1
|
Fritz FJ, Mordhorst L, Ashtarayeh M, Periquito J, Pohlmann A, Morawski M, Jaeger C, Niendorf T, Pine KJ, Callaghan MF, Weiskopf N, Mohammadi S. Fiber-orientation independent component of R 2* obtained from single-orientation MRI measurements in simulations and a post-mortem human optic chiasm. Front Neurosci 2023; 17:1133086. [PMID: 37694109 PMCID: PMC10491021 DOI: 10.3389/fnins.2023.1133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, β1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted β1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for β1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.
Collapse
Affiliation(s)
- Francisco J. Fritz
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurin Mordhorst
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Ashtarayeh
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Morawski
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jaeger
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerrin J. Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
2
|
Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity. Neuroimage 2022; 262:119529. [PMID: 35926761 DOI: 10.1016/j.neuroimage.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.
Collapse
|
3
|
Kaczmarz S, Göttler J, Petr J, Hansen MB, Mouridsen K, Zimmer C, Hyder F, Preibisch C. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J Cereb Blood Flow Metab 2021; 41:380-396. [PMID: 32237952 PMCID: PMC7812517 DOI: 10.1177/0271678x20912364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Improved understanding of complex hemodynamic impairments in asymptomatic internal carotid artery stenosis (ICAS) is crucial to better assess stroke risks. Multimodal MRI is ideal for measuring brain hemodynamics and has the potential to improve diagnostics and treatment selections. We applied MRI-based perfusion and oxygenation-sensitive imaging in ICAS with the hypothesis that the sensitivity to hemodynamic impairments will improve within individual watershed areas (iWSA). We studied cerebral blood flow (CBF), cerebrovascular reactivity (CVR), relative cerebral blood volume (rCBV), relative oxygen extraction fraction (rOEF), oxygen extraction capacity (OEC) and capillary transit-time heterogeneity (CTH) in 29 patients with asymptomatic, unilateral ICAS (age 70.3 ± 7.0 y) and 30 age-matched healthy controls. In ICAS, we found significant impairments of CBF, CVR, rCBV, OEC, and CTH (strongest lateralization ΔCVR = -24%), but not of rOEF. Although the spatial overlap of compromised hemodynamic parameters within each patient varied in a complex manner, most pronounced changes of CBF, CVR and rCBV were detected within iWSAs (strongest effect ΔCVR = +117%). At the same time, CTH impairments were iWSA independent, indicating widespread dysfunction of capillary-level oxygen diffusivity. In summary, complementary MRI-based perfusion and oxygenation parameters offer deeper perspectives on complex microvascular impairments in individual patients. Furthermore, knowledge about iWSAs improves the sensitivity to hemodynamic impairments.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,MRRC, Yale University, New Haven, CT, USA
| | - Jens Göttler
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,MRRC, Yale University, New Haven, CT, USA.,Department of Radiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Jan Petr
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Mikkel Bo Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | | | - Christine Preibisch
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,Clinic for Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
4
|
Mohammadi S, Callaghan MF. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J Neurosci Methods 2021; 348:108990. [PMID: 33129894 PMCID: PMC7840525 DOI: 10.1016/j.jneumeth.2020.108990] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
5
|
Kaczmarz S, Hyder F, Preibisch C. Oxygen extraction fraction mapping with multi-parametric quantitative BOLD MRI: Reduced transverse relaxation bias using 3D-GraSE imaging. Neuroimage 2020; 220:117095. [PMID: 32599265 PMCID: PMC7730517 DOI: 10.1016/j.neuroimage.2020.117095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
Magnetic resonance imaging (MRI)-based quantification of the blood-oxygenation-level-dependent (BOLD) effect allows oxygen extraction fraction (OEF) mapping. The multi-parametric quantitative BOLD (mq-BOLD) technique facilitates relative OEF (rOEF) measurements with whole brain coverage in clinically applicable scan times. Mq-BOLD requires three separate scans of cerebral blood volume and transverse relaxation rates measured by gradient-echo (1/T2*) and spin-echo (1/T2). Although the current method is of clinical merit in patients with stroke, glioma and internal carotid artery stenosis (ICAS), there are relaxation measurement artefacts that impede the sensitivity of mq-BOLD and artificially elevate reported rOEF values. We posited that T2-related biases caused by slice refocusing imperfections during rapid 2D-GraSE (Gradient and Spin Echo) imaging can be reduced by applying 3D-GraSE imaging sequences, because the latter requires no slice selective pulses. The removal of T2-related biases would decrease overestimated rOEF values measured by mq-BOLD. We characterized effects of T2-related bias in mq-BOLD by comparing the initially employed 2D-GraSE and two proposed 3D-GraSE sequences to multiple single spin-echo reference measurements, both in vitro and in vivo. A phantom and 25 participants, including young and elderly healthy controls as well as ICAS-patients, were scanned. We additionally proposed a procedure to reliably identify and exclude artefact affected voxels. In the phantom, 3D-GraSE derived T2 values had 57% lower deviation from the reference. For in vivo scans, the formerly overestimated rOEF was reduced by −27% (p < 0.001). We obtained rOEF = 0.51, which is much closer to literature values from positron emission tomography (PET) measurements. Furthermore, increased sensitivity to a focal rOEF elevation in an ICAS-patient was demonstrated. In summary, the application of 3D-GraSE improves the mq-BOLD-based rOEF quantification while maintaining clinically feasible scan times. Thus, mq-BOLD with non-slice selective T2 imaging is highly promising to improve clinical diagnostics of cerebrovascular diseases such as ICAS.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Munich, Germany.
| | - Fahmeed Hyder
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Munich, Germany
| |
Collapse
|
6
|
Kaczmarz S, Göttler J, Zimmer C, Hyder F, Preibisch C. Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction. J Cereb Blood Flow Metab 2020; 40:760-774. [PMID: 30952200 PMCID: PMC7168796 DOI: 10.1177/0271678x19839502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Relative oxygen extraction fraction (rOEF) is a fundamental indicator of cerebral metabolic function. An easily applicable method for magnetic resonance imaging (MRI) based rOEF mapping is the multi-parametric quantitative blood oxygenation level dependent (mq-BOLD) approach with separate acquisitions of transverse relaxation times T 2 * and T2 and dynamic susceptibility contrast (DSC) based relative cerebral blood volume (rCBV). Given that transverse relaxation and rCBV in white matter (WM) strongly depend on nerve fiber orientation, mq-BOLD derived rOEF is expected to be affected as well. To investigate fiber orientation related rOEF artefacts, we present a methodological study characterizing anisotropy effects of WM as measured by diffusion tensor imaging (DTI) on mq-BOLD in 30 healthy volunteers. Using a 3T clinical MRI-scanner, we performed a comprehensive correlation of all parameters ( T 2 * , T2, R 2 ' , rCBV, rOEF, where R 2 ' =1/ T 2 * -1/T2) with DTI-derived fiber orientation towards the main magnetic field (B0). Our results confirm strong dependencies of transverse relaxation and rCBV on the nerve fiber orientation towards B0, with anisotropy-driven variations up to 37%. Comparably weak orientation-dependent variations of mq-BOLD derived rOEF (3.8%) demonstrate partially counteracting influences of R 2 ' and rCBV effects, possibly suggesting applicability of rOEF as an oxygenation sensitive biomarker. However, unresolved issues warrant caution when applying mq-BOLD to WM.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Jens Göttler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fahmeed Hyder
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Göttler J, Kaczmarz S, Kallmayer M, Wustrow I, Eckstein HH, Zimmer C, Sorg C, Preibisch C, Hyder F. Flow-metabolism uncoupling in patients with asymptomatic unilateral carotid artery stenosis assessed by multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 2019; 39:2132-2143. [PMID: 29968499 PMCID: PMC6827123 DOI: 10.1177/0271678x18783369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxygen extraction (OEF), oxidative metabolism (CMRO2), and blood flow (CBF) in the brain, as well as the coupling between CMRO2 and CBF due to cerebral autoregulation are fundamental to brain's health. We used a clinically feasible MRI protocol to assess impairments of these parameters in the perfusion territories of stenosed carotid arteries. Twenty-nine patients with unilateral high-grade carotid stenosis and thirty age-matched healthy controls underwent multi-modal MRI scans. Pseudo-continuous arterial spin labeling (pCASL) yielded absolute CBF, whereas multi-parametric quantitative blood oxygenation level dependent (mqBOLD) modeling allowed imaging of relative OEF and CMRO2. Both CBF and CMRO2 were significantly reduced in the stenosed territory compared to the contralateral side, while OEF was evenly distributed across both hemispheres similarly in patients and controls. The CMRO2-CBF coupling was significantly different between both hemispheres in patients, i.e. significant interhemispheric flow-metabolism uncoupling was observed in patients compared to controls. Given that CBF and CMRO2 are intimately linked to brain function in health and disease, the proposed easily applicable MRI protocol of pCASL and mqBOLD imaging might serve as a valuable tool for early diagnosis of potentially harmful cerebral hemodynamic and metabolic states with the final aim to select clinically asymptomatic patients who would benefit from carotid revascularization therapy.
Collapse
Affiliation(s)
- Jens Göttler
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,Department of Diagnostic and Interventional Radiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Stephan Kaczmarz
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Michael Kallmayer
- Department of Vascular and Endovascular Surgery, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Isabel Wustrow
- I. Medizinische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,Department of Psychiatry, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,Clinic for Neurology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Microstructural imaging of human neocortex in vivo. Neuroimage 2018; 182:184-206. [DOI: 10.1016/j.neuroimage.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
|
9
|
Castella R, Arn L, Dupuis E, Callaghan MF, Draganski B, Lutti A. Controlling motion artefact levels in MR images by suspending data acquisition during periods of head motion. Magn Reson Med 2018; 80:2415-2426. [DOI: 10.1002/mrm.27214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 03/18/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Rémi Castella
- LREN, Department for Clinical Neurosciences; CHUV; Lausanne Switzerland
| | - Lionel Arn
- LREN, Department for Clinical Neurosciences; CHUV; Lausanne Switzerland
- Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Estelle Dupuis
- LREN, Department for Clinical Neurosciences; CHUV; Lausanne Switzerland
| | - Martina F. Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology; University College London; London United Kingdom
| | - Bogdan Draganski
- LREN, Department for Clinical Neurosciences; CHUV; Lausanne Switzerland
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| | - Antoine Lutti
- LREN, Department for Clinical Neurosciences; CHUV; Lausanne Switzerland
| |
Collapse
|
10
|
Preibisch C, Shi K, Kluge A, Lukas M, Wiestler B, Göttler J, Gempt J, Ringel F, Al Jaberi M, Schlegel J, Meyer B, Zimmer C, Pyka T, Förster S. Characterizing hypoxia in human glioma: A simultaneous multimodal MRI and PET study. NMR IN BIOMEDICINE 2017; 30:e3775. [PMID: 28805936 DOI: 10.1002/nbm.3775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Hypoxia plays an important role for the prognosis and therapy response of cancer. Thus, hypoxia imaging would be a valuable tool for pre-therapeutic assessment of tumor malignancy. However, there is no standard validated technique for clinical application available yet. Therefore, we performed a study in 12 patients with high-grade glioma, where we directly compared the two currently most promising techniques, namely the MR-based relative oxygen extraction fraction (MR-rOEF) and the PET hypoxia marker H-1-(3-[18 F]-fluoro-2-hydroxypropyl)-2-nitroimidazole ([18 F]-FMISO). MR-rOEF was determined from separate measurements of T2 , T2 * and relative cerebral blood volume (rCBV) employing a multi-parametric approach for quantification of the blood-oxygenation-level-dependent (BOLD) effect. With respect to [18 F]-FMISO-PET, besides the commonly used late uptake between 120 and 130 min ([18 F]-FMISO120-130 min ), we also analyzed the hypoxia specific uptake rate [18 F]-FMISO-k3 , as obtained by pharmacokinetic modeling of dynamic uptake data. Since pharmacokinetic modeling of partially acquired dynamic [18 F]-FMISO data was sensitive to a low signal-to-noise-ratio, analysis was restricted to high-uptake tumor regions. Individual spatial analyses of deoxygenation and hypoxia-related parameter maps revealed that high MR-rOEF values clustered in (edematous) peritumoral tissue, while areas with high [18 F]-FMISO120-130 min concentrated in and around active tumor with disrupted blood-brain barrier, i.e. contrast enhancement in T1 -weighted MRI. Volume-of-interest-based correlations between MR-rOEF and [18 F]-FMISO120-130 min as well as [18 F]-FMISO-k3 , and voxel-wise analyses in individual patients, yielded limited correlations, supporting the notion that [18 F]-FMISO uptake, even after 2 h, might still be influenced by perfusion while [18 F]-FMISO-k3 was severely hampered by noise. According to these results, vascular deoxygenation, as measured by MR-rOEF, and severe tissue hypoxia, as measured by [18 F]-FMISO, show a poor spatial correspondence. Overall, the two methods appear to rather provide complementary than redundant information about high-grade glioma biology.
Collapse
Affiliation(s)
- Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Munich, Germany
- Clinic for Neurology, Technische Universität München, Munich, Germany
| | - Kuangyu Shi
- Clinic for Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Anne Kluge
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Munich, Germany
| | - Mathias Lukas
- Clinic for Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Munich, Germany
| | - Jens Göttler
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Technische Universität München, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Technische Universität München, Munich, Germany
| | - Mohamed Al Jaberi
- Department of Neuropathology, Technische Universität München, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Technische Universität München, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Munich, Germany
| | - Thomas Pyka
- Clinic for Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Stefan Förster
- Clinic for Nuclear Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
11
|
Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma. Sci Rep 2016; 6:35142. [PMID: 27739434 PMCID: PMC5064384 DOI: 10.1038/srep35142] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Non-invasive, imaging-based examination of glioma biology has received increasing attention in the past couple of years. To this end, the development and refinement of novel MRI techniques, reflecting underlying oncogenic processes such as hypoxia or angiogenesis, has greatly benefitted this research area. We have recently established a novel BOLD (blood oxygenation level dependent) based MRI method for the measurement of relative oxygen extraction fraction (rOEF) in glioma patients. In a set of 37 patients with newly diagnosed glioma, we assessed the performance of a machine learning model based on multiple MRI modalities including rOEF and perfusion imaging to predict WHO grade. An oblique random forest machine learning classifier using the entire feature vector as input yielded a five-fold cross-validated area under the curve of 0.944, with 34/37 patients correctly classified (accuracy 91.8%). The most important features in this classifier as per bootstrapped feature importance scores consisted of standard deviation of T1-weighted contrast enhanced signal, maximum rOEF value and cerebral blood volume (CBV) standard deviation. This study suggests that multimodal MRI information reflects underlying tumor biology, which is non-invasively detectable through integrative data analysis, and thus highlights the potential of such integrative approaches in the field of radiogenomics.
Collapse
|
12
|
Seiler A, Deichmann R, Pfeilschifter W, Hattingen E, Singer OC, Wagner M. T2-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume. PLoS One 2016; 11:e0161408. [PMID: 27560515 PMCID: PMC4999181 DOI: 10.1371/journal.pone.0161408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2'-values in these patients we evaluated the relationship between T2'-values and CBV in patients with unilateral high-grade large-artery stenosis. MATERIALS AND METHODS Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2'-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2' with different degrees of perfusion delay and compared to corresponding contralateral areas. RESULTS No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2'-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2'. Furthermore, no significant correlation between T2'- and rCBV-values was found. CONCLUSIONS rCBV is not significantly increased in areas of decreased T2' and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2' should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2'-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
- * E-mail:
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Elke Hattingen
- Department of Neuroradiology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Oliver C. Singer
- Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
- Department of Neurology, Helios HSK Hospital, Wiesbaden, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke. Neuroradiology 2015; 57:1253-61. [DOI: 10.1007/s00234-015-1592-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
|
14
|
Quantitative T2, T2*, and T2' MR imaging in patients with ischemic leukoaraiosis might detect microstructural changes and cortical hypoxia. Neuroradiology 2015; 57:1023-30. [PMID: 26227168 DOI: 10.1007/s00234-015-1565-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Quantitative MRI with T2, T2*, and T2' mapping has been shown to non-invasively depict microstructural changes (T2) and oxygenation status (T2* and T2') that are invisible on conventional MRI. Therefore, we aimed to assess whether T2 and T2' quantification detects cerebral (micro-)structural damage and chronic hypoxia in lesions and in normal appearing white matter (WM) and gray matter (GM) of patients with ischemic leukoaraiosis (IL). Measurements were complemented by the assessment of the cerebral blood flow (CBF) and the degree of GM and WM atrophy. METHODS Eighteen patients with IL and 18 age-matched healthy controls were included. High-resolution, motion-corrected T2, T2*, and T2' mapping, CBF mapping (pulsed arterial spin labeling, PASL), and segmentation of GM and WM were used to depict specific changes in both groups. All parameters were compared between patients and healthy controls, using t testing. Values of p < 0.05 were accepted as statistically significant. RESULTS Patients showed significantly increased T2 in lesions (p < 0.01) and in unaffected WM (p = 0.045) as well as significantly increased T2* in lesions (p = 0.003). A significant decrease of T2' was detected in patients in unaffected WM (p = 0.027), while no T2' changes were observed in GM (p = 0.13). Both unaffected WM and GM were significantly decreased in volume in the patient-group (p < 0.01). No differences of PASL-based CBF could be shown. CONCLUSION Non-invasive quantitative MRI with T2, T2*, and T2' mapping might be used to detect subtle structural and metabolic changes in IL. Assessing the grade of microstructural damage and hypoxia might be helpful to monitor disease progression and to perform risk assessment.
Collapse
|
15
|
Callaghan MF, Josephs O, Herbst M, Zaitsev M, Todd N, Weiskopf N. An evaluation of prospective motion correction (PMC) for high resolution quantitative MRI. Front Neurosci 2015; 9:97. [PMID: 25859178 PMCID: PMC4373264 DOI: 10.3389/fnins.2015.00097] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/06/2015] [Indexed: 01/06/2023] Open
Abstract
Quantitative imaging aims to provide in vivo neuroimaging biomarkers with high research and diagnostic value that are sensitive to underlying tissue microstructure. In order to use these data to examine intra-cortical differences or to define boundaries between different myelo-architectural areas, high resolution data are required. The quality of such measurements is degraded in the presence of motion hindering insight into brain microstructure. Correction schemes are therefore vital for high resolution, whole brain coverage approaches that have long acquisition times and greater sensitivity to motion. Here we evaluate the use of prospective motion correction (PMC) via an optical tracking system to counter intra-scan motion in a high resolution (800 μm isotropic) multi-parameter mapping (MPM) protocol. Data were acquired on six volunteers using a 2 × 2 factorial design permuting the following conditions: PMC on/off and motion/no motion. In the presence of head motion, PMC-based motion correction considerably improved the quality of the maps as reflected by fewer visible artifacts and improved consistency. The precision of the maps, parameterized through the coefficient of variation in cortical sub-regions, showed improvements of 11-25% in the presence of deliberate head motion. Importantly, in the absence of motion the PMC system did not introduce extraneous artifacts into the quantitative maps. The PMC system based on optical tracking offers a robust approach to minimizing motion artifacts in quantitative anatomical imaging without extending scan times. Such a robust motion correction scheme is crucial in order to achieve the ultra-high resolution required of quantitative imaging for cutting edge in vivo histology applications.
Collapse
Affiliation(s)
- Martina F. Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondon, UK
| | - Oliver Josephs
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondon, UK
| | - Michael Herbst
- Department of Radiology, University Medical Centre FreiburgFreiburg, Germany
- Department of Medicine, John A. Burns School of MedicineHawaii, HI, USA
| | - Maxim Zaitsev
- Department of Radiology, University Medical Centre FreiburgFreiburg, Germany
| | - Nick Todd
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondon, UK
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondon, UK
| |
Collapse
|
16
|
Bauer S, Wagner M, Seiler A, Hattingen E, Deichmann R, Nöth U, Singer OC. Quantitative T2'-mapping in acute ischemic stroke. Stroke 2014; 45:3280-6. [PMID: 25278559 DOI: 10.1161/strokeaha.114.006530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Quantitative T2'-mapping detects regional changes in the relation of oxygenated and deoxygenated haemoglobine and might reflect areas with increased oxygen extraction. T2'-mapping in conjunction with an elaborate algorithm for motion correction was performed in patients with acute large-vessel stroke, and quantitative T2'-values were determined within the diffusion-weighted imaging lesion and perfusion-restricted tissue. METHODS Eleven patients (median age, 71 years) with acute middle cerebral or internal carotid artery occlusion underwent MRI before scheduled endovascular treatment. MR-examination included diffusion- and perfusion-weighted imaging and quantitative, motion-corrected mapping of T2'. Time-to-peak maps were thresholded for different degrees of perfusion delays (eg, ≥0 s, ≥ 2s) when compared with a reference time-to-peak value from healthy contralateral tissue. Mean T2'-values in areas with reduced apparent diffusion coefficient and in areas with impaired perfusion were compared with T2'-values in corresponding contralateral areas. RESULTS Median time between symptom onset and MRI was 238 minutes. T2'-values were significantly reduced within the apparent diffusion coefficient -lesion when compared with contralateral healthy tissue (83 ms [67, 97] versus 97 ms [91, 111]; P<0.003). In perfusion-restricted tissue, T2'-values were also significantly lower when compared with contralateral healthy tissue (ie, for time to peak, ≥0 s 93 ms [86, 102] versus 104 [90, 110]; P=0.008) but were significantly higher than within the apparent diffusion coefficient lesion. The severity of the perfusion impairment had no influence on median T2'-values. CONCLUSIONS Motion-corrected T2'-mapping reveals significant and gradually declining values from healthy to perfusion-disturbed to apparent diffusion coefficient-restricted tissue. Current T2'-mapping can differentiate between the ischemic core and the perfusion-impaired areas but not on its own between penumbral and oligemic tissue.
Collapse
Affiliation(s)
- Sonja Bauer
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Marlies Wagner
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Alexander Seiler
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ralf Deichmann
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ulrike Nöth
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Oliver C Singer
- From the Department of Neurology (S.B., A.S., O.C.S.), Institute for Neuroradiology (M.W., E.H.); and Brain Imaging Center (R.D., U.N.), University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| |
Collapse
|
17
|
Weiskopf N, Callaghan MF, Josephs O, Lutti A, Mohammadi S. Estimating the apparent transverse relaxation time (R2(*)) from images with different contrasts (ESTATICS) reduces motion artifacts. Front Neurosci 2014; 8:278. [PMID: 25309307 PMCID: PMC4159978 DOI: 10.3389/fnins.2014.00278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/18/2014] [Indexed: 12/26/2022] Open
Abstract
Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2*, which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2* from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2* maps and reduced the coefficient of variation for both types of data—with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting.
Collapse
Affiliation(s)
- Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - Oliver Josephs
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK ; Birkbeck-UCL Centre for NeuroImaging London, UK
| | - Antoine Lutti
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland
| | - Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| |
Collapse
|
18
|
Hirsch NM, Toth V, Förschler A, Kooijman H, Zimmer C, Preibisch C. Technical considerations on the validity of blood oxygenation level-dependent-based MR assessment of vascular deoxygenation. NMR IN BIOMEDICINE 2014; 27:853-862. [PMID: 24809665 DOI: 10.1002/nbm.3131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
A blood oxygenation level-dependent (BOLD)-based apparent relative oxygen extraction fraction (rOEF) as a semi-quantitative marker of vascular deoxygenation has recently been introduced in clinical studies of patients with glioma and stroke, yielding promising results. These rOEF measurements are based on independent quantification of the transverse relaxation times T2 and T2* and relative cerebral blood volume (rCBV). Simulations demonstrate that small errors in any of the underlying measures may result in a large deviation of the calculated rOEF. Therefore, we investigated the validity of such measurements. For this, we evaluated the quantitative measurements of T2 and T2* at 3 T in a gel phantom, in healthy subjects and in healthy tissue of patients with brain tumors. We calculated rOEF maps covering large portions of the brain from T2, T2* and rCBV [routinely measured in patients using dynamic susceptibility contrast (DSC)], and obtained rOEF values of 0.63 ± 0.16 and 0.90 ± 0.21 in healthy-appearing gray matter (GM) and white matter (WM), respectively; values of about 0.4 are usually reported. Quantitative T2 mapping using the fast, clinically feasible, multi-echo gradient spin echo (GRASE) approach yields significantly higher values than much slower multiple single spin echo (SE) experiments. Although T2* mapping is reliable in magnetically homogeneous tissues, uncorrectable macroscopic background gradients and other effects (e.g. iron deposition) shorten T2*. Cerebral blood volume (CBV) measurement using DSC and normalization to WM yields robust estimates of rCBV in healthy-appearing brain tissue; absolute quantification of the venous fraction of CBV, however, is difficult to achieve. Our study demonstrates that quantitative measurements of rOEF are currently biased by inherent difficulties in T2 and CBV quantification, but also by inadequacies of the underlying model. We argue, however, that standardized, reproducible measurements of apparent T2, T2* and rCBV may still allow the estimation of a meaningful apparent rOEF, which requires further validation in clinical studies.
Collapse
Affiliation(s)
- Nuria M Hirsch
- Department of Neuroradiology, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Nöth U, Volz S, Hattingen E, Deichmann R. An improved method for retrospective motion correction in quantitative T2* mapping. Neuroimage 2014; 92:106-19. [PMID: 24508652 DOI: 10.1016/j.neuroimage.2014.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022] Open
Abstract
A new method for motion correction of T2*-weighted data and resulting quantitative T2* maps is presented. For this method, additional data sets with a reduced number of phase encoding steps covering the k-space centre are acquired. Motion correction is based on a 3-step procedure: (1) calculation of improved input data sets with reduced artefact levels from the original data, (2) creation of a target data set free of movement artefacts on the basis of the improved input data sets, and (3) fitting of original data to the target data set, yielding an optimum combination of acquired k-space data which suppresses lines affected by movement. The method was tested on healthy subjects performing pre-trained movement. Motion correction was successful unless the same k-space line was affected by movement in all data sets acquired on a specific subject. The method was applied to patients suffering from subarachnoid haemorrhage (group 1) or tumours (group 2) with accompanying edema in the brain. Motion correction improved the interpretability of T2*-weighted patient data and resulting quantitative T2* maps considerably by allowing a clear delineation between ventricle and edema and a clear localisation of haemorrhage (group 1) or a clear delineation of tumour accompanying edema (group 2) which was not possible in data affected by movement.
Collapse
Affiliation(s)
- Ulrike Nöth
- Brain Imaging Center (BIC), Goethe University Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany.
| | - Steffen Volz
- Brain Imaging Center (BIC), Goethe University Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center (BIC), Goethe University Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Hattingen E, Jurcoane A, Daneshvar K, Pilatus U, Mittelbronn M, Steinbach JP, Bähr O. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival. Neuro Oncol 2013; 15:1395-404. [PMID: 23925453 DOI: 10.1093/neuonc/not105] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Anti-angiogenic treatment in recurrent glioblastoma patients suppresses contrast enhancement and reduces vasogenic edema while non-enhancing tumor progression is common. Thus, the importance of T2-weighted imaging is increasing. We therefore quantified T2 relaxation times, which are the basis for the image contrast on T2-weighted images. METHODS Conventional and quantitative MRI procedures were performed on 18 patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. We segmented the tumor on conventional MRI into 3 subvolumes: enhancing tumor, non-enhancing tumor, and edema. Using coregistered quantitative maps, we followed changes in T2 relaxation time in each subvolume. Moreover, we generated differential T2 maps by a voxelwise subtraction using the first T2 map under bevacizumab as reference. RESULTS Visually segmented areas of tumor and edema did not differ in T2 relaxation times. Non-enhancing tumor volume did not decrease after commencement of bevacizumab treatment but strikingly increased at progression. Differential T2 maps clearly showed non-enhancing tumor progression in previously normal brain. T2 relaxation times decreased under bevacizumab without re-increasing at tumor progression. A decrease of <26 ms in the enhancing tumor following exposure to bevacizumab was associated with longer overall survival. CONCLUSIONS Combining quantitative MRI and tumor segmentation improves monitoring of glioblastoma patients under bevacizumab. The degree of change in T2 relaxation time under bevacizumab may be an early response parameter predictive of overall survival. The sustained decrease in T2 relaxation times toward values of healthy tissue masks progressive tumor on conventional T2-weighted images. Therefore, quantitative T2 relaxation times may detect non-enhancing progression better than conventional T2-weighted imaging.
Collapse
Affiliation(s)
- Elke Hattingen
- Corresponding Author: Elke Hattingen, MD, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
MR-based hypoxia measures in human glioma. J Neurooncol 2013; 115:197-207. [PMID: 23918147 DOI: 10.1007/s11060-013-1210-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
Hypoxia plays a central role in tumor stem cell genesis and is related to a more malignant tumor phenotype, therapy resistance (e.g. in anti-angiogenic therapies) and radio-insensitivity. Reliable hypoxia imaging would provide crucial metabolic information in the diagnostic work-up of brain tumors. In this study, we applied a novel BOLD-based MRI method for the measurement of relative oxygen extraction fraction (rOEF) in glioma patients and investigated potential benefits and drawbacks. Forty-five glioma patients were examined preoperatively in a pilot study on a 3T MR scanner. rOEF was calculated from quantitative transverse relaxation rates (T2, T2*) and cerebral blood volume (CBV) using a quantitative BOLD approach. rOEF maps were assessed visually and by means of a volume of interest (VOI) analysis. In six cases, MRI-targeted biopsy samples were analyzed using HIF-1α-immunohistochemistry. rOEF maps could be obtained with a diagnostic quality. Focal spots with high rOEF values were observed in the majority of high-grade tumors but in none of the low-grade tumors. VOI analysis revealed potentially hypoxic tumor regions with high rOEF in contrast-enhancing tumor regions as well as in the non-enhancing infiltration zone. Systematic bias was found as a result of non-BOLD susceptibility effects (T2*) and contrast agent leakage affecting CBV. Histological samples demonstrated reasonable correspondence between MRI characteristics and HIF-1α-staining. The presented method of rOEF imaging is a promising tool for the metabolic characterization of human glioma. For the interpretation of rOEF maps, confounding factors must be considered, with a special focus on CBV measurements in the presence of contrast agent leakage. Further validation involving a bigger cohort and extended immuno-histochemical correlation is required.
Collapse
|
22
|
Wagner M, Jurcoane A, Volz S, Magerkurth J, Zanella FE, Neumann-Haefelin T, Deichmann R, Singer OC, Hattingen E. Age-related changes of cerebral autoregulation: new insights with quantitative T2'-mapping and pulsed arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 2012; 33:2081-7. [PMID: 22700750 DOI: 10.3174/ajnr.a3138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral perfusion and O(2) metabolism are affected by physiologic age-related changes. High-resolution motion-corrected quantitative T2'-imaging and PASL were used to evaluate differences in deoxygenated hemoglobin and CBF of the gray matter between young and elderly healthy subjects. Further combined T2'-imaging and PASL were investigated breathing room air and 100% O(2) to evaluate age-related changes in cerebral autoregulation. MATERIALS AND METHODS Twenty-two healthy volunteers 60-88 years of age were studied. Two scans of high-resolution motion-corrected T2'-imaging and PASL-MR imaging were obtained while subjects were either breathing room air or breathing 100% O(2). Manual and automated regions of interest were placed in the cerebral GM to extract values from the corresponding maps. Results were compared with those of a group of young healthy subjects previously scanned with the identical protocol as that used in the present study. RESULTS There was a significant decrease of cortical CBF (P < .001) and cortical T2' values (P < .001) between young and elderly healthy subjects. In both groups, T2' remained unchanged under hyperoxia compared with normoxia. Only in the younger but not in the elderly group could a significant (P = .02) hyperoxic-induced decrease of the CBF be shown. CONCLUSIONS T2'-mapping and PASL in the cerebral cortex of healthy subjects revealed a significant decrease of deoxygenated hemoglobin and of CBF with age. The constant deoxyHb level breathing 100% O(2) compared with normoxia in young and elderly GM suggests an age-appropriate cerebral autoregulation. At the younger age, hyperoxic-induced CBF decrease may protect the brain from hyperoxemia.
Collapse
Affiliation(s)
- M Wagner
- Institute of Neuroradiology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wagner M, Magerkurth J, Volz S, Jurcoane A, Singer OC, Neumann‐Haefelin T, Zanella FE, Deichmann R, Hattingen E. T2′‐ and PASL‐based perfusion mapping at 3 Tesla: influence of oxygen‐ventilation on cerebral autoregulation. J Magn Reson Imaging 2012; 36:1347-52. [DOI: 10.1002/jmri.23777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 07/20/2012] [Indexed: 11/07/2022] Open
Affiliation(s)
- Marlies Wagner
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jörg Magerkurth
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Steffen Volz
- Brain Imaging Center, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alina Jurcoane
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Oliver C. Singer
- Department of Neurology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tobias Neumann‐Haefelin
- Department of Neurology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Friedhelm E. Zanella
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Seiler A, Jurcoane A, Magerkurth J, Wagner M, Hattingen E, Deichmann R, Neumann-Haefelin T, Singer OC. T2' imaging within perfusion-restricted tissue in high-grade occlusive carotid disease. Stroke 2012; 43:1831-6. [PMID: 22569938 DOI: 10.1161/strokeaha.111.646109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative T2' imaging presumably detects regional changes in the relation of oxygenated and deoxygenated hemoglobin. Regional differences in hemoglobin oxygenation might reflect areas with increased oxygen extraction for compensation of reduced perfusion pressure. We investigated quantitative T2' imaging in patients with high-grade stenoses of brain-supplying arteries and hypothesized that T2' values are lower in perfusion-restricted areas as compared with normally perfused tissue. METHODS Eighteen patients (15 men; mean age±SD, 54±12.8 years) with unilateral symptomatic or asymptomatic high-grade extracranial or intracranial internal carotid artery or proximal middle cerebral artery stenosis/occlusion were included. MR examination included perfusion-weighted imaging and quantitative, motion-corrected mapping of T2' time. Time-to-peak and mean transit time maps were thresholded for different degrees of perfusion delays (eg, >0 seconds, ≥2 seconds) compared with the contralateral hemisphere. Mean T2' values in areas of impaired perfusion were compared with T2' values in corresponding contralateral or ipsilateral, normoperfused areas. RESULTS Mean size of perfusion-impaired areas in time-to-peak maps (time-to-peak delay>0 seconds) was 10.8 mL (±6.3) and 11.5 mL (±6.4) in mean transit time maps (mean transit time delay>0 seconds). T2' values were significantly (P<0.01) lower in all perfusion-restricted compared with corresponding contralateral brain areas (ipsilateral versus contralateral). For time-to-peak delay >0 seconds, T2' values were 115 ms (±9) versus 125 ms (±12). For mean transit time delay>0 seconds, T2' values were 115 ms (±9) versus 128 ms (±10). Differences in T2' values increased with the severity of the perfusion delay. Ipsilateral T2' values outside the perfusion-disturbed areas did not differ from contralateral T2' values. CONCLUSIONS Motion-corrected T2' imaging presumably detects areas with increased oxygen extraction within perfusion-restricted tissue in patients with high-grade occlusive vessel disease.
Collapse
Affiliation(s)
- Alexander Seiler
- Department of Neurology, Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hattingen E, Jurcoane A, Bähr O, Rieger J, Magerkurth J, Anti S, Steinbach JP, Pilatus U. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol 2011; 13:1349-63. [PMID: 21890539 DOI: 10.1093/neuonc/nor132] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. (31)P and (1)H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2' mapping (indirect marker of oxygen extraction) were investigated in 16 patients with recurrent GBM at 3 Tesla before and 1.5-2 months after initiation of therapy with bevacizumab. Changes of metabolite concentrations and of the quantitative values in the tumor and normal appearing brain tissue were calculated. The Wilcoxon signed-ranks test was used to evaluate differences for tumor/edema versus control as well as changes before versus after commencement of therapy. Survival analyses were performed for significant parameters. Tumor T2', pH, ADC, and T2 decreased significantly in patients responding to bevacizumab therapy (n = 10). Patients with at least 25% T2' decrease during treatment showed longer progression-free and overall survival durations. Levels of high-energy metabolites were lower at baseline; these persisted under therapy. Glycerophosphoethanolamine as catabolic phospholipid metabolite increased in responders. The MRSI data support the hypothesis that bevacizumab induces relative tumor hypoxia (T2' decrease) and affects energy homeostasis in recurrent GBM, suggesting that bevacizumab impairs vascular function. The antiangiogenic effect of bevacizumab is predictive of better outcome and seems to induce antitumoral activity in the responding GBMs.
Collapse
Affiliation(s)
- Elke Hattingen
- Goethe University Frankfurt, Institute of Neuroradiology, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt/M, Germany.
| | | | | | | | | | | | | | | |
Collapse
|