tissue longitudinal relaxation characterized by recovery time T1 or rate R1 is a fundamental MRI contrast mechanism that is increasingly being used to study the brain's myelination patterns in both health and disease. Nevertheless, the quantitative relationship between T1 and myelination, and its dependence on B0 field strength, is still not well known. It has been theorized that in much of brain tissue, T1 field-dependence is driven by that of macromolecular protons (MP) through a mechanism called magnetization transfer (MT). Despite the explanatory power of this theory and substantial support from in-vitro experiments at low fields (<3 T), in-vivo evidence across clinically relevant field strengths is lacking. In this study, T1-weighted MRI was acquired in a group of eight healthy volunteers at four clinically relevant field strengths (0.55, 1.5, 3 and 7 T) using the same pulse sequence at a single site, and jointly analyzed based on the two-pool model of MT. MP fraction and free-water pool T1 were obtained in several brain structures at 3 and 7 T, which allowed distinguishing between contributions from macromolecular content and iron to tissue T1. Based on this, the T1 of MP in white matter, indirectly determined by assuming a field independent T1 of free water, was shown to increase approximately linearly with B0. This study advances our understanding of the T1 contrast mechanism and its relation to brain myelin content across the wide range of currently available MRI strengths, and it has the potential to inform design of T1 mapping methods for improved reproducibility in the human brain.
Collapse
Affiliation(s)
- Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Schyboll F, Jaekel U, Petruccione F, Neeb H. Origin of orientation-dependent R 1 (=1/T 1 ) relaxation in white matter. Magn Reson Med 2020; 84:2713-2723. [PMID: 32274862 DOI: 10.1002/mrm.28277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE In a recent MRI study, it was shown that the longitudinal relaxation rate, R1 , in white matter (WM) is influenced by the relative orientation of nerve fibers with respect to the main magnetic field (B0 ). Even though the exact nature of this R1 orientation dependency is still unclear, it can be assumed that the origin of the phenomenon can be attributed to the anisotropic and unique molecular environment within the myelin sheath surrounding the axons. The current work investigates the contribution of dipolar induced R1 relaxation of the myelin associated hydrogen nuclei theoretically and compares the results with the experimentally observed R1 orientation dependency. METHODS Atomistic molecular dynamics simulations were employed and the R1 relaxation rate of hydrogen nuclei of a myelin-alike molecular environment was calculated for various orientations of the trajectory sets relative to the B0 -field. Based on the calculated relaxation rates, the observable R1 relaxation was simulated for various fiber orientations and fitted to the experimental data using a suitable signal weighting-scheme. RESULTS The results obtained show that the R1 relaxation rate of both solid myelin (SM) and myelin water (MW) depends on the fiber orientation relative to the main B0 -field. Moreover, employing a realistic signal weighing scheme and tissue characteristics, the theoretically investigated R1 orientation dependency matches the experimental data well. CONCLUSION The good agreement between theoretical and experimental findings indicates that the R1 orientation dependency in WM mainly originates from anisotropic dipole-dipole interactions between hydrogen nuclei located within the myelin sheath.
Collapse
Affiliation(s)
- Felix Schyboll
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany
| | - Uwe Jaekel
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany
| | | | - Heiko Neeb
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany.,Institute for Medical Engineering and Information Processing - MTI Mittelrhein, University of Koblenz, Koblenz, Germany
| |
Collapse
|
10
|
Lee J, Hyun JW, Lee J, Choi EJ, Shin HG, Min K, Nam Y, Kim HJ, Oh SH. So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. J Magn Reson Imaging 2020; 53:360-373. [PMID: 32009271 DOI: 10.1002/jmri.27059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin water imaging (MWI) is an MRI imaging biomarker for myelin. This method can generate an in vivo whole-brain myelin water fraction map in approximately 10 minutes. It has been applied in various applications including neurodegenerative disease, neurodevelopmental, and neuroplasticity studies. In this review we start with a brief introduction of myelin biology and discuss the contributions of myelin in conventional MRI contrasts. Then the MRI properties of myelin water and four different MWI methods, which are categorized as T2 -, T2 *-, T1 -, and steady-state-based MWI, are summarized. After that, we cover more practical issues such as availability, interpretation, and validation of these methods. To illustrate the utility of MWI as a clinical research tool, MWI studies for two diseases, multiple sclerosis and neuromyelitis optica, are introduced. Additional topics about imaging myelin in gray matter and non-MWI methods for myelin imaging are also included. Although technical and physiological limitations exist, MWI is a potent surrogate biomarker of myelin that carries valuable and useful information of myelin. Evidence Level: 5 Technical Efficacy: 1 J. MAGN. RESON. IMAGING 2021;53:360-373.
Collapse
Affiliation(s)
- Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Jieun Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Korea.,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Schyboll F, Jaekel U, Petruccione F, Neeb H. Dipolar induced spin-lattice relaxation in the myelin sheath: A molecular dynamics study. Sci Rep 2019; 9:14813. [PMID: 31616004 PMCID: PMC6794311 DOI: 10.1038/s41598-019-51003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 01/25/2023] Open
Abstract
Interactions between hydrogen protons of water molecules and macromolecules within the myelin sheath surrounding the axons are a major factor influencing the magnetic resonance (MR) contrast in white matter (WM) regions. In past decades, several studies have investigated the underlying effects and reported a wide range of R1 rates for the myelin associated compartments at different field strengths. However, it was also shown that the experimental quantification of the compartment-specific R1 rates is associated with large uncertainties. The current study therefore investigates the longitudinal relaxation rates within the myelin sheath using a molecular dynamic (MD) simulation. For this purpose, a realistic molecular model of the myelin sheath was employed to determine the dipole-dipole induced R1 relaxation rate of the hydrogen protons at clinically relevant field strengths. The results obtained clearly reflect the spatial heterogeneity of R1 with a increased relaxivity of myelin water due to a reduced molecular mobility near the membrane surface. Moreover, the calculated R1 rates for both myelin water and macromolecules are in excellent agreement with experimental findings from the literature at different field strengths.
Collapse
Affiliation(s)
- Felix Schyboll
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Remagen, Germany
| | - Uwe Jaekel
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Remagen, Germany
| | | | - Heiko Neeb
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Remagen, Germany.
- Institute for Medical Engineering and Information Processing - MTI Mittelrhein, University of Koblenz, Koblenz, Germany.
| |
Collapse
|
12
|
Shin HG, Oh SH, Fukunaga M, Nam Y, Lee D, Jung W, Jo M, Ji S, Choi JY, Lee J. Advances in gradient echo myelin water imaging at 3T and 7T. Neuroimage 2019; 188:835-844. [DOI: 10.1016/j.neuroimage.2018.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
|
13
|
van Gelderen P, Duyn JH. White matter intercompartmental water exchange rates determined from detailed modeling of the myelin sheath. Magn Reson Med 2018; 81:628-638. [PMID: 30230605 DOI: 10.1002/mrm.27398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/24/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Magnetization exchange (ME) between hydrogen protons of water and large molecules (semisolids [SS]) in lipid bilayers is an important factor in MRI signal generation and can be exploited to study white matter pathology. Current models used to quantify ME in white matter generally consider water to reside in 1 or 2 distinct compartments, ignoring the complexities of the myelin sheath's multicompartment structure of alternating myelin SS and myelin water (MW) layers. Here, we investigated the effect of this by fitting ME data obtained from human brain at 7 T with a multilayer model of myelin. METHODS A multi-echo acquisition for a T2 * -based separation of MW from other water signals was combined with various preparation pulses to change the (relative) state of the SS and water pools and analyzed by fitting with a multilayer exchange model. RESULTS The estimated lifetime within a single MW layer was 260 µs, corresponding to a lipid bilayer permeability of 6.7 µm/s. The magnetization lifetime of the aggregate of all MW was estimated at 13 ms, shorter than previously reported values in the range of 40 to 140 ms. CONCLUSION Contrary to expectations and previous reports, ME between protons in myelin SS and water is not limited by the myelin sheath but rather by the exchange between SS and water protons. The analysis of ME contrast should account for the relatively short MW lifetime and affects the interpretation of tissue compartmentalization from MRI contrasts such as T1 - and diffusion-weighting.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Bouhrara M, Reiter DA, Maring MC, Bonny JM, Spencer RG. Use of the NESMA Filter to Improve Myelin Water Fraction Mapping with Brain MRI. J Neuroimaging 2018; 28:640-649. [PMID: 29999204 DOI: 10.1111/jon.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Myelin water fraction (MWF) mapping permits direct visualization of myelination patterns in the developing brain and in pathology. MWF is conventionally measured through multiexponential T2 analysis which is very sensitive to noise, leading to inaccuracies in derived MWF estimates. Although noise reduction filters may be applied during postprocessing, conventional filtering can introduce bias and obscure small structures and edges. Advanced nonblurring filters, while effective, exhibit a high level of complexity and the requirement for supervised implementation for optimal performance. The purpose of this paper is to demonstrate the ability of the recently introduced nonlocal estimation of multispectral magnitudes (NESMA) filter to greatly improve the determination of MWF parameter estimates from gradient and spin echo (GRASE) imaging data. METHODS We evaluated the performance of the NESMA filter for MWF mapping from clinical GRASE imaging data of the human brain, and compared the results to those calculated from unfiltered images. Numerical and in vivo analyses of the brains of three subjects, representing different ages, were conducted. RESULTS Our results demonstrated the potential of the NESMA filter to permit high-quality in vivo MWF mapping. Indeed, NESMA permits substantial reduction of random variation in derived MWF estimates while preserving accuracy and detail. CONCLUSIONS In vivo estimation of MWF in the human brain from GRASE imaging data was markedly improved through use of the NESMA filter. The use of NESMA may contribute to the goal of high-quality MWF mapping in clinically feasible imaging times.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD
| | - David A Reiter
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Michael C Maring
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD
| | | | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD
| |
Collapse
|
15
|
Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data. Neuroimage 2018; 178:583-601. [PMID: 29763672 DOI: 10.1016/j.neuroimage.2018.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1+-inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. METHODS Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. RESULTS In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. CONCLUSION The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions.
Collapse
|
16
|
Lee H, Nam Y, Lee HJ, Hsu JJ, Henry RG, Kim DH. Improved three-dimensional multi-echo gradient echo based myelin water fraction mapping with phase related artifact correction. Neuroimage 2018; 169:1-10. [DOI: 10.1016/j.neuroimage.2017.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 12/17/2022] Open
|
17
|
Jiang X, van Gelderen P, Duyn JH. Spectral characteristics of semisolid protons in human brain white matter at 7 T. Magn Reson Med 2017; 78:1950-1958. [PMID: 28150877 PMCID: PMC5555815 DOI: 10.1002/mrm.26594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To inform the quantification of MRI magnetization transfer contrast at high field by measuring the spectral characteristics of 1 H protons in semisolids in human brain at 7 T, while avoiding prohibitive radiofrequency (RF) tissue heating and confounding effects from chemical exchange. METHODS Saturation-recovery type experiments were performed using brief, frequency-specific RF pulses that saturate semisolid proton magnetization. Analysis of the subsequent recovery of water proton magnetization with a two-pool model of exchange allowed the study of spectral characteristics of semisolid protons. RESULTS We show that in white matter, the semisolid proton spectrum can be approximated with a symmetric, super-Lorentzian line at -2.58 ± 0.05 ppm from the water resonance and an average transverse relaxation time constant (T2 ) of 9.6 ± 0.6 μs. CONCLUSIONS These results are consistent with studies at lower field that have indicated a major contribution from methylene protons to magnetization transfer contrast, and will facilitate the design and quantification of magnetization transfer studies at 7 T. Magn Reson Med 78:1950-1958, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xu Jiang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Jung W, Lee J, Shin HG, Nam Y, Zhang H, Oh SH, Lee J. Whole brain g-ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI). Neuroimage 2017; 182:379-388. [PMID: 28962901 DOI: 10.1016/j.neuroimage.2017.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/23/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022] Open
Abstract
MR g-ratio, which measures the ratio of the aggregate volume of axons to that of fibers in a voxel, is a potential biomarker for white matter microstructures. In this study, a new approach for acquiring an in-vivo whole human brain g-ratio map is proposed. To estimate the g-ratio, myelin volume fraction and axonal volume fraction are acquired using multi-echo gradient echo myelin water imaging (GRE-MWI) and neurite orientation dispersion and density imaging (NODDI), respectively. In order to translate myelin water fraction measured in GRE-MWI into myelin volume fraction, a new scaling procedure is proposed and validated. This scaling approach utilizes geometric measures of myelin structure and, therefore, provides robustness over previous methods. The resulting g-ratio map reveals an expected range of g-ratios (0.71-0.85 in major fiber bundles) with a small inter-subject coefficient of variance (less than 2%). Additionally, a few fiber bundles (e.g. cortico-spinal tract and optic radiation) show different constituents of myelin volume fraction and axonal volume fraction, indicating potentials to utilize the measures for deciphering fiber tracking.
Collapse
Affiliation(s)
- Woojin Jung
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Jingu Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
19
|
Hagberg GE, Bause J, Ethofer T, Ehses P, Dresler T, Herbert C, Pohmann R, Shajan G, Fallgatter A, Pavlova MA, Scheffler K. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T. Neuroimage 2017; 144:203-216. [DOI: 10.1016/j.neuroimage.2016.09.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
|
20
|
Abstract
Myelin is critical for healthy brain function. An accurate in vivo measure of myelin content has important implications for understanding brain plasticity and neurodegenerative diseases. Myelin water imaging is a magnetic resonance imaging method which can be used to visualize myelination in the brain and spinal cord in vivo. This review presents an overview of myelin water imaging data acquisition and analysis, post-mortem validation work, findings in both animal and human studies and a brief discussion about other MR techniques purported to provide in vivo myelin content. Multi-echo T2 relaxation approaches continue to undergo development and whole-brain imaging time now takes less than 10 minutes; the standard analysis method for this type of data acquisition is a non-negative least squares approach. Alternate methods including the multi-flip angle gradient echo mcDESPOT are also being used for myelin water imaging. Histological validation studies in animal and human brain and spinal cord tissue demonstrate high specificity of myelin water imaging for myelin. Potential confounding factors for in vivo myelin water fraction measurement include the presence of myelin debris and magnetization exchange processes. Myelin water imaging has successfully been used to study animal models of injury, applied in healthy human controls and can be used to assess damage and injury in conditions such as multiple sclerosis, neuromyelitis optica, schizophrenia, phenylketonuria, neurofibromatosis, niemann pick’s disease, stroke and concussion. Other quantitative magnetic resonance approaches that are sensitive to, but not specific for, myelin exist including magnetization transfer, diffusion tensor imaging and T1 weighted imaging.
Collapse
Affiliation(s)
- Alex L MacKay
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Bouhrara M, Spencer RG. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT. Neuroimage 2016; 147:800-811. [PMID: 27729276 DOI: 10.1016/j.neuroimage.2016.09.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/21/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T1, and transverse, T2, relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T1 and T2, with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T2 fraction, T2,l, and the longitudinal relaxation time of the short T1 fraction, T1,s, clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC-mcDESPOT, shows excellent performance for accurate high-resolution whole-brain mapping of MWF and bi-component transverse and longitudinal relaxation times within a clinically realistic acquisition time.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Magnetic Resonance Imaging and Spectroscopy Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Intramural Research Program, BRC 04B-116, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | - Richard G Spencer
- Magnetic Resonance Imaging and Spectroscopy Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Intramural Research Program, BRC 04B-116, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
22
|
van Gelderen P, Jiang X, Duyn JH. Rapid measurement of brain macromolecular proton fraction with transient saturation transfer MRI. Magn Reson Med 2016; 77:2174-2185. [PMID: 27342121 DOI: 10.1002/mrm.26304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE To develop an efficient MRI approach to estimate the nonwater proton fraction (f) in human brain. METHODS We implement a brief, efficient magnetization transfer (MT) pulse that selectively saturates the magnetization of the (semi-) solid protons, and monitor the transfer of this saturation to the water protons as a function of delay after saturation. RESULTS Analysis of the transient MT effect with two-pool model allowed robust extraction of f at both 3 and 7 T. This required estimating the longitudinal relaxation rate constant (R1,MP and R1,WP ) for both proton pools, which was achieved with the assumption of uniform R1,MP and R1,WP across brain tissues. Resulting values of f were approximately 50% higher than reported previously, which is partly attributed to MT-pulse efficiency and R1,MP being higher than assumed previously. CONCLUSION Experiments performed on human brain in vivo at 3 and 7 T demonstrate the ability of the method to robustly determine f in a scan time of approximately 5 min. Magn Reson Med 77:2174-2185, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Xu Jiang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Harkins KD, Does MD. Simulations on the influence of myelin water in diffusion-weighted imaging. Phys Med Biol 2016; 61:4729-45. [PMID: 27271991 DOI: 10.1088/0031-9155/61/13/4729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.
Collapse
Affiliation(s)
- K D Harkins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Current computational neuroanatomy based on MRI focuses on morphological measures of the brain. We present recent methodological developments in quantitative MRI (qMRI) that provide standardized measures of the brain, which go beyond morphology. We show how biophysical modelling of qMRI data can provide quantitative histological measures of brain tissue, leading to the emerging field of in-vivo histology using MRI (hMRI). RECENT FINDINGS qMRI has greatly improved the sensitivity and specificity of computational neuroanatomy studies. qMRI metrics can also be used as direct indicators of the mechanisms driving observed morphological findings. For hMRI, biophysical models of the MRI signal are being developed to directly access histological information such as cortical myelination, axonal diameters or axonal g-ratio in white matter. Emerging results indicate promising prospects for the combined study of brain microstructure and function. SUMMARY Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both research and clinics. Both approaches improve comparability across sites and time points, facilitating multicentre/longitudinal studies and standardized diagnostics. hMRI is expected to shed new light on the relationship between brain microstructure, function and behaviour, both in health and disease, and become an indispensable addition to computational neuroanatomy.
Collapse
|
25
|
van Gelderen P, Jiang X, Duyn JH. Effects of magnetization transfer on T1 contrast in human brain white matter. Neuroimage 2015; 128:85-95. [PMID: 26724780 DOI: 10.1016/j.neuroimage.2015.12.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 11/17/2022] Open
Abstract
MRI based on T1 relaxation contrast is increasingly being used to study brain morphology and myelination. Although it provides for excellent distinction between the major tissue types of gray matter, white matter, and CSF, reproducible quantification of T1 relaxation rates is difficult due to the complexity of the contrast mechanism and dependence on experimental details. In this work, we perform simulations and inversion-recovery MRI measurements at 3T and 7T to show that substantial measurement variability results from unintended and uncontrolled perturbation of the magnetization of MRI-invisible (1)H protons of lipids and macromolecules. This results in bi-exponential relaxation, with a fast component whose relative contribution under practical conditions can reach 20%. This phenomenon can strongly affect apparent relaxation rates, affect contrast between tissue types, and result in contrast variations over the brain. Based on this novel understanding, ways are proposed to minimize this experimental variability and its effect on T1 contrast, quantification accuracy and reproducibility.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Jiang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Barta R, Kalantari S, Laule C, Vavasour IM, MacKay AL, Michal CA. Modeling T(1) and T(2) relaxation in bovine white matter. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:56-67. [PMID: 26295169 DOI: 10.1016/j.jmr.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
The fundamental basis of T1 and T2 contrast in brain MRI is not well understood; recent literature contains conflicting views on the nature of relaxation in white matter (WM). We investigated the effects of inversion pulse bandwidth on measurements of T1 and T2 in WM. Hybrid inversion-recovery/Carr-Purcell-Meiboom-Gill experiments with broad or narrow bandwidth inversion pulses were applied to bovine WM in vitro. Data were analysed with the commonly used 1D-non-negative least squares (NNLS) algorithm, a 2D-NNLS algorithm, and a four-pool model which was based upon microscopically distinguishable WM compartments (myelin non-aqueous protons, myelin water, non-myelin non-aqueous protons and intra/extracellular water) and incorporated magnetization exchange between adjacent compartments. 1D-NNLS showed that different T2 components had different T1 behaviours and yielded dissimilar results for the two inversion conditions. 2D-NNLS revealed significantly more complicated T1/T2 distributions for narrow bandwidth than for broad bandwidth inversion pulses. The four-pool model fits allow physical interpretation of the parameters, fit better than the NNLS techniques, and fits results from both inversion conditions using the same parameters. The results demonstrate that exchange cannot be neglected when analysing experimental inversion recovery data from WM, in part because it can introduce exponential components having negative amplitude coefficients that cannot be correctly modeled with nonnegative fitting techniques. While assignment of an individual T1 to one particular pool is not possible, the results suggest that under carefully controlled experimental conditions the amplitude of an apparent short T1 component might be used to quantify myelin water.
Collapse
Affiliation(s)
- R Barta
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - S Kalantari
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - C Laule
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - I M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - A L MacKay
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - C A Michal
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Bouhrara M, Reiter DA, Celik H, Fishbein KW, Kijowski R, Spencer RG. Analysis of mcDESPOT- and CPMG-derived parameter estimates for two-component nonexchanging systems. Magn Reson Med 2015; 75:2406-20. [PMID: 26140371 DOI: 10.1002/mrm.25801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the reliability and stability of the multicomponent-driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) and Carl-Purcell-Meiboom-Gill (CPMG) approaches to parameter estimation. METHODS The stability and reliability of mcDESPOT and CPMG-derived parameter estimates were compared through examination of energy surfaces, evaluation of model sloppiness, and Monte Carlo simulations. Comparisons were performed on an equal time basis and assuming a two-component system. Parameter estimation bias, reflecting accuracy, and dispersion, reflecting precision, were derived for a range of signal-to-noise ratios (SNRs) and relaxation parameters. RESULTS The energy surfaces for parameters incorporated into the mcDESPOT signal model exhibit flatness, a complex structure of local minima, and instability to noise to a much greater extent than the corresponding surfaces for CPMG. Although both mcDESPOT and CPMG performed well at high SNR, the CPMG approach yielded parameter estimates of considerably greater accuracy and precision at lower SNR. CONCLUSION mcDESPOT and CPMG both permit high-quality parameter estimates under SNR that are clinically achievable under many circumstances, depending upon available hardware and resolution and acquisition time constraints. At moderate to high SNR, the mcDESPOT approach incorporating two-step phase increments can yield accurate parameter estimates while providing values for longitudinal relaxation times that are not available through CPMG. However, at low SNR, the CPMG approach is more stable and provides superior parameter estimates. Magn Reson Med 75:2406-2420, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - David A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Hasan Celik
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard Kijowski
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Kim D, Lee HM, Oh SH, Lee J. Probing signal phase in direct visualization of short transverse relaxation time component (ViSTa). Magn Reson Med 2014; 74:499-505. [PMID: 25154599 DOI: 10.1002/mrm.25416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/03/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE To demonstrate the phase evolutions of direct visualization of short transverse relaxation time component (ViSTa) matches with those of myelin water. METHOD Myelin water imaging (MWI) measures short transverse signals and has been suggested as a biomarker for myelin. Recently, a new approach, ViSTa, has been proposed to acquire short T2* signals by suppressing long T1 signals. This method does not require any ill-conditioned data processing and therefore provides high-quality images. In this study, the phase of the ViSTa signal was compared with the phase of myelin water simulated by the magnetic susceptibility model of hollow cylinder. RESULTS The phase evolutions of the ViSTa signal were similar to the simulated myelin water phase evolutions. When fiber orientation was perpendicular relative to the main magnetic field, both the ViSTa and the simulated myelin water phase showed large positive frequency shifts, whereas the gradient echo phase showed a slightly negative frequency shift. Additionally, the myelin water phase map generated using diffusion tensor imaging (DTI) information revealed a good match with the ViSTa phase image. CONCLUSION The results of this study support the origin of ViSTa signal as myelin water. ViSTa phase may potentially provide sensitivity to demyelination.
Collapse
Affiliation(s)
- Daeun Kim
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Hyo Min Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Se-Hong Oh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jongho Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Computer Engineering, School of Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Alonso-Ortiz E, Levesque IR, Pike GB. MRI-based myelin water imaging: A technical review. Magn Reson Med 2014; 73:70-81. [PMID: 24604728 DOI: 10.1002/mrm.25198] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Multiexponential T2 relaxation time measurement in the central nervous system shows a component that originates from water trapped between the lipid bilayers of myelin. This myelin water component is of significant interest as it provides a myelin-specific MRI signal of value in assessing myelin changes in cerebral white matter in vivo. In this article, the various acquisition and analysis strategies proposed to date for myelin water imaging are reviewed and research conducted into their validity and clinical applicability is presented. Comparisons between the imaging methods are made with a discussion regarding potential difficulties and model limitations.
Collapse
Affiliation(s)
- Eva Alonso-Ortiz
- Medical Physics Unit, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, room WB 321, Montreal, Quebec, Canada, H3A 2B4
| | - Ives R Levesque
- Department of Oncology, McGill University and Research Institute of the MUHC, 1650 Cedar Avenue, room L5-212.3, Montreal, Quebec, Canada, H3A 2G4
| | - G Bruce Pike
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
30
|
What causes the hyperintense T2-weighting and increased short T2 signal in the corticospinal tract? Magn Reson Imaging 2013; 31:329-35. [DOI: 10.1016/j.mri.2012.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/30/2012] [Accepted: 07/08/2012] [Indexed: 11/23/2022]
|
31
|
Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, de Zwart JA, Duyn JH. Micro-compartment specific T2* relaxation in the brain. Neuroimage 2013; 77:268-78. [PMID: 23528924 DOI: 10.1016/j.neuroimage.2013.03.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/29/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
MRI at high field can be sensitized to the magnetic properties of tissues, which introduces a signal dependence on the orientation of white matter (WM) fiber bundles relative to the magnetic field. In addition, study of the NMR relaxation properties of this signal has indicated contributions from compartmentalized water environments inside and outside the myelin sheath that may be separable. Here we further investigated the effects of water compartmentalization on the MRI signal with the goal of extracting compartment-specific information. By comparing MRI measurements of human and marmoset brain at 7T with magnetic field modeling, we show that: (1) water between the myelin lipid bilayers, in the axonal, and in the interstitial space each experience characteristic magnetic field effects that depend on fiber orientation (2) these field effects result in characteristic relaxation properties and frequency shifts for these compartments; and (3) compartmental contributions may be separated by multi-component fitting of the MRI signal relaxation (i.e. decay) curve. We further show the potential application of these findings to the direct mapping of myelin content and assessment of WM fiber integrity with high field MRI.
Collapse
Affiliation(s)
- Pascal Sati
- Translational Neuroradiology Unit, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Dortch RD, Harkins KD, Juttukonda MR, Gore JC, Does MD. Characterizing inter-compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy. Magn Reson Med 2012; 70:1450-9. [PMID: 23233414 DOI: 10.1002/mrm.24571] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate inter-compartmental water exchange in two model myelinated tissues ex vivo using relaxation exchange spectroscopy. METHODS Building upon a previously developed theoretical framework, a three-compartment (myelin, intra-axonal, and extra-axonal water) model of the inversion-recovery prepared relaxation exchange spectroscopy signal was applied in excised rat optic nerve and frog sciatic nerve samples to estimate the water residence time constants in myelin (τmyelin ). RESULTS In the rat optic nerve samples, τmyelin = 138 ± 15 ms (mean ± standard deviation) was estimated. In sciatic nerve, which possesses thicker myelin sheaths than optic nerve, a much longer τmyelin = 2046 ± 140 ms was observed. CONCLUSION Consistent with previous studies in rat spinal cord, the extrapolation of exchange rates in optic nerve to in vivo conditions indicates that τmyelin < 100 ms. This suggests that there is a significant effect of inter-compartmental water exchange on the transverse relaxation of water protons in white matter. The much longer τmyelin values in sciatic nerve supports the postulate that the inter-compartmental water exchange rate is mediated by myelin thickness. Together, these findings point to the potential for MRI methods to probe variations in myelin thickness in white matter.
Collapse
Affiliation(s)
- Richard D Dortch
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
33
|
Multicentre absolute myelin water content mapping: Development of a whole brain atlas and application to low-grade multiple sclerosis. NEUROIMAGE-CLINICAL 2012; 1:121-30. [PMID: 24179745 PMCID: PMC3757724 DOI: 10.1016/j.nicl.2012.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/24/2023]
Abstract
The current study investigates the whole brain myelin water content distribution applying a new approach that allows for the simultaneous mapping of total and relative myelin water content, T 1 and T 2* with full brain coverage and high resolution (1 × 1 × 2 mm(3)). The data was collected at two different sites in healthy controls to validate the independence of a specific setup. In addition, a group of patients with known white matter affections was investigated to compare two measures of myelin, i.e. relative and absolute myelin water content. Based on the first dataset, a quantitative myelin water content atlas was created which served as a control set for the other two datasets. Both control groups measured at different institutions yielded consistent results. However, distinct regions of reduced myelin water content were observed for the patient dataset, both on an individual basis and in a group-wise comparison. The comparison between the absolute and relative measurement of myelin water content in MS patients showed that the relative measurement, which is employed by many researchers, overestimates both disease volume and the corresponding reduction of myelin water content in white matter lesions. However, for normal appearing white matter, no difference between both approaches was detected. The results obtained in the current study demonstrate that absolute myelin water content can reliably be determined in a multicentre environment using standard MR sequences. The optimised protocol allows for a measurement of four quantitative parameters with full brain coverage in only 10 min. This might expedite a more widespread future use of quantitative MRI methods for clinical research and diagnosis.
Collapse
|
34
|
Tonkova V, Arhelger V, Schenk J, Neeb H. Rapid myelin water content mapping on clinical MR systems. Z Med Phys 2012; 22:133-42. [DOI: 10.1016/j.zemedi.2011.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 10/15/2022]
|