1
|
Wang L, Li T, Cai J, Chang HC. Motion-resolved four-dimensional abdominal diffusion-weighted imaging using PROPELLER EPI (4D-DW-PROPELLER-EPI). Magn Reson Med 2023; 90:2454-2471. [PMID: 37486854 DOI: 10.1002/mrm.29802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE To develop a distortion-free motion-resolved four-dimensional diffusion-weighted PROPELLER EPI (4D-DW-PROPELLER-EPI) technique for benefiting clinical abdominal radiotherapy (RT). METHODS An improved abdominal 4D-DWI technique based on 2D diffusion-weighted PROPELLER-EPI (2D-DW-PROPELLER-EPI), termed 4D-DW-PROPELLER-EPI, was proposed to improve the frame rate of repeated data acquisition and produce distortion-free 4D-DWI images. Since the radial or PROPELLER sampling with golden-angle rotation can achieve an efficient k-space coverage with a flexible time-resolved acquisition, the golden-angle multi-blade acquisition was used in the proposed 4D-DW-PROPELLER-EPI to improve the performance of data sorting. A new k-space and blade (K-B) amplitude binning method was developed for the proposed 4D-DW-PROPELLER-EPI to optimize the number of blades and the k-space uniformity before performing conventional PROPELLER-EPI reconstruction, by using two metrics to evaluate the adequacy of the acquired data. The proposed 4D-DW-PROPELLER-EPI was preliminarily evaluated in both simulation experiments and in vivo experiments with varying frame rates and different numbers of repeated acquisition. RESULTS The feasibility of achieving distortion-free 4D-DWI images by using the proposed 4D-DW-PROPELLER-EPI technique was demonstrated in both digital phantom and healthy subjects. Evaluation of the 4D completeness metrics shows that the K-B amplitude binning method could simultaneously improve the acquisition efficiency and data reconstruction performance for 4D-DW-PROPELLER-EPI. CONCLUSION 4D-DW-PROPELLER-EPI with K-B amplitude binning is an advanced technique that can provide distortion-free 4D-DWI images for resolving respiratory motion, and may benefit the application of image-guided abdominal RT.
Collapse
Affiliation(s)
- Lu Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Multi-Scale Medical Robotics Center, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
2
|
Lobos RA, Hoge WS, Javed A, Liao C, Setsompop K, Nayak KS, Haldar JP. Robust autocalibrated structured low-rank EPI ghost correction. Magn Reson Med 2020; 85:3403-3419. [PMID: 33332652 DOI: 10.1002/mrm.28638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE We propose and evaluate a new structured low-rank method for echo-planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC-LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data. METHODS Autocalibrated LORAKS is a previous structured low-rank method for EPI ghost correction that uses GRAPPA-type autocalibration data to enable high-quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC-LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low-rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi-contrast joint reconstruction framework. RAC-LORAKS is evaluated using simulations and in vivo data, including comparisons to state-of-the-art methods. RESULTS RAC-LORAKS is demonstrated to have good ghost elimination performance compared to state-of-the-art methods in several complicated EPI acquisition scenarios (including gradient-echo brain imaging, diffusion-encoded brain imaging, and cardiac imaging). CONCLUSIONS RAC-LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.
Collapse
Affiliation(s)
- Rodrigo A Lobos
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.,Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Ahsan Javed
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.,Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Congyu Liao
- Department of Radiology, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.,Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Justin P Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.,Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Liu X, Hui ES, Chang HC. Elimination of residual aliasing artifact that resembles brain lesion on multi-oblique diffusion-weighted echo-planar imaging with parallel imaging using virtual coil acquisition. J Magn Reson Imaging 2019; 51:1442-1453. [PMID: 31664772 DOI: 10.1002/jmri.26966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/25/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Single-shot diffusion-weighted echo-planar imaging (ssDW-EPI) acquired with parallel imaging and a multi-oblique scan plane may suffer from residual aliasing artifacts, resembling lesions on the calculated apparent diffusion coefficient (ADC) map. PURPOSE To combine ssDW-EPI and virtual coil acquisition and develop a self-reference reconstruction method to eliminate the residual aliasing artifact on multi-oblique ssDW-EPI sequence with parallel imaging and multiple signal averaging. STUDY TYPE Prospective. SUBJECTS Three healthy subjects and 50 stroke patients. FIELD STRENGTH/SEQUENCE Conventional ssDW-EPI with parallel imaging, and proposed ssDW-EPI with virtual coil acquisition at 1.5T. ASSESSMENT The efficacy of the proposed method was evaluated in 50 stroke patients by comparing the ssDW-EPI with conventional parallel imaging reconstructions. The extent of residual aliasing artifacts were rated on a 5-point Likert scale by three independent raters. Only the data without residual aliasing artifacts on conventional ssDW-EPI were included for the assessment of signal-to-noise ratio (SNR), ghost-to-signal ratio (GSR), and ADC. STATISTICAL TESTS The interobserver agreements for examining residual aliasing artifacts were measured by the intraclass correlation coefficient (ICC). A two-sample t-test was performed for comparing SNR, GSR, and ADC. RESULTS There was a perfect agreement (ICC = 1.00) in the examination of residual aliasing artifacts on images obtained using the proposed method. The incidence rates of the residual aliasing artifact on the ADC maps obtained from the scanner console and proposed method were 60% (ie, 30 out of 50) and 0%, respectively. The proposed method offers significantly lower GSR than conventional parallel imaging reconstruction (P < 0.001). There was no significant difference in SNR (P = 0.20-0.51) and ADC values (P = 0.20-0.94) between conventional parallel imaging reconstructions and the proposed method. DATA CONCLUSION It appears that our method could effectively eliminate artifacts and significantly improve the GSR of b = 0 T2 WI and b > 0 DWI, as well as permit ADC measurement consistent with conventional techniques. Our method may be beneficial to clinical assessment of the brain that utilizes multi-oblique ssDW-EPI. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:1442-1453.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Edward S Hui
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | - Hing-Chiu Chang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
Chen NK, Wu PH. The use of Fourier-domain analyses for unwrapping phase images of low SNR. Magn Reson Med 2019; 82:356-366. [PMID: 30859614 DOI: 10.1002/mrm.27719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE We report a new postprocessing procedure that uses Fourier-domain data analyses to improve the accuracy and reliability of phase unwrapping for MRI data of low SNR. METHODS The developed method first identifies the Fourier-domain energy peak locations corresponding to different image-domain areas from which a robust measurement of image-domain phase gradients can be obtained even for MRI data of low SNR. The phase-gradient information measured from critical brain regions using the above-mentioned Fourier-domain analysis is then combined with the conventional temporal-domain or spatial-domain phase-unwrapping procedure to remove phase wraps. The developed method was tested with MRI data obtained from 30 healthy adult volunteers, and its performance was quantitatively evaluated. RESULTS The developed Fourier-domain analysis could robustly quantify image-domain phase gradients even for MRI data with low SNR (e.g., SNR ≃ 2). Experimental results show that the Fourier-domain analyses could further reduce phase wrap artifact in data produced by the conventional temporal-domain or spatial-domain phase-unwrapping procedures. CONCLUSION Our results demonstrate that the developed phase-unwrapping method can reduce residual phase wraps resulting from conventional procedures in critical brain regions (e.g., near the air-tissue interfaces) and should prove valuable for studies that require accurate measurements of MRI phase values, such as QSM, B0 field mapping, and temperature mapping.
Collapse
Affiliation(s)
- Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona.,The BIO5 Institute, University of Arizona, Tucson, Arizona.,Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Pei-Hsin Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Motovylyak A, Skinner NP, Schmit BD, Wilkins N, Kurpad SN, Budde MD. Longitudinal In Vivo Diffusion Magnetic Resonance Imaging Remote from the Lesion Site in Rat Spinal Cord Injury. J Neurotrauma 2018; 36:1389-1398. [PMID: 30259800 DOI: 10.1089/neu.2018.5964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated success as a biomarker of spinal cord injury (SCI) severity as shown from numerous pre-clinical studies. However, artifacts from stabilization hardware at the lesion have precluded its use for longitudinal assessments. Previous research has documented ex vivo diffusion changes in the spinal cord both caudal and cranial to the injury epicenter. The aim of this study was to use a rat contusion model of SCI to evaluate the utility of in vivo cervical DTI after a thoracic injury. Forty Sprague-Dawley rats underwent a thoracic contusion (T8) of mild, moderate, severe, or sham severity. Magnetic resonance imaging (MRI) of the cervical cord was performed at 2, 30, and 90 days post-injury, and locomotor performance was assessed weekly using the Basso, Bresnahan, and Beattie (BBB) scoring scale. The relationships between BBB scores and MRI were assessed using region of interest analysis and voxel-wise linear regression of DTI, and free water elimination (FWE) modeling to reduce partial volume effects. At 90 days, axial diffusivity (ADFWE), mean diffusivity (MDFWE), and free water fraction (FWFFWE) using the FWE model were found to be significantly correlated with BBB score. FWE was found to be more predictive of injury severity than conventional DTI, specifically at later time-points. This study validated the use of FWE technique in spinal cord and demonstrated its sensitivity to injury remotely.
Collapse
Affiliation(s)
- Alice Motovylyak
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan P Skinner
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,3 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natasha Wilkins
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar N Kurpad
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew D Budde
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Lobos RA, Kim TH, Hoge WS, Haldar JP. Navigator-Free EPI Ghost Correction With Structured Low-Rank Matrix Models: New Theory and Methods. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2390-2402. [PMID: 29993978 PMCID: PMC6309699 DOI: 10.1109/tmi.2018.2822053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Structured low-rank matrix models have previously been introduced to enable calibrationless MR image reconstruction from sub-Nyquist data, and such ideas have recently been extended to enable navigator-free echo-planar imaging (EPI) ghost correction. This paper presents a novel theoretical analysis which shows that, because of uniform subsampling, the structured low-rank matrix optimization problems for EPI data will always have either undesirable or non-unique solutions in the absence of additional constraints. This theory leads us to recommend and investigate problem formulations for navigator-free EPI that incorporate side information from either image-domain or k-space domain parallel imaging methods. The importance of using nonconvex low-rank matrix regularization is also identified. We demonstrate using phantom and in vivo data that the proposed methods are able to eliminate ghost artifacts for several navigator-free EPI acquisition schemes, obtaining better performance in comparison with the state-of-the-art methods across a range of different scenarios. Results are shown for both single-channel acquisition and highly accelerated multi-channel acquisition.
Collapse
|
7
|
Mani M, Magnotta V, Jacob M. A general algorithm for compensation of trajectory errors: Application to radial imaging. Magn Reson Med 2018; 80:1605-1613. [PMID: 29493002 DOI: 10.1002/mrm.27148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To reconstruct artifact-free images from measured k-space data, when the actual k-space trajectory deviates from the nominal trajectory due to gradient imperfections. METHODS Trajectory errors arising from eddy currents and gradient delays introduce phase inconsistencies in several fast scanning MR pulse sequences, resulting in image artifacts. The proposed algorithm provides a novel framework to compensate for this phase distortion. The algorithm relies on the construction of a multi-block Hankel matrix, where each block is constructed from k-space segments with the same phase distortion. In the presence of spatially smooth phase distortions between the segments, the complete block-Hankel matrix is known to be highly low-rank. Since each k-space segment is only acquiring part of the k-space data, the reconstruction of the phase compensated image from their partially parallel measurements is posed as a structured low-rank matrix optimization problem, assuming the coil sensitivities to be known. RESULTS The proposed formulation is tested on radial acquisitions in several settings including partial Fourier and golden-angle acquisitions. The experiments demonstrate the ability of the algorithm to successfully remove the artifacts arising from the trajectory errors, without the need for trajectory or phase calibration. The quality of the reconstruction was comparable to corrections achieved using the Trajectory Auto-Corrected Image Reconstruction (TrACR) for radial acquisitions. CONCLUSION The proposed method provides a general framework for the recovery of artifact-free images from radial trajectories without the need for trajectory calibration.
Collapse
Affiliation(s)
- Merry Mani
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| |
Collapse
|
8
|
Yarach U, Tung YH, Setsompop K, In MH, Chatnuntawech I, Yakupov R, Godenschweger F, Speck O. Dynamic 2D self-phase-map Nyquist ghost correction for simultaneous multi-slice echo planar imaging. Magn Reson Med 2018; 80:1577-1587. [PMID: 29427393 DOI: 10.1002/mrm.27123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop a reconstruction pipeline that intrinsically accounts for both simultaneous multislice echo planar imaging (SMS-EPI) reconstruction and dynamic slice-specific Nyquist ghosting correction in time-series data. METHODS After 1D slice-group average phase correction, the separate polarity (i.e., even and odd echoes) SMS-EPI data were unaliased by slice GeneRalized Autocalibrating Partial Parallel Acquisition. Both the slice-unaliased even and odd echoes were jointly reconstructed using a model-based framework, extended for SMS-EPI reconstruction that estimates a 2D self-phase map, corrects dynamic slice-specific phase errors, and combines data from all coils and echoes to obtain the final images. RESULTS The percentage ghost-to-signal ratios (%GSRs) and its temporal variations for MB3Ry 2 with a field of view/4 shift in a human brain obtained by the proposed dynamic 2D and standard 1D phase corrections were 1.37 ± 0.11 and 2.66 ± 0.16, respectively. Even with a large regularization parameter λ applied in the proposed reconstruction, the smoothing effect in fMRI activation maps was comparable to a very small Gaussian kernel size 1 × 1 × 1 mm3 . CONCLUSION The proposed reconstruction pipeline reduced slice-specific phase errors in SMS-EPI, resulting in reduction of GSR. It is applicable for functional MRI studies because the smoothing effect caused by the regularization parameter selection can be minimal in a blood-oxygen-level-dependent activation map.
Collapse
Affiliation(s)
- Uten Yarach
- Department of Radiologic Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Yi-Hang Tung
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | - Kawin Setsompop
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Itthi Chatnuntawech
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Renat Yakupov
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | - Frank Godenschweger
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
9
|
Lyu M, Barth M, Xie VB, Liu Y, Ma X, Feng Y, Wu EX. Robust SENSE reconstruction of simultaneous multislice EPI with low‐rank enhanced coil sensitivity calibration and slice‐dependent 2D Nyquist ghost correction. Magn Reson Med 2018; 80:1376-1390. [DOI: 10.1002/mrm.27120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Mengye Lyu
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong KongHong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineeringthe University of Hong KongHong Kong SAR People's Republic of China
| | - Markus Barth
- Centre for Advanced Imaging, University of QueenslandBrisbane Queensland Australia
| | - Victor B. Xie
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong KongHong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineeringthe University of Hong KongHong Kong SAR People's Republic of China
- Toshiba Medical Systems (China)Beijing People's Republic of China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong KongHong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineeringthe University of Hong KongHong Kong SAR People's Republic of China
| | - Xin Ma
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong KongHong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineeringthe University of Hong KongHong Kong SAR People's Republic of China
| | - Yanqiu Feng
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong KongHong Kong SAR People's Republic of China
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou Guangdong People's Republic of China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, the University of Hong KongHong Kong SAR People's Republic of China
- Department of Electrical and Electronic Engineeringthe University of Hong KongHong Kong SAR People's Republic of China
| |
Collapse
|
10
|
Wang J, Wright AJ, Hesketh RL, Hu D, Brindle KM. A referenceless Nyquist ghost correction workflow for echo planar imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate. NMR IN BIOMEDICINE 2018; 31:e3866. [PMID: 29215773 PMCID: PMC5814908 DOI: 10.1002/nbm.3866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 05/10/2023]
Abstract
Single-shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13 C-labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal-to-noise ratio (SNR) as a result of prolonged T2 * decay. We describe here a workflow for hyperpolarized 13 C EPI that requires no reference scan. This involves the selection of a ghost-containing background from a 13 C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13 C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13 C reference echoes (>15%) or better ghost removal relative to a 1 H reference scan. The residual ghosting in a slightly de-shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1 H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13 C reference scan.
Collapse
Affiliation(s)
- Jiazheng Wang
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Richard L. Hesketh
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - De‐en Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
11
|
Yarach U, In M, Chatnuntawech I, Bilgic B, Godenschweger F, Mattern H, Sciarra A, Speck O. Model-based iterative reconstruction for single-shot EPI at 7T. Magn Reson Med 2017; 78:2250-2264. [PMID: 28185433 PMCID: PMC5552473 DOI: 10.1002/mrm.26633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE To describe a model-based reconstruction strategy for single-shot echo planar imaging (EPI) that intrinsically accounts for k-space nonuniformity, Nyquist ghosting, and geometric distortions during rather than before or after image reconstruction. METHODS Ramp sampling and inhomogeneous B0 field-induced distortion cause the EPI samples to lie on a non-Cartesian grid, thus requiring the nonuniform fast Fourier transform. Additionally, a 2D Nyquist ghost phase correction without the need for extra navigator acquisition is included in the proposed reconstruction. Coil compression is also incorporated to reduce the computational load. The proposed method is applied to phantom and human brain MRI data. RESULTS The results demonstrate that Nyquist ghosting and geometric distortions are reduced by the proposed reconstruction. The proposed 2D phase correction is superior to a conventional 1D correction. The reductions of both artifacts lead to improved temporal signal-to-noise ratio (tSNR). The virtual coil results suggest that the processing time can be reduced by up to 75%, with a mean tSNR loss of only 3.2% when using 8-virtual instead of 32-physical coils for twofold undersampled data. CONCLUSION The proposed reconstruction improves the quality (ghosting, geometry, and tSNR) of EPI without requiring calibration data for Nyquist ghost correction. Magn Reson Med 78:2250-2264, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- U. Yarach
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
- Department of Radiological Technology, Chiang Mai University, Chiangmai, Thailand
| | - M.H. In
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - I. Chatnuntawech
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - B. Bilgic
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - F. Godenschweger
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | - H. Mattern
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | - A. Sciarra
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | - O. Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
12
|
Xie VB, Lyu M, Wu EX. EPI Nyquist ghost and geometric distortion correction by two-frame phase labeling. Magn Reson Med 2016; 77:1749-1761. [PMID: 27136196 DOI: 10.1002/mrm.26251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/03/2016] [Accepted: 03/30/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE To develop a new Nyquist ghost and geometric distortion correction method in echo planar imaging (EPI) using parallel imaging. METHODS Two frames of EPI data are acquired with normal and phase-labeled sequence. The phase label is applied by modifying the PE prephase gradient to shift the central echo by one echo spacing. GRAPPA weights are trained from both frames and used to reconstruct images from positive or negative echoes in each frame to remove Nyquist ghost. Geometric distortion is then corrected by the B0 field map generated from the phase difference between positive and negative echo images. Phantom and in vivo experiments at 7 Tesla (T) and 3T were performed to evaluate the proposed method. RESULTS Nyquist ghost was greatly reduced in all images even under oblique imaging and poor eddy current conditions, yielding significant improvements over the existing reference scan and image entropy minimization based methods. Image geometries were fully restored after distortion correction. Phantom results indicated that the signal-to-noise ratio efficiency was largely preserved while fMRI results showed no apparent degradation of temporal resolution. CONCLUSION The proposed method provides robust correction of both Nyquist ghost and geometric distortion in EPI, and it is particularly suitable for dynamic EPI applications. Magn Reson Med 77:1749-1761, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Victor B Xie
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengye Lyu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
13
|
Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure. Magn Reson Imaging 2016; 34:974-9. [PMID: 27114342 DOI: 10.1016/j.mri.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/06/2016] [Accepted: 04/17/2016] [Indexed: 11/22/2022]
Abstract
Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI.
Collapse
|
14
|
Miller JJ, Lau AZ, Teh I, Schneider JE, Kinchesh P, Smart S, Ball V, Sibson NR, Tyler DJ. Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 T with 3D spectral-spatial EPI. Magn Reson Med 2016; 75:1515-24. [PMID: 25991606 PMCID: PMC4556070 DOI: 10.1002/mrm.25730] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/27/2015] [Accepted: 03/22/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Hyperpolarized metabolic imaging has the potential to revolutionize the diagnosis and management of diseases where metabolism is dysregulated, such as heart disease. We investigated the feasibility of imaging rodent myocardial metabolism at high resolution at 7 T. METHODS We present here a fly-back spectral-spatial radiofrequency pulse that sidestepped maximum gradient strength requirements and enabled high resolution metabolic imaging of the rodent myocardium. A 3D echo-planar imaging readout followed, with centric ordered z-phase encoding. The cardiac gated sequence was used to image metabolism in rodents whose metabolic state had been manipulated by being fasted, fed, or fed and given the pyruvate dehydrogenase kinase inhibitor dichloroacetate. RESULTS We imaged hyperpolarized metabolites with a spatial resolution of 2×2×3.8 mm(3) and a temporal resolution of 1.8 s in the rat heart at 7 T. Significant differences in myocardial pyruvate dehydrogenase flux were observed between the three groups of animals, concomitant with the known biochemistry. CONCLUSION The proposed sequence was able to image in vivo metabolism with excellent spatial resolution in the rat heart. The field of view enabled the simultaneous multi-organ acquisition of metabolic information from the rat, which is of great utility for preclinical research in cardiovascular disease. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Jack J. Miller
- Department of PhysicsClarendon LaboratoryUniversity of OxfordEnglandUK
- Department of PhysiologyAnatomy & GeneticsUniversity of OxfordEnglandUK
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordEnglandUK
| | - Angus Z. Lau
- Department of PhysiologyAnatomy & GeneticsUniversity of OxfordEnglandUK
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordEnglandUK
| | - Irvin Teh
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordEnglandUK
| | - Jürgen E. Schneider
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordEnglandUK
| | - Paul Kinchesh
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordEnglandUK
| | - Sean Smart
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordEnglandUK
| | - Vicky Ball
- Department of PhysiologyAnatomy & GeneticsUniversity of OxfordEnglandUK
| | - Nicola R. Sibson
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordEnglandUK
| | - Damian J. Tyler
- Department of PhysiologyAnatomy & GeneticsUniversity of OxfordEnglandUK
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordEnglandUK
| |
Collapse
|
15
|
Geraghty BJ, Lau JYC, Chen AP, Cunningham CH. Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized 13 C studies. Magn Reson Med 2016; 77:538-546. [PMID: 26806525 DOI: 10.1002/mrm.26125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE To enable large field-of-view, time-resolved volumetric coverage in hyperpolarized 13 C metabolic imaging by implementing a novel data acquisition and image reconstruction method based on the compressed sensing framework. METHODS A spectral-spatial pulse for single-resonance excitation followed by a symmetric echo-planar imaging (EPI) readout was implemented for encoding a 72 × 18 cm2 field of view at 5 × 5 mm2 resolution. Random undersampling was achieved with blipped z-gradients during the ramp portion of the echo-planar imaging readout. The sequence and reconstruction were tested with phantom studies and consecutive in vivo hyperpolarized 13 C scans in rats. Retrospectively and prospectively undersampled data were compared on the basis of structural similarity in the reconstructed images and the quantification of the lactate-to-pyruvate ratio in rat kidneys. RESULTS No artifacts or loss of resolution are evident in the compressed sensing reconstructed images acquired with the proposed sequence. Structural similarity analysis indicate that compressed sensing reconstructions can accurately recover spatial features in the metabolic images evaluated. CONCLUSION A novel z-blip acquisition sequence for compressed sensing accelerated hyperpolarized 13 C 3D echo-planar imaging was developed and demonstrated. The close agreement in lactate-to-pyruvate ratios from both retrospectively and prospectively undersampled data from rats shows that metabolic information is preserved with acceleration factors up to 3-fold with the developed method. Magn Reson Med 77:538-546, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Benjamin J Geraghty
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Hoge WS, Polimeni JR. Dual-polarity GRAPPA for simultaneous reconstruction and ghost correction of echo planar imaging data. Magn Reson Med 2015. [PMID: 26208304 DOI: 10.1002/mrm.25839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE The purpose of this study was to seek improved image quality from accelerated echo planar imaging (EPI) data, particularly at ultrahigh fields. Certain artifacts in EPI reconstructions can be attributed to nonlinear phase differences between data acquired using frequency-encoding gradients of alternating polarity. These errors appear near regions of local susceptibility gradients and typically cannot be corrected with conventional Nyquist ghost correction (NGC) methods. METHODS We propose a new reconstruction method that integrates ghost correction into the parallel imaging data recovery process. This is achieved through a pair of generalized autocalibrating partially parallel acquisitions (GRAPPA) kernels that operate directly on the measured EPI data. The proposed dual-polarity GRAPPA (DPG) method estimates missing k-space data while simultaneously correcting inherent EPI phase errors. RESULTS Simulation results showed that standard NGC is incapable of correcting higher-order phase errors, whereas the DPG kernel approach successfully removed these errors. The presence of higher-order phase errors near regions of local susceptibility gradients was demonstrated with in vivo data. DPG reconstructions of in vivo 3T and 7T EPI data acquired near these regions showed a marked improvement over conventional methods. CONCLUSION This new parallel imaging method for reconstructing accelerated EPI data shows better resilience to inherent EPI phase errors, resulting in higher image quality in regions where higher-order EPI phase errors commonly occur. Magn Reson Med 76:32-44, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
17
|
Chen L, Li J, Zhang M, Cai S, Zhang T, Cai C, Chen Z. Super-resolved enhancing and edge deghosting (SEED) for spatiotemporally encoded single-shot MRI. Med Image Anal 2015; 23:1-14. [DOI: 10.1016/j.media.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/12/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
18
|
Guhaniyogi S, Chu ML, Chang HC, Song AW, Chen NK. Motion immune diffusion imaging using augmented MUSE for high-resolution multi-shot EPI. Magn Reson Med 2015; 75:639-52. [PMID: 25762216 DOI: 10.1002/mrm.25624] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/08/2014] [Accepted: 12/31/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multishot echo-planar imaging. THEORY The previously reported multiplexed sensitivity encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations, as well as motion-induced phase errors in a technique called augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative diffusion-tensor imaging measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. METHODS MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multishot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. RESULTS AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. CONCLUSION The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multishot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging.
Collapse
Affiliation(s)
- Shayan Guhaniyogi
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Mei-Lan Chu
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Hing-Chiu Chang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
19
|
Liu W, Zhao X, Ma Y, Tang X, Gao JH. DWI using navigated interleaved multishot EPI with realigned GRAPPA reconstruction. Magn Reson Med 2015; 75:280-6. [PMID: 25753774 DOI: 10.1002/mrm.25586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE A novel k-space reconstruction method is proposed for generating diffusion-weighted imaging (DWI) using navigated interleaved multishot EPI (msEPI). THEORY AND METHODS In interleaved msEPI, each shot of data acquired from one coil channel is a subset of the full k-space of that channel. All the k-space subsets of one channel can be treated as an undersampled dataset of a virtual multichannel data, which can be reconstructed by the GRAPPA algorithm after k-space realignment. The intershot phase variations are directly compensated using navigator echoes as the auto-calibrating data in GRAPPA reconstruction. In cases of multichannel msEPI data, all the virtual channels and actual channels can be integrated into a single GRAPPA reconstruction step. The proposed method is tested using both simulation and in-vivo data. The simulation results produced by the proposed method and a SENSE-based method are compared. RESULTS The simulated images generated by the proposed method exhibit less relative error compared with those generated by the SENSE method. Inconsistent shot-to-shot phase variation is naturally resolved by GRAPPA calibration without additional phase map processing. High-quality brain DWI with submillimeter resolution is obtained using our proposed reconstruction method. CONCLUSION A novel k-space msEPI reconstruction method has been developed for generating high-quality diffusion imaging.
Collapse
Affiliation(s)
- Wentao Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xuna Zhao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yajun Ma
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Tang
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
20
|
Chang HC, Gaur P, Chou YH, Chu ML, Chen NK. Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging. PLoS One 2014; 9:e116378. [PMID: 25549271 PMCID: PMC4280209 DOI: 10.1371/journal.pone.0116378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Collapse
Affiliation(s)
- Hing-Chiu Chang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States of America
| | - Pooja Gaur
- Department of Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States of America
| | - Ying-hui Chou
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mei-Lan Chu
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States of America
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
21
|
Chu ML, Chang HC, Chung HW, Truong TK, Bashir MR, Chen NK. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts. Magn Reson Med 2014; 74:1336-48. [PMID: 25394325 DOI: 10.1002/mrm.25527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. THEORY Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. METHODS The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. RESULTS Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. CONCLUSION POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.
Collapse
Affiliation(s)
- Mei-Lan Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Hing-Chiu Chang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.,Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.,Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
22
|
Chang HC, Guhaniyogi S, Chen NK. Interleaved diffusion-weighted improved by adaptive partial-Fourier and multiband multiplexed sensitivity-encoding reconstruction. Magn Reson Med 2014; 73:1872-84. [PMID: 24925000 DOI: 10.1002/mrm.25318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion-weighted imaging (DWI). METHODS First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either (a) motion-induced k-space energy peak displacement, or (b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multiband MUSE, so that both through-plane and in-plane aliasing artifacts in multiband multishot interleaved DWI data can be effectively eliminated. RESULTS The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multiband and high-throughput DWI. CONCLUSION The integration of the multiband and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses.
Collapse
Affiliation(s)
- Hing-Chiu Chang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
23
|
Li H, Fox-Neff K, Vaughan B, French D, Szaflarski JP, Li Y. Parallel EPI artifact correction (PEAC) for N/2 ghost suppression in neuroimaging applications. Magn Reson Imaging 2013; 31:1022-8. [DOI: 10.1016/j.mri.2013.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/21/2012] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
24
|
Chen NK, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). Neuroimage 2013; 72:41-7. [PMID: 23370063 DOI: 10.1016/j.neuroimage.2013.01.038] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/03/2013] [Accepted: 01/13/2013] [Indexed: 12/21/2022] Open
Abstract
Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies.
Collapse
Affiliation(s)
- Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 2737, Hock Plaza, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
25
|
Poser BA, Barth M, Goa PE, Deng W, Stenger VA. Single-shot echo-planar imaging with Nyquist ghost compensation: interleaved dual echo with acceleration (IDEA) echo-planar imaging (EPI). Magn Reson Med 2012; 69:37-47. [PMID: 22411762 DOI: 10.1002/mrm.24222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/28/2011] [Accepted: 01/30/2012] [Indexed: 11/12/2022]
Abstract
Echo planar imaging (EPI) is most commonly used for blood oxygen level-dependent fMRI, owing to its sensitivity and acquisition speed. A major problem with EPI is Nyquist (N/2) ghosting, most notably at high field. EPI data are acquired under an oscillating readout gradient and hence vulnerable to gradient imperfections such as eddy current delays and off-resonance effects, as these cause inconsistencies between odd and even k-space lines after time reversal. We propose a straightforward and pragmatic method herein termed "interleaved dual echo with acceleration (IDEA) EPI": two k-spaces (echoes) are acquired under the positive and negative readout lobes, respectively, by performing phase encoding blips only before alternate readout gradients. From these two k-spaces, two almost entirely ghost free images per shot can be constructed, without need for phase correction. The doubled echo train length can be compensated by parallel imaging and/or partial Fourier acquisition. The two k-spaces can either be complex averaged during reconstruction, which results in near-perfect cancellation of residual phase errors, or reconstructed into separate images. We demonstrate the efficacy of IDEA EPI and show phantom and in vivo images at both 3 T and 7 T.
Collapse
Affiliation(s)
- Benedikt A Poser
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| | | | | | | | | |
Collapse
|