1
|
Albano D, Viglino U, Esposito F, Rizzo A, Messina C, Gitto S, Fusco S, Serpi F, Kamp B, Müller-Lutz A, D’Ambrosi R, Sconfienza LM, Sewerin P. Quantitative and Compositional MRI of the Articular Cartilage: A Narrative Review. Tomography 2024; 10:949-969. [PMID: 39058044 PMCID: PMC11280587 DOI: 10.3390/tomography10070072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
This review examines the latest advancements in compositional and quantitative cartilage MRI techniques, addressing both their potential and challenges. The integration of these advancements promises to improve disease detection, treatment monitoring, and overall patient care. We want to highlight the pivotal task of translating these techniques into widespread clinical use, the transition of cartilage MRI from technical validation to clinical application, emphasizing its critical role in identifying early signs of degenerative and inflammatory joint diseases. Recognizing these changes early may enable informed treatment decisions, thereby facilitating personalized medicine approaches. The evolving landscape of cartilage MRI underscores its increasing importance in clinical practice, offering valuable insights for patient management and therapeutic interventions. This review aims to discuss the old evidence and new insights about the evaluation of articular cartilage through MRI, with an update on the most recent literature published on novel quantitative sequences.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20122 Milan, Italy
| | - Umberto Viglino
- Unit of Radiology, Ospedale Evangelico Internazionale, 16100 Genova, Italy;
| | - Francesco Esposito
- Division of Radiology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Aldo Rizzo
- Postgraduate School of Diagnostic and Interventional Radiology, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy;
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Stefano Fusco
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Serpi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (B.K.); (A.M.-L.)
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (B.K.); (A.M.-L.)
| | - Riccardo D’Ambrosi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Philipp Sewerin
- Rheumazentrum Ruhrgebiet, Ruhr University Bochum, 44649 Herne, Germany;
- Department and Hiller-Research-Unit for Rheumatology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Brui EA, Badrieva Z, de Mayenne CA, Rapacchi S, Troalen T, Bendahan D. Mitigating slice cross-talk in multi-slice multi-echo spin echo T 2 mapping. Magn Reson Med 2024; 91:2089-2103. [PMID: 38156822 DOI: 10.1002/mrm.29987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To investigate whether a T2 inter-slice variation could occur when a multi-slice multi-echo spin echo (MESE) sequence is used for image acquisition and to propose an enhanced method for reconstructing T2 maps that can effectively address and correct these variations. METHODS Bloch simulations were performed accounting for the direct saturation effect to evaluate magnetization changes in multi-slice 2D MESE sequence. Experimental phantom scans were performed to validate these simulations. An improved version of the dictionary-based reconstruction approach was proposed, enabling the creation of a multi-slice dictionary of echo modulation curves (EMC). The corresponding method has been assayed considering inter-slice T2 variation with phantoms and in lower leg. RESULTS Experimental and numerical study illustrate that direct saturation leads to a bias of EMCs. This bias during the T2 maps reconstructions using original single-slice EMC-dictionary method led to inter-slice T2 variation of 2.03% in average coefficient of variation (CV) in agarose phantoms, and up to 2.8% in vivo (for TR = 2 s, slice gap = 0%). A reduction of CV was observed when increasing the gap up to 100% (0.36% in phantoms, and up to 1.5% in vivo) or increasing TR up to 4 s (0.76% in phantoms, and up to 1.9% in vivo). Matching the multi-slice experimental data with multi-slice dictionaries provided a reduced CV of 0.54% in phantoms and up to 2.3% in vivo. CONCLUSION T2 values quantified from multi-slice MESE images using single-slice dictionaries are biased. A dedicated multi-slice EMC method providing the appropriate dictionaries can reduce the inter-slice T2 variation.
Collapse
Affiliation(s)
- Ekaterina A Brui
- School of Physics and Engineering, ITMO University, Saint-Petersburg, Russia
| | - Zilya Badrieva
- School of Physics and Engineering, ITMO University, Saint-Petersburg, Russia
| | - Charles-Alexis de Mayenne
- Paris Science et Lettres, E'cole Supe'rieure de Physique et de Chimie Industrielle de la ville de Paris, Paris, France
| | - Stanislas Rapacchi
- Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, CNRS, Marseille, France
| | | | - David Bendahan
- Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, CNRS, Marseille, France
| |
Collapse
|
3
|
Kadalie E, Trotier AJ, Corbin N, Miraux S, Ribot EJ. Rapid whole brain 3D T 2 mapping respiratory-resolved Double-Echo Steady State (DESS) sequence with improved repeatability. Magn Reson Med 2024; 91:221-236. [PMID: 37794821 DOI: 10.1002/mrm.29847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To propose a quantitative 3D double-echo steady-state (DESS) sequence that offers rapid and repeatable T2 mapping of the human brain using different encoding schemes that account for respiratory B0 variation. METHODS A retrospective self-gating module was firstly implemented into the standard DESS sequence in order to suppress the respiratory artifact via data binning. A compressed-sensing trajectory (CS-DESS) was then optimized to accelerate the acquisition. Finally, a spiral Cartesian encoding (SPICCS-DESS) was incorporated to further disrupt the coherent respiratory artifact. These different versions were compared to a standard DESS sequence (fully DESS) by assessing the T2 distribution and repeatability in different brain regions of eight volunteers at 3 T. RESULTS The respiratory artifact correction was determined to be optimal when the data was binned into seven respiratory phases. Compared to the fully DESS, T2 distribution was improved for the CS-DESS and SPICCS-DESS with interquartile ranges reduced significantly by a factor ranging from 2 to 12 in the caudate, putamen, and thalamus regions. In the gray and white matter areas, average absolute test-retest T2 differences across all volunteers were respectively 3.5 ± 2% and 3.1 ± 2.1% for the SPICCS-DESS, 4.6 ± 4.6% and 4.9 ± 5.1% for the CS-DESS, and 15% ± 13% and 7.3 ± 5.6% for the fully DESS. The SPICCS-DESS sequence's acquisition time could be reduced by half (<4 min) while maintaining its efficient T2 mapping. CONCLUSION The respiratory-resolved SPICCS-DESS sequence offers rapid, robust, and repeatable 3D T2 mapping of the human brain, which can be especially effective for longitudinal monitoring of cerebral pathologies.
Collapse
Affiliation(s)
- Emile Kadalie
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, F-33000, Bordeaux, France
| | - Aurélien J Trotier
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, F-33000, Bordeaux, France
| | - Nadège Corbin
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, F-33000, Bordeaux, France
| | - Sylvain Miraux
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, F-33000, Bordeaux, France
| | - Emeline J Ribot
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, F-33000, Bordeaux, France
| |
Collapse
|
4
|
Mickevicius NJ. Magnetic resonance coherence pathway unraveling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 358:107613. [PMID: 38134509 DOI: 10.1016/j.jmr.2023.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Efficiently acquiring multi-contrast magnetic resonance imaging data is crucial for patient comfort and clinical throughput. Developing scan acceleration methods tailored for specific applications drastically improves the value of an MRI examination. Here, we propose a novel method to control the aliasing of simultaneously acquired images of multiple spin echo coherence pathways with the goal of producing high quality multi-contrast images from a single acquisition. Modulating the radiofrequency phase of several pulses applied in brief succession also uniquely modulates the phase of spin echo coherence pathways. A method, termed magnetic resonance coherence pathway unraveling (MR-CPU), to control the aliasing of simultaneously acquired coherence pathway images is developed here along with parallel imaging-based reconstruction methods to separate them. MR-CPU was validated in phantom experiments and tested in vivo. High levels of correlation between reference pathway images and MR-CPU-derived coherence pathway images were found from the phantom experiments. Minimal artifacts arising from the separation of the overlapped coherence pathway images were observed in vivo. MR-CPU provides a novel mechanism through which to acquire and separate multiple overlapped coherence pathway images, thus adding to the diagnostic potential of an MRI exam without the penalty of additional scan time.
Collapse
|
5
|
Katscher U, Meineke J, Zhang S, Steinhorst B, Keupp J. Estimation of effective b-value for a diffusion-weighted double-echo steady-state sequence with bipolar gradients. Magn Reson Imaging 2024; 105:10-16. [PMID: 37863374 DOI: 10.1016/j.mri.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Diffusion-weighted double-echo steady-state (dwDESS) MRI with bipolar diffusion gradients is a promising candidate to obtain diffusion weighted images (DWI) free of geometric distortions and with low motion sensitivity. However, a wider clinical application of dwDESS is currently hindered as no method is reported to explicitly calculate the effective b-value of the obtained DWI from the diffusion-gradients applied in the sequence. To this end, a previously described signal model was adapted for dwDESS with bipolar diffusion gradients, which allows to estimate an effective b-value, dubbed b'. Evaluation in phantom examinations was performed on a clinical 1.5 T MR system. Experimental results were compared with theoretical predictions, including the apparent diffusion coefficient (ADC) based on b-values from a standard EPI-DWI sequence and ADC' based on the effective b' from the dwDESS sequence. The adapted signal model was able to describe the experimental results, and the obtained values of ADC' were in line with conventional ADC measurements.
Collapse
Affiliation(s)
- Ulrich Katscher
- Philips Research Europe, Roentgenstrasse 24-26, 22335 Hamburg, Germany.
| | - Jakob Meineke
- Philips Research Europe, Roentgenstrasse 24-26, 22335 Hamburg, Germany
| | - Shuo Zhang
- Philips Healthcare, Roentgenstrasse 24-26, 22335 Hamburg, Germany
| | - Björn Steinhorst
- Philips Research Europe, Roentgenstrasse 24-26, 22335 Hamburg, Germany
| | - Jochen Keupp
- Philips Research Europe, Roentgenstrasse 24-26, 22335 Hamburg, Germany
| |
Collapse
|
6
|
Milks KS, Singh J, Benedict JA, Rees MA. Fluid-attenuated inversion-recovery sequence with fat suppression as an alternative to contrast-enhanced MRI in pediatric synovitis. Pediatr Radiol 2024; 54:96-104. [PMID: 37962605 DOI: 10.1007/s00247-023-05804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Non-contrast magnetic resonance imaging (MRI) fluid-attenuated inversion-recovery sequence (FLAIR) with fat suppression (FS) has not been validated in children. OBJECTIVE Compare FLAIR to T1-weighted post contrast (T1CE) in the detection of knee synovitis. METHODS AND MATERIALS Institutional review board (IRB) waived consent. Children who underwent T1CE and FLAIR sequences of the knee on a 3-T magnet from April 2021 to December 2021 were included. Two pediatric radiologists assessed axial FLAIR and T1CE images for synovitis and synovial thickness. Reliability and agreement were assessed. Sensitivities, specificities, and accuracy were calculated for FLAIR using T1CE as reference standard. RESULTS In total, 42 knees (39 patients) were assessed (median age 12.9 years (2.3-17.8 years); 62% male, 38% female). Readers judged 20/42 (48%) knees to have synovitis. Sensitivity of FLAIR for reader 1 was 79% (19/24; 95% CI 0.58, 0.93) and 84% (16/19; 95% CI 0.60, 0.97) for reader 2. Specificity of FLAIR for reader 1 was 94% (17/18; 95% CI 0.73, 1) and 83% (19/23; 95% CI 0.61, 0.95) for reader 2. Accuracy for readers 1 and 2 was 86% (36/42; 95% CI 0.71, 0.95) and 83% (35/42; 95% CI 0.69, 0.93), respectively. Inter-reader reliability was good (0.75-0.90) for synovial measurements for FLAIR (ICC = 0.80; 95% CI 0.71, 0.86) and moderate for T1 CE (ICC = 0.62 (95% CI 0.48, 0.73)). CONCLUSION FLAIR FS depicts synovium in the pediatric knee with similar reliability to T1 CE and may be an acceptable alternative to contrast in the initial diagnosis of synovitis.
Collapse
Affiliation(s)
- Kathryn S Milks
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43215, USA.
| | - Jasmeet Singh
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43215, USA
| | - Jason A Benedict
- Department of Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mitchell A Rees
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43215, USA
| |
Collapse
|
7
|
Barbieri M, Watkins LE, Mazzoli V, Desai AD, Rubin E, Schmidt A, Gold GE, Hargreaves BA, Chaudhari AS, Kogan F. [Formula: see text] Field inhomogeneity correction for qDESS [Formula: see text] mapping: application to rapid bilateral knee imaging. MAGMA (NEW YORK, N.Y.) 2023; 36:711-724. [PMID: 37142852 PMCID: PMC10524110 DOI: 10.1007/s10334-023-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE [Formula: see text] mapping is a powerful tool for studying osteoarthritis (OA) changes and bilateral imaging may be useful in investigating the role of between-knee asymmetry in OA onset and progression. The quantitative double-echo in steady-state (qDESS) can provide fast simultaneous bilateral knee [Formula: see text] and high-resolution morphometry for cartilage and meniscus. The qDESS uses an analytical signal model to compute [Formula: see text] relaxometry maps, which require knowledge of the flip angle (FA). In the presence of [Formula: see text] inhomogeneities, inconsistencies between the nominal and actual FA can affect the accuracy of [Formula: see text] measurements. We propose a pixel-wise [Formula: see text] correction method for qDESS [Formula: see text] mapping exploiting an auxiliary [Formula: see text] map to compute the actual FA used in the model. METHODS The technique was validated in a phantom and in vivo with simultaneous bilateral knee imaging. [Formula: see text] measurements of femoral cartilage (FC) of both knees of six healthy participants were repeated longitudinally to investigate the association between [Formula: see text] variation and [Formula: see text]. RESULTS The results showed that applying the [Formula: see text] correction mitigated [Formula: see text] variations that were driven by [Formula: see text] inhomogeneities. Specifically, [Formula: see text] left-right symmetry increased following the [Formula: see text] correction ([Formula: see text] = 0.74 > [Formula: see text] = 0.69). Without the [Formula: see text] correction, [Formula: see text] values showed a linear dependence with [Formula: see text]. The linear coefficient decreased using the [Formula: see text] correction (from 24.3 ± 1.6 ms to 4.1 ± 1.8) and the correlation was not statistically significant after the application of the Bonferroni correction (p value > 0.01). CONCLUSION The study showed that [Formula: see text] correction could mitigate variations driven by the sensitivity of the qDESS [Formula: see text] mapping method to [Formula: see text], therefore, increasing the sensitivity to detect real biological changes. The proposed method may improve the robustness of bilateral qDESS [Formula: see text] mapping, allowing for an accurate and more efficient evaluation of OA pathways and pathophysiology through longitudinal and cross-sectional studies.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Lauren E. Watkins
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Arjun D. Desai
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Elka Rubin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Andrew Schmidt
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry Evan Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Andrew Hargreaves
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Akshay Sanjay Chaudhari
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Zibetti MVW, Menon RG, de Moura HL, Zhang X, Kijowski R, Regatte RR. Updates on Compositional MRI Mapping of the Cartilage: Emerging Techniques and Applications. J Magn Reson Imaging 2023; 58:44-60. [PMID: 37010113 PMCID: PMC10323700 DOI: 10.1002/jmri.28689] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023] Open
Abstract
Osteoarthritis (OA) is a widely occurring degenerative joint disease that is severely debilitating and causes significant socioeconomic burdens to society. Magnetic resonance imaging (MRI) is the preferred imaging modality for the morphological evaluation of cartilage due to its excellent soft tissue contrast and high spatial resolution. However, its utilization typically involves subjective qualitative assessment of cartilage. Compositional MRI, which refers to the quantitative characterization of cartilage using a variety of MRI methods, can provide important information regarding underlying compositional and ultrastructural changes that occur during early OA. Cartilage compositional MRI could serve as early imaging biomarkers for the objective evaluation of cartilage and help drive diagnostics, disease characterization, and response to novel therapies. This review will summarize current and ongoing state-of-the-art cartilage compositional MRI techniques and highlight emerging methods for cartilage compositional MRI including MR fingerprinting, compressed sensing, multiexponential relaxometry, improved and robust radio-frequency pulse sequences, and deep learning-based acquisition, reconstruction, and segmentation. The review will also briefly discuss the current challenges and future directions for adopting these emerging cartilage compositional MRI techniques for use in clinical practice and translational OA research studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Marcelo V. W. Zibetti
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Rajiv G. Menon
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hector L. de Moura
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Xiaoxia Zhang
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Richard Kijowski
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Luo P, Hu W, Xu R, Wang Y, Li X, Jiang L, Chang S, Wu D, Li G, Dai Y. Enabling early detection of knee osteoarthritis using diffusion-relaxation correlation spectrum imaging. Clin Radiol 2023:S0009-9260(23)00224-6. [PMID: 37336674 DOI: 10.1016/j.crad.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
AIM To present a technique that enables detection of early stage OA of the knee using diffusion-relaxation correlation spectrum imaging (DR-CSI). MATERIALS AND METHODS Fifty-five early osteoarthritis patients (OA, Kellgren-Lawrence [KL] score 1 to 2; mean age, 56.4 years) and 49 healthy volunteers (mean age, 56.7 years) were underwent magnetic resonance imaging (MRI) with T2-mapping and DR-CSI techniques. Maps of mean apparent diffusion coefficient (ADC), T2 relaxation time and volume fraction Vi for DR-CSI compartment i (A, B, C, D) sensitivity, specificity, and positive and negative likelihood ratio (PLR, NLR) were assessed to determine the diagnostic accuracy for detection of early-stage degeneration of knee articular cartilage. The structural abnormalities of articular cartilage were evaluated using modified Whole-Organ MR Imaging Scores (WORMS). RESULTS All intra- and interobserver agreements for DR-CSI compartment volume fractions and modified WORMS of cartilage were excellent. Early OA versus the controls had higher VC, lower VA and VB (p<0.001), but comparable VD (p>0.05). VA, VB and VC had a moderate association with WORMS. No significant correlation was identified between VD and WORMS. VC had better ability than VA,VB, VD, T2 and ADC to discriminate early OA patients from healthy controls (area under the curve, 0.898). Sensitivity, specificity, PLR, and NLR of VC with a cut-off value of 29.9% were 81.8% (95% confidence interval [CI], 69.1-90.9%), 95.9% (86-99.5%), 20.05% (5.13-78.34%), and 0.19% (0.11-0.33%). CONCLUSIONS DR-CSI compartment volume fractions may be sensitive indicators for detecting early-stage degeneration in knee articular cartilage.
Collapse
Affiliation(s)
- P Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - W Hu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - R Xu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Y Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - X Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - L Jiang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - S Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - D Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai 200062, China
| | - G Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Y Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
10
|
Jang H, Athertya J, Jerban S, Ma Y, Lombardi AF, Chung CB, Chang EY, Du J. Correction of B 0 and linear eddy currents: Impact on morphological and quantitative ultrashort echo time double echo steady state (UTE-DESS) imaging. NMR IN BIOMEDICINE 2023; 36:e4939. [PMID: 36965076 PMCID: PMC10518369 DOI: 10.1002/nbm.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
The purpose of the current study was to investigate the effects of B0 and linear eddy currents on ultrashort echo time double echo steady state (UTE-DESS) imaging and to determine whether eddy current correction (ECC) effectively resolves imaging artifacts caused by eddy currents. 3D UTE-DESS sequences based on either projection radial or spiral cones trajectories were implemented on a 3-T clinical MR scanner. An off-isocentered thin-slice excitation approach was used to measure eddy currents. The measurements were repeated four times using two sets of tested gradient waveforms with opposite polarities and two different slice locations to measure B0 and linear eddy currents simultaneously. Computer simulation was performed to investigate the eddy current effect. Finally, a phantom experiment, an ex vivo experiment with human synovium and ankle samples, and an in vivo experiment with human knee joints, were performed to demonstrate the effects of eddy currents and ECC in UTE-DESS imaging. In a computer simulation, the two echoes (S+ and S-) in UTE-DESS imaging exhibited strong distortion at different orientations in the presence of B0 and linear eddy currents, resulting in both image degradation as well as misalignment of pixel location between the two echoes. The same phenomenon was observed in the phantom, ex vivo, and in vivo experiments, where the presence of eddy currents degraded S+, S-, echo subtraction images, and T2 maps. The implementation of ECC dramatically improved both the image quality and image registration between the S+ and S- echoes. It was concluded that ECC is crucial for reliable morphological and quantitative UTE-DESS imaging.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California, San Diego, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, USA
| | | | - Christine B Chung
- Department of Radiology, University of California, San Diego, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Bioengineering, University of California, San Diego, USA
| |
Collapse
|
11
|
Barbieri M, Chaudhari AS, Moran CJ, Gold GE, Hargreaves BA, Kogan F. A method for measuring B 0 field inhomogeneity using quantitative double-echo in steady-state. Magn Reson Med 2023; 89:577-593. [PMID: 36161727 PMCID: PMC9712261 DOI: 10.1002/mrm.29465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop and validate a method forB 0 $$ {B}_0 $$ mapping for knee imaging using the quantitative Double-Echo in Steady-State (qDESS) exploiting the phase difference (Δ θ $$ \Delta \theta $$ ) between the two echoes acquired. Contrary to a two-gradient-echo (2-GRE) method,Δ θ $$ \Delta \theta $$ depends only on the first echo time. METHODS Bloch simulations were applied to investigate robustness to noise of the proposed methodology and all imaging studies were validated with phantoms and in vivo simultaneous bilateral knee acquisitions. Two phantoms and five healthy subjects were scanned using qDESS, water saturation shift referencing (WASSR), and multi-GRE sequences.Δ B 0 $$ \Delta {B}_0 $$ maps were calculated with the qDESS and the 2-GRE methods and compared against those obtained with WASSR. The comparison was quantitatively assessed exploiting pixel-wise difference maps, Bland-Altman (BA) analysis, and Lin's concordance coefficient (ρ c $$ {\rho}_c $$ ). For in vivo subjects, the comparison was assessed in cartilage using average values in six subregions. RESULTS The proposed method for measuringΔ B 0 $$ \Delta {B}_0 $$ inhomogeneities from a qDESS acquisition providedΔ B 0 $$ \Delta {B}_0 $$ maps that were in good agreement with those obtained using WASSR.Δ B 0 $$ \Delta {B}_0 $$ ρ c $$ {\rho}_c $$ values were≥ $$ \ge $$ 0.98 and 0.90 in phantoms and in vivo, respectively. The agreement between qDESS and WASSR was comparable to that of a 2-GRE method. CONCLUSION The proposed method may allow B0 correction for qDESST 2 $$ {T}_2 $$ mapping using an inherently co-registeredΔ B 0 $$ \Delta {B}_0 $$ map without requiring an additional B0 measurement sequence. More generally, the method may help shorten knee imaging protocols that require an auxiliaryΔ B 0 $$ \Delta {B}_0 $$ map by exploiting a qDESS acquisition that also providesT 2 $$ {T}_2 $$ measurements and high-quality morphological imaging.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, U.S.A
| | - Akshay S. Chaudhari
- Department of Radiology, Stanford University, Stanford, CA, U.S.A
- Department of Biomedical Data Science, Stanford University, Stanford, CA, U.S.A
| | | | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, U.S.A
- Department of Bioengineering, Stanford University, Stanford, CA, U.S.A
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, CA, U.S.A
- Department of Bioengineering, Stanford University, Stanford, CA, U.S.A
- Department of Electrical Engineering, Stanford University, Stanford, CA, U.S.A
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, U.S.A
| |
Collapse
|
12
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
13
|
Sveinsson B, Rowe OE, Stockmann JP, Park DJ, Lally PJ, Rosen MS, Barry RL, Eichler F, Rosen BR, Sadjadi R. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A (CMT1A) at 7T. Muscle Nerve 2022; 66:206-211. [PMID: 35621349 PMCID: PMC9308706 DOI: 10.1002/mus.27647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Magnetic resonance imaging (MRI) of peripheral nerves can provide image-based anatomical information and quantitative measurement. The aim of this pilot study was to investigate the feasibility of high-resolution anatomical and quantitative MRI assessment of sciatic nerve fascicles in patients with Charcot-Marie-Tooth (CMT) 1A using 7T field strength. METHODS Six patients with CMT1A underwent imaging on a high-gradient 7T MRI scanner using a 28-channel knee coil. Two high-resolution axial images were simultaneously acquired using a quantitative double-echo in steady-state (DESS) sequence. By comparing the two DESS echoes, T2 and apparent diffusion coefficient (ADC) maps were calculated. The cross-sectional areas and mean T2 and ADC were measured in individual fascicles of the tibial and fibular (peroneal) portions of the sciatic nerve at its bifurcation and 10 mm distally. Disease severity was measured using Charcot-Marie-Tooth Examination Score (CMTES) version 2 and compared to imaging findings. RESULTS We demonstrated the feasibility of 7T MRI of the proximal sciatic nerve in patients with CMT1A. Using the higher field, it was possible to measure individual bundles in the tibial and fibular divisions of the sciatic nerve. There was no apparent correlation between diffusion measures and disease severity in this small cohort. DISCUSSION This pilot study indicated that high-resolution MRI that allows for combined anatomical and quantitative imaging in one scan is feasible at 7T field strengths and can be used to investigate the microstructure of individual nerve fascicles.
Collapse
Affiliation(s)
- Bragi Sveinsson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia E Rowe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Park
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter J Lally
- Department of Brain Sciences, Imperial College London, London, UK
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Luo P, Hu W, Jiang L, Chang S, Wu D, Li G, Dai Y. Evaluation of articular cartilage in knee osteoarthritis using hybrid multidimensional MRI. Clin Radiol 2022; 77:e518-e525. [DOI: 10.1016/j.crad.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
|
15
|
Feng L, Ma D, Liu F. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends. NMR IN BIOMEDICINE 2022; 35:e4416. [PMID: 33063400 PMCID: PMC8046845 DOI: 10.1002/nbm.4416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 05/08/2023]
Abstract
Quantitative mapping of MR tissue parameters such as the spin-lattice relaxation time (T1 ), the spin-spin relaxation time (T2 ), and the spin-lattice relaxation in the rotating frame (T1ρ ), referred to as MR relaxometry in general, has demonstrated improved assessment in a wide range of clinical applications. Compared with conventional contrast-weighted (eg T1 -, T2 -, or T1ρ -weighted) MRI, MR relaxometry provides increased sensitivity to pathologies and delivers important information that can be more specific to tissue composition and microenvironment. The rise of deep learning in the past several years has been revolutionizing many aspects of MRI research, including image reconstruction, image analysis, and disease diagnosis and prognosis. Although deep learning has also shown great potential for MR relaxometry and quantitative MRI in general, this research direction has been much less explored to date. The goal of this paper is to discuss the applications of deep learning for rapid MR relaxometry and to review emerging deep-learning-based techniques that can be applied to improve MR relaxometry in terms of imaging speed, image quality, and quantification robustness. The paper is comprised of an introduction and four more sections. Section 2 describes a summary of the imaging models of quantitative MR relaxometry. In Section 3, we review existing "classical" methods for accelerating MR relaxometry, including state-of-the-art spatiotemporal acceleration techniques, model-based reconstruction methods, and efficient parameter generation approaches. Section 4 then presents how deep learning can be used to improve MR relaxometry and how it is linked to conventional techniques. The final section concludes the review by discussing the promise and existing challenges of deep learning for rapid MR relaxometry and potential solutions to address these challenges.
Collapse
Affiliation(s)
- Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Fang Liu
- Department of Radiology, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|
16
|
Imaging of Synovial Inflammation in Osteoarthritis, From the AJR Special Series on Inflammation. AJR Am J Roentgenol 2021; 218:405-417. [PMID: 34286595 DOI: 10.2214/ajr.21.26170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synovitis, inflammation of the synovial membrane, is a common manifestation in osteoarthritis (OA) and is recognized to play a role in the complex pathophysiology of OA. Increased recognition of the importance of synovitis in the OA disease process and potential as a target for treatment has increased the need for non-invasive detection and characterization of synovitis using medical imaging. Numerous imaging methods can assess synovitis involvement in OA with varying sensitivity and specificity as well as complexity. This article reviews the role of contrast-enhanced MRI, conventional MRI, novel unenhanced MRI, gray-scale ultrasound (US), and power Doppler US in the assessment of synovitis in patients with OA. The role of imaging in disease evaluation as well as challenges in conventional imaging methods are discussed. We also provide an overview into the potential utility of emerging techniques for imaging of early inflammation and molecular inflammatory markers of synovitis, including quantitative MRI, superb microvascular imaging, and PET. The potential development of therapeutic treatments targeting inflammatory features, particularly in early OA, would greatly increase the importance of these imaging methods for clinical decision making and evaluation of therapeutic efficacy.
Collapse
|
17
|
Zijlstra F, Seevinck PR. Multiple-echo steady-state (MESS): Extending DESS for joint T 2 mapping and chemical-shift corrected water-fat separation. Magn Reson Med 2021; 86:3156-3165. [PMID: 34270127 PMCID: PMC8596862 DOI: 10.1002/mrm.28921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Purpose To extend the double echo steady‐state (DESS) sequence to enable chemical‐shift corrected water‐fat separation. Methods This study proposes multiple‐echo steady‐state (MESS), a sequence that modifies the readouts of the DESS sequence to acquire two echoes each with bipolar readout gradients with higher readout bandwidth. This enables water‐fat separation and eliminates the need for water‐selective excitation that is often used in combination with DESS, without increasing scan time. An iterative fitting approach was used to perform joint chemical‐shift corrected water‐fat separation and T2 estimation on all four MESS echoes simultaneously. MESS and water‐selective DESS images were acquired for five volunteers, and were compared qualitatively as well as quantitatively on cartilage T2 and thickness measurements. Signal‐to‐noise ratio (SNR) and T2 quantification were evaluated numerically using pseudo‐replications of the acquisition. Results The water‐fat separation provided by MESS was robust and with quality comparable to water‐selective DESS. MESS T2 estimation was similar to DESS, albeit with slightly higher variability. Noise analysis showed that SNR in MESS was comparable to DESS on average, but did exhibit local variations caused by uncertainty in the water‐fat separation. Conclusion In the same acquisition time as DESS, MESS provides water‐fat separation with comparable SNR in the reconstructed water and fat images. By providing additional image contrasts in addition to the water‐selective DESS images, MESS provides a promising alternative to DESS.
Collapse
Affiliation(s)
- Frank Zijlstra
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiology and Nuclear Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,MRIGuidance BV, Utrecht, The Netherlands
| |
Collapse
|
18
|
Watkins L, MacKay J, Haddock B, Mazzoli V, Uhlrich S, Gold G, Kogan F. Assessment of quantitative [ 18F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthritis Cartilage 2021; 29:849-858. [PMID: 33639259 PMCID: PMC8159876 DOI: 10.1016/j.joca.2021.02.563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Molecular information derived from dynamic [18F]sodium fluoride ([18F]NaF) PET imaging holds promise as a quantitative marker of bone metabolism. The objective of this work was to evaluate physiological mechanisms of [18F]NaF uptake in subchondral bone of individuals with and without knee osteoarthritis (OA). METHODS Eleven healthy volunteers and twenty OA subjects were included. Both knees of all subjects were scanned simultaneously using a 3T hybrid PET/MRI system. MRI MOAKS assessment was performed to score the presence and size of osteophytes, bone marrow lesions, and cartilage lesions. Subchondral bone kinetic parameters of bone perfusion (K1), tracer extraction fraction, and total tracer uptake into bone (Ki) were evaluated using the Hawkins 3-compartment model. Measures were compared between structurally normal-appearing bone regions and those with structural findings. RESULTS Mean and maximum SUV and kinetic parameters Ki, K1, and extraction fraction were significantly different between Healthy subjects and subjects with OA. Between-group differences in metabolic parameters were observed both in regions where the OA group had degenerative changes as well as in regions that appeared structurally normal. CONCLUSIONS Results suggest that bone metabolism is altered in OA subjects, including bone regions with and without structural findings, compared to healthy subjects. Kinetic parameters of [18F]NaF uptake in subchondral bone show potential to quantitatively evaluate the role of bone physiology in OA initiation and progression. Objective measures of bone metabolism from [18F]NaF PET imaging can complement assessments of structural abnormalities observed on MRI.
Collapse
Affiliation(s)
- L Watkins
- Department of Bioengineering, Stanford University, Stanford CA, USA; Department of Radiology, Stanford University, Stanford CA, USA.
| | - J MacKay
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | | | - V Mazzoli
- Department of Radiology, Stanford University, Stanford CA, USA
| | - S Uhlrich
- Department of Mechanical Engineering, Stanford University, Stanford CA, USA
| | - G Gold
- Department of Bioengineering, Stanford University, Stanford CA, USA; Department of Radiology, Stanford University, Stanford CA, USA
| | - F Kogan
- Department of Radiology, Stanford University, Stanford CA, USA
| |
Collapse
|
19
|
Jang H, Ma Y, Carl M, Jerban S, Chang EY, Du J. Ultrashort echo time Cones double echo steady state (UTE-Cones-DESS) for rapid morphological imaging of short T 2 tissues. Magn Reson Med 2021; 86:881-892. [PMID: 33755258 DOI: 10.1002/mrm.28769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE In this study, we aimed to develop a new technique, ultrashort echo time Cones double echo steady state (UTE-Cones-DESS), for highly efficient morphological imaging of musculoskeletal tissues with short T2 s. We also proposed a novel, single-point Dixon (spDixon)-based approach for fat suppression. METHODS The UTE-Cones-DESS sequence was implemented on a 3T MR system. It uses a short radiofrequency (RF) pulse followed by a pair of balanced spiral-out and spiral-in readout gradients separated by an unbalanced spoiling gradient in-between. The readout gradients are applied immediately before or after the RF pulses to achieve a UTE image (S+ ) and a spin/stimulated echo image (S- ). Weighted echo subtraction between S+ and S- was performed to achieve high contrast specific to short T2 tissues, and spDixon was applied to suppress fat by using the intrinsic complex signal of S+ and S- . Six healthy volunteers and five patients with osteoarthritis were recruited for whole-knee imaging. Additionally, two healthy volunteers were recruited for lower leg imaging. RESULTS The UTE-Cones-DESS sequence allows fast volumetric imaging of musculoskeletal tissues with excellent image contrast for the osteochondral junction, tendons, menisci, and ligaments in the knee joint as well as cortical bone and aponeurosis in the lower leg within 5 min. spDixon yields efficient fat suppression in both S+ and S- images without requiring any additional acquisitions or preparation pulses. CONCLUSION The rapid UTE-Cones-DESS sequence can be used for high contrast morphological imaging of short T2 tissues, providing a new tool to assess their association with musculoskeletal disorders.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA.,Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
20
|
de Vries BA, Breda SJ, Sveinsson B, McWalter EJ, Meuffels DE, Krestin GP, Hargreaves BA, Gold GE, Oei EHG. Detection of knee synovitis using non-contrast-enhanced qDESS compared with contrast-enhanced MRI. Arthritis Res Ther 2021; 23:55. [PMID: 33581741 PMCID: PMC7881494 DOI: 10.1186/s13075-021-02436-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 01/15/2023] Open
Abstract
Background To assess diagnostic accuracy of quantitative double-echo in steady-state (qDESS) MRI for detecting synovitis in knee osteoarthritis (OA). Methods Patients with different degrees of radiographic knee OA were included prospectively. All underwent MRI with both qDESS and contrast-enhanced T1-weighted magnetic resonance imaging (CE-MRI). A linear combination of the two qDESS images can be used to create an image that displays contrast between synovium and the synovial fluid. Synovitis on both qDESS and CE-MRI was assessed semi-quantitatively, using a whole-knee synovitis sum score, indicating no/equivocal, mild, moderate, and severe synovitis. The correlation between sum scores of qDESS and CE-MRI (reference standard) was determined using Spearman’s rank correlation coefficient and intraclass correlation coefficient for absolute agreement. Receiver operating characteristic analysis was performed to assess the diagnostic performance of qDESS for detecting different degrees of synovitis, with CE-MRI as reference standard. Results In the 31 patients included, very strong correlation was found between synovitis sum scores on qDESS and CE-MRI (ρ = 0.96, p < 0.001), with high absolute agreement (0.84 (95%CI 0.14–0.95)). Mean sum score (SD) values on qDESS 5.16 (3.75) were lower than on CE-MRI 7.13 (4.66), indicating systematically underestimated synovitis severity on qDESS. For detecting mild synovitis or higher, high sensitivity and specificity were found for qDESS (1.00 (95%CI 0.80–1.00) and 0.909 (0.571–1.00), respectively). For detecting moderate synovitis or higher, sensitivity and specificity were good (0.727 (95%CI 0.393–0.927) and 1.00 (0.800–1.00), respectively). Conclusion qDESS MRI is able to, however with an underestimation, detect synovitis in patients with knee OA.
Collapse
Affiliation(s)
- Bas A de Vries
- Department of Radiology & Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Stephan J Breda
- Department of Radiology & Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Orthopedic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Bragi Sveinsson
- Department of Radiology, Massachusetts General Hospital, Boston, USA.,Harvard Medical School, Boston, USA
| | - Emily J McWalter
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Duncan E Meuffels
- Department of Orthopedic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Gabriel P Krestin
- Department of Radiology & Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | | | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, USA
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Sveinsson B, Gold GE, Hargreaves BA, Yoon D. Utilizing shared information between gradient-spoiled and RF-spoiled steady-state MRI signals. Phys Med Biol 2021; 66:01NT03. [PMID: 33246317 DOI: 10.1088/1361-6560/abce8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work presents an analytical relationship between gradient-spoiled and RF-spoiled steady-state signals. The two echoes acquired in double-echo in steady-state scans are shown to lie on a line in the signal plane, where the two axes represent the amplitudes of each echo. The location along the line depends on the amount of spoiling and the diffusivity. The line terminates in a point corresponding to an RF-spoiled signal. In addition to the main contribution of demonstrating this signal relationship, we also include the secondary contribution of preliminary results from an example application of the relationship, in the form of a heuristic denoising method when both types of scans are performed. This is investigated in simulations, phantom scans, and in vivo scans. For the signal model, the main topic of this study, simulations confirmed its accuracy and explored its dependency on signal parameters and image noise. For the secondary topic of its preliminary application to reduce noise, simulations demonstrated the denoising method giving a reduction in noise-induced standard deviation of about 30%. The relative effect of the method on the signals is shown to depend on the slope of the described line, which is demonstrated to be zero at the Ernst angle. The phantom scans show a similar effect as the simulations. In vivo scans showed a slightly lower average improvement of about 28%.
Collapse
Affiliation(s)
- Bragi Sveinsson
- Athinoula A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America. Harvard Medical School, Boston, MA, United States of America
| | | | | | | |
Collapse
|
22
|
Chaudhari AS, Kogan F, Pedoia V, Majumdar S, Gold GE, Hargreaves BA. Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis. J Magn Reson Imaging 2020; 52:1321-1339. [PMID: 31755191 PMCID: PMC7925938 DOI: 10.1002/jmri.26991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) of the knee is a major source of disability that has no known treatment or cure. Morphological and compositional MRI is commonly used for assessing the bone and soft tissues in the knee to enhance the understanding of OA pathophysiology. However, it is challenging to extend these imaging methods and their subsequent analysis techniques to study large population cohorts due to slow and inefficient imaging acquisition and postprocessing tools. This can create a bottleneck in assessing early OA changes and evaluating the responses of novel therapeutics. The purpose of this review article is to highlight recent developments in tools for enhancing the efficiency of knee MRI methods useful to study OA. Advances in efficient MRI data acquisition and reconstruction tools for morphological and compositional imaging, efficient automated image analysis tools, and hardware improvements to further drive efficient imaging are discussed in this review. For each topic, we discuss the current challenges as well as potential future opportunities to alleviate these challenges. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Center of Digital Health Innovation (CDHI), University of California San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Center of Digital Health Innovation (CDHI), University of California San Francisco, San Francisco, California, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Bao Q, Ma L, Liberman G, Solomon E, Martinho RP, Frydman L. Dynamic T
2
mapping by multi‐spin‐echo spatiotemporal encoding. Magn Reson Med 2020; 84:895-907. [DOI: 10.1002/mrm.28158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qingjia Bao
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Lingceng Ma
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Gilad Liberman
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Eddy Solomon
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Ricardo P. Martinho
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| |
Collapse
|
24
|
Wang X, Hernando D, Reeder SB. Phase-based T 2 mapping with gradient echo imaging. Magn Reson Med 2019; 84:609-619. [PMID: 31872470 DOI: 10.1002/mrm.28138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Transverse relaxation time (T2 ) mapping with MRI has a plethora of clinical and research applications. Current T2 mapping techniques are based primarily on spin-echo (SE) relaxometry strategies that rely on the signal magnitude, and often suffer from lengthy acquisition times. In this work, we propose a phase-based T2 mapping technique where T2 information is encoded into the signal phase of rapid gradient echo (GRE) acquisitions. THEORY Bloch equation simulations demonstrate that the phase of GRE acquisitions obtained with a very small inter-repetition RF phase increment has a strong monotonic dependence on T2 , resulting from coherent transverse magnetization. This T2 -dependent phase behavior forms the basis of the proposed T2 mapping technique. To isolate T2 -dependent phase from background phase, at least 2 data sets with different RF phase increments are acquired. The proposed method can also be combined with chemical shift encoded MRI to separate water and fat signals. METHODS The feasibility of the proposed technique was validated in a phantom experiment. In vivo feasibility was demonstrated in the brain, knee, abdomen, and pelvis. Comparisons were made with SE-based T2 mapping, spectroscopy, and T2 values from the literature. RESULTS The proposed method produced accurate T2 maps compared with SE-based T2 mapping in the phantom. Good qualitative agreement was observed in vivo between the proposed method and the reference. T2 measured in various anatomies agreed well with values reported in the literature. CONCLUSION A phase-based T2 mapping technique was developed and its feasibility demonstrated in phantoms and in vivo.
Collapse
Affiliation(s)
- Xiaoke Wang
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, University of Wisconsin, Madison, Wisconsin.,Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
25
|
Nathani A, Gold GE, Monu U, Hargreaves B, Finlay AK, Rubin EB, Safran MR. Does Injection of Hyaluronic Acid Protect Against Early Cartilage Injury Seen After Marathon Running? A Randomized Controlled Trial Utilizing High-Field Magnetic Resonance Imaging. Am J Sports Med 2019; 47:3414-3422. [PMID: 31634003 DOI: 10.1177/0363546519879138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies have shown that runners demonstrate elevated T2 and T1ρ values on magnetic resonance imaging (MRI) after running a marathon, with the greatest changes in the patellofemoral and medial compartment, which can persist after 3 months of reduced activity. Additionally, marathon running has been shown to increase serum inflammatory markers. Hyaluronic acid (HA) purportedly improves viscoelasticity of synovial fluid, serving as a lubricant while also having chondroprotective and anti-inflammatory effects. PURPOSE/HYPOTHESIS The purpose was to investigate whether intra-articular HA injection can protect articular cartilage from injury attributed to marathon running. The hypothesis was that the addition of intra-articular HA 1 week before running a marathon would reduce the magnitude of early cartilage breakdown measured by MRI. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS After institutional review board approval, 20 runners were randomized into receiving an intra-articular injection of HA or normal saline (NS) 1 week before running a marathon. Exclusionary criteria included any prior knee injury or surgery and having run >3 prior marathons. Baseline 3-T knee MRI was obtained within 48 hours before the marathon (approximately 5 days after injection). Follow-up 3-T MRI scans of the same knee were obtained 48 to 72 hours and 3 months after the marathon. The T2 and T1ρ relaxation times of articular cartilage were measured in 8 locations-the medial and lateral compartments (including 2 areas of each femoral condyle) and the patellofemoral joint. The statistical analysis compared changes in T2 and T1ρ relaxation times (ms) from baseline to immediate and 3-month postmarathon scans between the HA and NS groups with repeated measures analysis of variance. RESULTS Fifteen runners completed the study: 6 women and 2 men in the HA group (mean age, 31 years; range, 23-50 years) and 6 women and 1 man in the NS group (mean age, 27 years; range, 20-49 years). There were no gross morphologic MRI changes after running the marathon. Postmarathon studies revealed no statistically significant changes between the HA and NS groups in all articular cartilage areas of the knee on both T2 and T1ρ relaxation times. CONCLUSION Increased T2 and T1ρ relaxation times have been observed in marathon runners, suggesting early cartilage injury. The addition of intra-articular HA did not significantly affect relaxation times in all areas of the knee when compared with an NS control.
Collapse
Affiliation(s)
- Amit Nathani
- Department of Orthopaedic Surgery, Sports Medicine and Shoulder Surgery, Stanford University, Redwood City, California, USA
| | - Garry E Gold
- Department of Orthopaedic Surgery, Sports Medicine and Shoulder Surgery, Stanford University, Redwood City, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Uchechukwuka Monu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Andrea K Finlay
- Department of Orthopaedic Surgery, Sports Medicine and Shoulder Surgery, Stanford University, Redwood City, California, USA
| | - Elka B Rubin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Marc R Safran
- Department of Orthopaedic Surgery, Sports Medicine and Shoulder Surgery, Stanford University, Redwood City, California, USA
| |
Collapse
|
26
|
Cheng CC, Preiswerk F, Madore B. Multi-pathway multi-echo acquisition and neural contrast translation to generate a variety of quantitative and qualitative image contrasts. Magn Reson Med 2019; 83:2310-2321. [PMID: 31755588 DOI: 10.1002/mrm.28077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE Clinical exams typically involve acquiring many different image contrasts to help discriminate healthy from diseased states. Ideally, 3D quantitative maps of all of the main MR parameters would be obtained for improved tissue characterization. Using data from a 7-min whole-brain multi-pathway multi-echo (MPME) scan, we aimed to synthesize several 3D quantitative maps (T1 and T2 ) and qualitative contrasts (MPRAGE, FLAIR, T1 -weighted, T2 -weighted, and proton density [PD]-weighted). The ability of MPME acquisitions to capture large amounts of information in a relatively short amount of time suggests it may help reduce the duration of neuro MR exams. METHODS Eight healthy volunteers were imaged at 3.0T using a 3D isotropic (1.2 mm) MPME sequence. Spin-echo, MPRAGE, and FLAIR scans were performed for training and validation. MPME signals were interpreted through neural networks for predictions of different quantitative and qualitative contrasts. Predictions were compared to reference values at voxel and region-of-interest levels. RESULTS Mean absolute errors (MAEs) for T1 and T2 maps were 216 ms and 11 ms, respectively. In ROIs containing white matter (WM) and thalamus tissues, the mean T1 /T2 predicted values were 899/62 ms and 1139/58 ms, consistent with reference values of 850/66 ms and 1126/58 ms, respectively. For qualitative contrasts, signals were normalized to those of WM, and MAEs for MPRAGE, FLAIR, T1 -weighted, T2 -weighted, and PD-weighted contrasts were 0.14, 0.15, 0.13, 0.16, and 0.05, respectively. CONCLUSIONS Using an MPME sequence and neural-network contrast translation, whole-brain results were obtained with a variety of quantitative and qualitative contrast in ~6.8 min.
Collapse
Affiliation(s)
- Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Frank Preiswerk
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Chaudhari AS, Stevens KJ, Sveinsson B, Wood JP, Beaulieu CF, Oei EH, Rosenberg JK, Kogan F, Alley MT, Gold GE, Hargreaves BA. Combined 5-minute double-echo in steady-state with separated echoes and 2-minute proton-density-weighted 2D FSE sequence for comprehensive whole-joint knee MRI assessment. J Magn Reson Imaging 2019; 49:e183-e194. [PMID: 30582251 PMCID: PMC7850298 DOI: 10.1002/jmri.26582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clinical knee MRI protocols require upwards of 15 minutes of scan time. PURPOSE/HYPOTHESIS To compare the imaging appearance of knee abnormalities depicted with a 5-minute 3D double-echo in steady-state (DESS) sequence with separate echo images, with that of a routine clinical knee MRI protocol. A secondary goal was to compare the imaging appearance of knee abnormalities depicted with 5-minute DESS paired with a 2-minute coronal proton-density fat-saturated (PDFS) sequence. STUDY TYPE Prospective. SUBJECTS Thirty-six consecutive patients (19 male) referred for a routine knee MRI. FIELD STRENGTH/SEQUENCES DESS and PDFS at 3T. ASSESSMENT Five musculoskeletal radiologists evaluated all images for the presence of internal knee derangement using DESS, DESS+PDFS, and the conventional imaging protocol, and their associated diagnostic confidence of the reading. STATISTICAL TESTS Differences in positive and negative percent agreement (PPA and NPA, respectively) and 95% confidence intervals (CIs) for DESS and DESS+PDFS compared with the conventional protocol were calculated and tested using exact McNemar tests. The percentage of observations where DESS or DESS+PDFS had equivalent confidence ratings to DESS+Conv were tested with exact symmetry tests. Interreader agreement was calculated using Krippendorff's alpha. RESULTS DESS had a PPA of 90% (88-92% CI) and NPA of 99% (99-99% CI). DESS+PDFS had increased PPA of 99% (95-99% CI) and NPA of 100% (99-100% CI) compared with DESS (both P < 0.001). DESS had equivalent diagnostic confidence to DESS+Conv in 94% of findings, whereas DESS+PDFS had equivalent diagnostic confidence in 99% of findings (both P < 0.001). All readers had moderate concordance for all three protocols (Krippendorff's alpha 47-48%). DATA CONCLUSION Both 1) 5-minute 3D-DESS with separated echoes and 2) 5-minute 3D-DESS paired with a 2-minute coronal PDFS sequence depicted knee abnormalities similarly to a routine clinical knee MRI protocol, which may be a promising technique for abbreviated knee MRI. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Akshay S. Chaudhari
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kathryn J. Stevens
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Bragi Sveinsson
- Department of Radiology, Stanford University, Stanford, California, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeff P. Wood
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Christopher F. Beaulieu
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Edwin H.G. Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Marcus T. Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
28
|
Abstract
OBJECTIVE. For many years, MRI of the musculoskeletal system has relied mostly on conventional sequences with qualitative analysis. More recently, using quantitative MRI applications to complement qualitative imaging has gained increasing interest in the MRI community, providing more detailed physiologic or anatomic information. CONCLUSION. In this article, we review the current state of quantitative MRI, technical and software advances, and the most relevant clinical and research musculoskeletal applications of quantitative MRI.
Collapse
|
29
|
Holdsworth SJ, O'Halloran R, Setsompop K. The quest for high spatial resolution diffusion-weighted imaging of the human brain in vivo. NMR IN BIOMEDICINE 2019; 32:e4056. [PMID: 30730591 DOI: 10.1002/nbm.4056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/11/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Diffusion-weighted imaging, a contrast unique to MRI, is used for assessment of tissue microstructure in vivo. However, this exquisite sensitivity to finer scales far above imaging resolution comes at the cost of vulnerability to errors caused by sources of motion other than diffusion motion. Addressing the issue of motion has traditionally limited diffusion-weighted imaging to a few acquisition techniques and, as a consequence, to poorer spatial resolution than other MRI applications. Advances in MRI imaging methodology have allowed diffusion-weighted MRI to push to ever higher spatial resolution. In this review we focus on the pulse sequences and associated techniques under development that have pushed the limits of image quality and spatial resolution in diffusion-weighted MRI.
Collapse
Affiliation(s)
- Samantha J Holdsworth
- Department of Anatomy Medical Imaging & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Kawin Setsompop
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Zibetti MVW, Baboli R, Chang G, Otazo R, Regatte RR. Rapid compositional mapping of knee cartilage with compressed sensing MRI. J Magn Reson Imaging 2018; 48:1185-1198. [PMID: 30295344 PMCID: PMC6231228 DOI: 10.1002/jmri.26274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
More than a decade after the introduction of compressed sensing (CS) in MRI, researchers are still working on ways to translate it into different research and clinical applications. The greatest advantage of CS in MRI is the reduced amount of k-space data needed to reconstruct images, which can be exploited to reduce scan time or to improve spatial resolution and volumetric coverage. Efficient data acquisition using CS is extremely important for compositional mapping of the musculoskeletal system in general and knee cartilage mapping techniques in particular. High-resolution quantitative information about tissue biochemical composition could be obtained in just a few minutes using CS MRI. However, in order to make this goal a reality, some issues still need to be addressed. In this article we review the current state of the art of CS methods for rapid compositional mapping of knee cartilage. Specifically, data acquisition strategies, image reconstruction algorithms, and data fitting models are discussed. Different CS studies for T2 and T1ρ mapping of knee cartilage are reviewed, with illustrative results. Future directions, opportunities, and challenges of rapid compositional mapping techniques are also discussed. Level of Evidence: 4 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:1185-1198.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Rahman Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gregory Chang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ricardo Otazo
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Duarte A, Ruiz A, Ferizi U, Bencardino J, Abramson SB, Samuels J, Krasnokutsky-Samuels S, Raya JG. Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence. Eur Radiol 2018; 29:2598-2607. [PMID: 30382348 DOI: 10.1007/s00330-018-5780-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/27/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To validate a radial imaging spin-echo diffusion tensor (RAISED) sequence for high-resolution diffusion tensor imaging (DTI) of articular cartilage at 3 T. METHODS The RAISED sequence implementation is described, including the used non-linear motion correction algorithm. The robustness to eddy currents was tested on phantoms, and accuracy of measurement was assessed with measurements of temperature-dependent diffusion of free water. Motion correction was validated by comparing RAISED with single-shot diffusion-weighted echo-planar imaging (EPI) measures. DTI was acquired in asymptomatic subjects (n = 6) and subjects with doubtful (Kellgren-Lawrence [KL] grade 1, n = 9) and mild (KL = 2, n = 9) symptomatic knee osteoarthritis (OA). MD and FA values without correction, and after all corrections, were calculated. A test-retest evaluation of the DTI acquisition on three asymptomatic and three OA subjects was also performed. RESULTS The root mean squared coefficient of variation of the global test-restest reproducibility was 3.54% for MD and 5.34% for FA. MD was significantly increased in both femoral condyles (7-9%) of KL 1 and in the medial (11-17%) and lateral (10-12%) compartments of KL 2 subjects. Averaged FA presented a trend of lower values with increasing KL grade, which was significant for the medial femoral condyle (-11%) of KL 1 and all three compartments in KL 2 subjects (-18 to -11%). Group differences in MD and FA were only significant after motion correction. CONCLUSION The RAISED sequence with the proposed reconstruction framework provides reproducible assessment of DTI parameters in vivo at 3 T and potentially the early stages of the disease in large regions of interest. KEY POINTS • DTI of articular cartilage is feasible at 3T with a multi-shot RAISED sequence with non-linear motion correction. • RAISED sequence allows estimation of the diffusion indices MD and FA with test-retest errors below 4% (MD) and 6% (FA). • RAISED-based measurement of DTI of articular cartilage with non-linear motion correction holds potential to differentiate healthy from OA subjects.
Collapse
Affiliation(s)
- Alejandra Duarte
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Amparo Ruiz
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Uran Ferizi
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Jenny Bencardino
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Steven B Abramson
- Division of Rheumatology, Department of Medicine, New York University Langone Health, New York, NY, USA
| | - Jonathan Samuels
- Division of Rheumatology, Department of Medicine, New York University Langone Health, New York, NY, USA
| | | | - José G Raya
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA.
| |
Collapse
|
32
|
Sollini M, Berchiolli R, Kirienko M, Rossi A, Glaudemans AWJM, Slart R, Erba PA. PET/MRI in Infection and Inflammation. Semin Nucl Med 2018; 48:225-241. [PMID: 29626940 DOI: 10.1053/j.semnuclmed.2018.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) systems are now more and more available for clinical use. PET/MR combines the unique features of MR including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most of the evidence of the potential clinical utility of PET/MRI is available for neuroimaging. Other areas, where PET/MR can play a larger role include head and neck, upper abdominal, and pelvic tumours. Although the role of PET/MR in infection and inflammation of the cardiovascular system and in musculoskeletal applications are promising, these areas of clinical investigation are still in the early phase and it may be a little longer before these areas reach their full potential in clinical practice. In this review, we outline the potential of hybrid PET/MR for imaging infection and inflammation. A background to the main radiopharmaceuticals and some technical considerations are also included.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Raffaella Berchiolli
- Vascular Surgery Unit Department of Translational Research and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - A W J M Glaudemans
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands
| | - Riemer Slart
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands.; University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging, Enschede, The Netherlands
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and Advanced, Technologies in Medicine, University of Pisa, Pisa, Italy..
| |
Collapse
|
33
|
Cheng CC, Preiswerk F, Hoge WS, Kuo TH, Madore B. Multipathway multi-echo (MPME) imaging: all main MR parameters mapped based on a single 3D scan. Magn Reson Med 2018; 81:1699-1713. [PMID: 30320945 DOI: 10.1002/mrm.27525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Quantitative parameter maps, as opposed to qualitative grayscale images, may represent the future of diagnostic MRI. A new quantitative MRI method is introduced here that requires a single 3D acquisition, allowing good spatial coverage to be achieved in relatively short scan times. METHODS A multipathway multi-echo sequence was developed, and at least 3 pathways with 2 TEs were needed to generate T1 , T2 , T2 * , B1 + , and B0 maps. The method required the central k-space region to be sampled twice, with the same sequence but with 2 very different nominal flip angle settings. Consequently, scan time was only slightly longer than that of a single scan. The multipathway multi-echo data were reconstructed into parameter maps, for phantom as well as brain acquisitions, in 5 healthy volunteers at 3 T. Spatial resolution, matrix size, and FOV were 1.2 × 1.0 × 1.2 mm3 , 160 × 192 × 160, and 19.2 × 19.2 × 19.2 cm3 (whole brain), acquired in 11.5 minutes with minimal acceleration. Validation was performed against T1 , T2 , and T2 * maps calculated from gradient-echo and spin-echo data. RESULTS In Bland-Altman plots, bias and limits of agreement for T1 and T2 results in vivo and in phantom were -2.9/±125.5 ms (T1 in vivo), -4.8/±20.8 ms (T2 in vivo), -1.5/±18.1 ms (T1 in phantom), and -5.3/±7.4 ms (T2 in phantom), for regions of interest including given brain structures or phantom compartments. Due to relatively high noise levels, the current implementation of the approach may prove more useful for region of interest-based as opposed to pixel-based interpretation. CONCLUSIONS We proposed a novel approach to quantitatively map MR parameters based on a multipathway multi-echo acquisition.
Collapse
Affiliation(s)
- Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Frank Preiswerk
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tai-Hsin Kuo
- Department of Imaging Systems, Philips Healthcare, Taipei, Taiwan
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, Lian K, Kambhampati S, Kijowski R. Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection. Radiology 2018; 289:160-169. [PMID: 30063195 PMCID: PMC6166867 DOI: 10.1148/radiol.2018172986] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Abstract
Purpose To determine the feasibility of using a deep learning approach to detect cartilage lesions (including cartilage softening, fibrillation, fissuring, focal defects, diffuse thinning due to cartilage degeneration, and acute cartilage injury) within the knee joint on MR images. Materials and Methods A fully automated deep learning-based cartilage lesion detection system was developed by using segmentation and classification convolutional neural networks (CNNs). Fat-suppressed T2-weighted fast spin-echo MRI data sets of the knee of 175 patients with knee pain were retrospectively analyzed by using the deep learning method. The reference standard for training the CNN classification was the interpretation provided by a fellowship-trained musculoskeletal radiologist of the presence or absence of a cartilage lesion within 17 395 small image patches placed on the articular surfaces of the femur and tibia. Receiver operating curve (ROC) analysis and the κ statistic were used to assess diagnostic performance and intraobserver agreement for detecting cartilage lesions for two individual evaluations performed by the cartilage lesion detection system. Results The sensitivity and specificity of the cartilage lesion detection system at the optimal threshold according to the Youden index were 84.1% and 85.2%, respectively, for evaluation 1 and 80.5% and 87.9%, respectively, for evaluation 2. Areas under the ROC curve were 0.917 and 0.914 for evaluations 1 and 2, respectively, indicating high overall diagnostic accuracy for detecting cartilage lesions. There was good intraobserver agreement between the two individual evaluations, with a κ of 0.76. Conclusion This study demonstrated the feasibility of using a fully automated deep learning-based cartilage lesion detection system to evaluate the articular cartilage of the knee joint with high diagnostic performance and good intraobserver agreement for detecting cartilage degeneration and acute cartilage injury. © RSNA, 2018 Online supplemental material is available for this article .
Collapse
Affiliation(s)
- Fang Liu
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Zhaoye Zhou
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Alexey Samsonov
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Donna Blankenbaker
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Will Larison
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Andrew Kanarek
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Kevin Lian
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Shivkumar Kambhampati
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| | - Richard Kijowski
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275 (F.L., A.S., D.B., W.L., A.K., K.L., S.K., R.K.); and Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minn (Z.Z.)
| |
Collapse
|
35
|
Nataraj G, Nielsen JF, Scott C, Fessler JA. Dictionary-Free MRI PERK: Parameter Estimation via Regression with Kernels. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2103-2114. [PMID: 29994085 PMCID: PMC7017957 DOI: 10.1109/tmi.2018.2817547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper introduces a fast, general method for dictionary-free parameter estimation in quantitative magnetic resonance imaging (QMRI) parameter estimation via regression with kernels (PERK). PERK first uses prior distributions and the nonlinear MR signal model to simulate many parameter-measurement pairs. Inspired by machine learning, PERK then takes these parameter-measurement pairs as labeled training points and learns from them a nonlinear regression function using kernel functions and convex optimization. PERK admits a simple implementation as per-voxel nonlinear lifting of MRI measurements followed by linear minimum mean-squared error regression. We demonstrate PERK for $ {\textit {T}_{1}}, {\textit {T}_{2}}$ estimation, a well-studied application where it is simple to compare PERK estimates against dictionary-based grid search estimates and iterative optimization estimates. Numerical simulations as well as single-slice phantom and in vivo experiments demonstrate that PERK and other tested methods produce comparable $ {\textit {T}_{1}}, {\textit {T}_{2}}$ estimates in white and gray matter, but PERK is consistently at least $140\times $ faster. This acceleration factor may increase by several orders of magnitude for full-volume QMRI estimation problems involving more latent parameters per voxel.
Collapse
Affiliation(s)
- Gopal Nataraj
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Clayton Scott
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey A. Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Sveinsson B, Gold GE, Hargreaves BA, Yoon D. SNR-weighted regularization of ADC estimates from double-echo in steady-state (DESS). Magn Reson Med 2018; 81:711-718. [PMID: 30125389 DOI: 10.1002/mrm.27436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve the homogeneity and consistency of apparent diffusion coefficient (ADC) estimates in cartilage from the double-echo in steady-state (DESS) sequence by applying SNR-weighted regularization during post-processing. METHODS An estimation method that linearizes ADC estimates from DESS is used in conjunction with a smoothness constraint to suppress noise-induced variation in ADC estimates. Simulations, phantom scans, and in vivo scans are used to demonstrate how the method reduces ADC variability. Conventional diffusion-weighted echo-planar imaging (DW EPI) maps are acquired for comparison of mean and standard deviation (SD) of the ADC estimate. RESULTS Simulations and phantom scans demonstrated that the SNR-weighted regularization can produce homogenous ADC maps at varying levels of SNR, whereas non-regularized maps only estimate ADC accurately at high SNR levels. The in vivo maps showed that the SNR-weighted regularization produced ADC maps with similar heterogeneity to maps produced with standard DW EPI, but without the distortion of such reference scans. CONCLUSION A linear approximation of a simplified model of the relationship between DESS signals allows for fast SNR-weighted regularization of ADC maps that reduces estimation error in relatively short T2 tissue such as cartilage.
Collapse
Affiliation(s)
- Bragi Sveinsson
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts.,Department of Physics, Harvard University, Cambridge, Massachusetts
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California
| | | | - Daehyun Yoon
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
37
|
Leroi L, Coste A, de Rochefort L, Santin MD, Valabregue R, Mauconduit F, Giacomini E, Luong M, Chazel E, Valette J, Le Bihan D, Poupon C, Boumezbeur F, Rabrait-Lerman C, Vignaud A. Simultaneous multi-parametric mapping of total sodium concentration, T 1, T 2 and ADC at 7 T using a multi-contrast unbalanced SSFP. Magn Reson Imaging 2018; 53:156-163. [PMID: 30055291 DOI: 10.1016/j.mri.2018.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Quantifying multiple NMR properties of sodium could be of benefit to assess changes in cellular viability in biological tissues. A proof of concept of Quantitative Imaging using Configuration States (QuICS) based on a SSFP sequence with multiple contrasts was implemented to extract simultaneously 3D maps of applied flip angle (FA), total sodium concentration, T1, T2, and Apparent Diffusion Coefficient (ADC). METHODS A 3D Cartesian Gradient Recalled Echo (GRE) sequence was used to acquire 11 non-balanced SSFP contrasts at a 6 × 6 × 6 mm3 isotropic resolution with carefully-chosen gradient spoiling area, RF amplitude and phase cycling, with TR/TE = 20/3.2 ms and 25 averages, leading to a total acquisition time of 1 h 18 min. A least-squares fit between the measured and the analytical complex signals was performed to extract quantitative maps from a mono-exponential model. Multiple sodium phantoms with different compositions were studied to validate the ability of the method to measure sodium NMR properties in various conditions. RESULTS Flip angle maps were retrieved. Relaxation times, ADC and sodium concentrations were estimated with controlled precision below 15%, and were in accordance with measurements from established methods and literature. CONCLUSION The results illustrate the ability to retrieve sodium NMR properties maps, which is a first step toward the estimation of FA, T1, T2, concentration and ADC of 23Na for clinical research. With further optimization of the acquired QuICS contrasts, scan time could be reduced to be suitable with in vivo applications.
Collapse
Affiliation(s)
- Lisa Leroi
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arthur Coste
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Mathieu D Santin
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France; ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Romain Valabregue
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France; ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - Eric Giacomini
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Luong
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Edouard Chazel
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Denis Le Bihan
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Poupon
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
38
|
Qiao Y, Zou C, Cheng C, Wan Q, Tie C, Liang D, Zheng H, Liu X, Chung YC. Diffusion effect on T2 relaxometry in triple-echo steady state free precession sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:25-35. [PMID: 29758451 DOI: 10.1016/j.jmr.2018.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE The purpose of this study is to evaluate the effect of diffusion on SSFP (Steady-state Free Precession) signals in triple-echo steady state (TESS) sequence and ultimately on the accuracy of T2 relaxometry. METHODS The extended phase graph (EPG) algorithm was used to study the effect of diffusion on SSFP signals and T2 relaxometry. The simulation results were verified by a commercial phantom and in vivo studies. Based on the simulation results, a correction scheme was proposed to correct the estimated T2 values. RESULTS T2 underestimation in TESS was evident in case of small flip angle and large unbalanced gradient moment on objects with large T2 and D values. The T2 underestimation mainly originated from the diffusion sensitivity of SSFP-echo. It was also observed that SSFP-FID (Free Induction Decay) signals increased with increasing diffusion weighting under some specific conditions. The proposed correction scheme corrected the T2 underestimation, which verified that the underestimation was due to the neglect of diffusion effect. For clinical practice of TESS in tissues with short T2 such as cartilage and muscle, the diffusion effect of TESS is negligible. CONCLUSION The effect of diffusion cannot be neglected during TESS T2 quantification as it is the main source of T2 underestimation when small flip angle and large unbalanced gradient moment is used, especially for objects with large T2 and D values.
Collapse
Affiliation(s)
- Yangzi Qiao
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Chao Zou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Chuanli Cheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian Wan
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Changjun Tie
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China; Chongqing Collaborative Innovation Center, Chongqing, People's Republic of China.
| | | |
Collapse
|
39
|
Kogan F, Fan AP, Monu U, Iagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthritis Cartilage 2018; 26:790-796. [PMID: 29656143 PMCID: PMC6037170 DOI: 10.1016/j.joca.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/10/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate changes in bone metabolism by positron emission tomography (PET), as well as spatial relationships between bone metabolism and magnetic resonance imaging (MRI) quantitative markers of early cartilage degradation, in anterior cruciate ligament (ACL)-reconstructed knees. DESIGN Both knees of 15 participants with unilateral reconstructed ACL tears and unaffected contralateral knees were scanned using a simultaneous 3.0T PET-MRI system following injection of 18F-sodium fluoride (18F-NaF). The maximum pixel standardized uptake value (SUVmax) in the subchondral bone and the average T2 relaxation time in cartilage were measured in each knee in eight knee compartments. We tested differences in SUVmax and cartilage T2 relaxation times between the ACL-injured knee and the contralateral control knee as well as spatial relationships between these bone and cartilage changes. RESULTS Significantly increased subchondral bone 18F-NaF SUVmax and cartilage T2 times were observed in the ACL-reconstructed knees (median [inter-quartile-range (IQR)]: 5.0 [5.8], 36.8 [3.6] ms) compared to the contralateral knees (median [IQR]: 1.9 [1.4], 34.4 [3.8] ms). A spatial relationship between the two markers was also seen. Using the contralateral knee as a control, we observed a significant correlation of r = 0.59 between the difference in subchondral bone SUVmax (between injured and contralateral knees) and the adjacent cartilage T2 (between the two knees) [P < 0.001], with a slope of 0.49 ms/a.u. This correlation and slope were higher in deep layers (r = 0.73, slope = 0.60 ms/a.u.) of cartilage compared to superficial layers (r = 0.40, slope = 0.43 ms/a.u.). CONCLUSIONS 18F-NaF PET-MR imaging enables detection of increased subchondral bone metabolism in ACL-reconstructed knees and may serve as an important marker of early osteoarthritis (OA) progression. Spatial relationships observed between early OA changes across bone and cartilage support the need to study whole-joint disease mechanisms in OA.
Collapse
Affiliation(s)
- F Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - A P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - U Monu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - A Iagaru
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - B A Hargreaves
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - G E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Mars M, Chelli M, Tbini Z, Ladeb F, Gharbi S. MRI T2 Mapping of Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla. Med Princ Pract 2018; 27:443-450. [PMID: 29895028 PMCID: PMC6243913 DOI: 10.1159/000490796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This study aims to determine how magnetic resonance imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. MATERIALS AND METHODS This study was performed on phantom and 29 patients who underwent MRI of the knee joint at 1.5 tesla. The protocol includes T2 mapping sequences based on Single-Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and mono-exponential fit). signal-to-noise ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. RESULTS The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE, respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). The t-test showed no significant difference between SNR values for all sequences. CONCLUSION T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping.
Collapse
Affiliation(s)
- Mokhtar Mars
- Tunis University EL Manar, Higher Institute of Medical Technologies of Tunis, Research Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
- *Mokhtar Mars, 29 Rue Imam Chafai La Petite Ariana, Jaafar, 2083 Tunis (Tunisia), E-Mail
| | - Mouna Chelli
- Tunis University EL Manar, Faculty of Medicine of Tunis, Department of Radiology, Kassab Institute of Orthopedics, Ksar Saïd, Tunis, Tunisia
| | - Zeineb Tbini
- Tunis University EL Manar, Higher Institute of Medical Technologies of Tunis, Research Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | - Fethi Ladeb
- Tunis University EL Manar, Faculty of Medicine of Tunis, Department of Radiology, Kassab Institute of Orthopedics, Ksar Saïd, Tunis, Tunisia
| | - Souha Gharbi
- Tunis University EL Manar, Higher Institute of Medical Technologies of Tunis, Research Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| |
Collapse
|
41
|
Kogan F, Levine E, Chaudhari AS, Monu UD, Epperson K, Oei EHG, Gold GE, Hargreaves BA. Simultaneous bilateral-knee MR imaging. Magn Reson Med 2017; 80:529-537. [PMID: 29250856 DOI: 10.1002/mrm.27045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate and evaluate the scan time and quantitative accuracy of simultaneous bilateral-knee imaging compared with single-knee acquisitions. METHODS Hardware modifications and safety testing was performed to enable MR imaging with two 16-channel flexible coil arrays. Noise covariance and sensitivity-encoding g-factor maps for the dual-coil-array configuration were computed to evaluate coil cross-talk and noise amplification. Ten healthy volunteers were imaged on a 3T MRI scanner with both dual-coil-array bilateral-knee and single-coil-array single-knee configurations. Two experienced musculoskeletal radiologists compared the relative image quality between blinded image pairs acquired with each configuration. Differences in T2 relaxation time measurements between dual-coil-array and single-coil-array acquisitions were compared with the standard repeatability of single-coil-array measurements using a Bland-Altman analysis. RESULTS The mean g-factors for the dual-coil-array configuration were low for accelerations up to 6 in the right-left direction, and minimal cross-talk was observed between the two coil arrays. Image quality ratings of various joint tissues showed no difference in 89% (95% confidence interval: 85-93%) of rated image pairs, with only small differences ("slightly better" or "slightly worse") in image quality observed. The T2 relaxation time measurements between the dual-coil-array configuration and the single-coil configuration showed similar limits of agreement and concordance correlation coefficients (limits of agreement: -0.93 to 1.99 ms; CCC: 0.97 (95% confidence interval: 0.96-0.98)), to the repeatability of single-coil-array measurements (limits of agreement: -2.07 to 1.96 ms; CCC: 0.97 (95% confidence interval: 0.95-0.98)). CONCLUSION A bilateral coil-array setup can image both knees simultaneously in similar scan times as conventional unilateral knee scans, with comparable image quality and quantitative accuracy. This has the potential to improve the value of MRI knee evaluations. Magn Reson Med 80:529-537, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Evan Levine
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Akshay S Chaudhari
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Uchechukwuka D Monu
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kevin Epperson
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
42
|
Chaudhari AS, Black MS, Eijgenraam S, Wirth W, Maschek S, Sveinsson B, Eckstein F, Oei EHG, Gold GE, Hargreaves BA. Five-minute knee MRI for simultaneous morphometry and T 2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J Magn Reson Imaging 2017; 47:1328-1341. [PMID: 29090500 DOI: 10.1002/jmri.25883] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/14/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Biomarkers for assessing osteoarthritis activity necessitate multiple MRI sequences with long acquisition times. PURPOSE To perform 5-minute simultaneous morphometry (thickness/volume measurements) and T2 relaxometry of both cartilage and meniscus, and semiquantitative MRI Osteoarthritis Knee Scoring (MOAKS). STUDY TYPE Prospective. SUBJECTS Fifteen healthy volunteers for morphometry and T2 measurements, and 15 patients (five each Kellgren-Lawrence grades 0/2/3) for MOAKS assessment. FIELD STRENGTH/SEQUENCE A 5-minute double-echo steady-state (DESS) sequence was evaluated for generating quantitative and semiquantitative osteoarthritis biomarkers at 3T. ASSESSMENT Flip angle simulations evaluated tissue signals and sensitivity of T2 measurements. Morphometry and T2 reproducibility was compared against morphometry-optimized and relaxometry-optimized sequences. Repeatability was assessed by scanning five volunteers twice. MOAKS reproducibility was compared to MOAKS derived from a clinical knee MRI protocol by two readers. STATISTICAL TESTS Coefficients of variation (CVs), concordance confidence intervals (CCI), and Wilcoxon signed-rank tests compared morphometry and relaxometry measurements with their reference standards. DESS MOAKS positive percent agreement (PPA), negative percentage agreement (NPA), and interreader agreement was calculated using the clinical protocol as a reference. Biomarker variations between Kellgren-Lawrence groups were evaluated using Wilcoxon rank-sum tests. RESULTS Cartilage thickness (P = 0.65), cartilage T2 (P = 0.69), and meniscus T2 (P = 0.06) did not significantly differ from their reference standard (with a 20° DESS flip angle). DESS slightly overestimated meniscus volume (P < 0.001). Accuracy and repeatability CVs were <3.3%, except the meniscus T2 accuracy (7.6%). DESS MOAKS had substantial interreader agreement and high PPA/NPA values of 87%/90%. Bone marrow lesions and menisci had slightly lower PPAs. Cartilage and meniscus T2 , and MOAKS (cartilage surface area, osteophytes, cysts, and total score) was higher in Kellgren-Lawrence groups 2 and 3 than group 0 (P < 0.05). DATA CONCLUSION The 5-minute DESS sequence permits MOAKS assessment for a majority of tissues, along with repeatable and reproducible simultaneous cartilage and meniscus T2 relaxometry and morphometry measurements. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1328-1341.
Collapse
Affiliation(s)
- Akshay S Chaudhari
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Marianne S Black
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Susanne Eijgenraam
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Wolfgang Wirth
- Institute of Anatomy, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| | - Susanne Maschek
- Institute of Anatomy, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| | - Bragi Sveinsson
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
43
|
Wei H, Gibbs E, Zhao P, Wang N, Cofer GP, Zhang Y, Johnson GA, Liu C. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage. Magn Reson Med 2017; 78:1683-1690. [PMID: 28856712 PMCID: PMC5786159 DOI: 10.1002/mrm.26882] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the B0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. METHODS Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. RESULTS STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. CONCLUSION The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hongjiang Wei
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Eric Gibbs
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Peida Zhao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Nian Wang
- Center for In Vivo Microscopy, Duke University, Durham, NC, USA
| | - Gary P. Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, USA
| | - Yuyao Zhang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | | | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
44
|
van Houdt PJ, Agarwal HK, van Buuren LD, Heijmink SWTPJ, Haack S, van der Poel HG, Ghobadi G, Pos FJ, Peeters JM, Choyke PL, van der Heide UA. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T 2 mapping across multiple systems. Magn Reson Med 2017; 79:1586-1594. [PMID: 28671331 DOI: 10.1002/mrm.26816] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/18/2017] [Accepted: 06/09/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the performance of a multi-echo spin-echo sequence with k-t undersampling scheme (k-t T2 ) in prostate cancer. METHODS Phantom experiments were performed at five systems to estimate the bias, short-term repeatability, and reproducibility across all systems expressed with the within-subject coefficient of variation (wCV). Monthly measurements were performed on two systems for long-term repeatability estimation. To evaluate clinical repeatability, two T2 maps (voxel size 0.8 × 0.8 × 3 mm3 ; 5 min) were acquired at separate visits on one system for 13 prostate cancer patients. Repeatability was assessed per patient in relation to spatial resolution. T2 values were compared for tumor, peripheral zone, and transition zone. RESULTS Phantom measurements showed a small bias (median = -0.9 ms) and good short-term repeatability (median wCV = 0.5%). Long-term repeatability was 0.9 and 1.1% and reproducibility between systems was 1.7%. The median bias observed in patients was -1.1 ms. At voxel level, the median wCV was 15%, dropping to 4% for structures of 0.5 cm3 . The median tumor T2 values (79 ms) were significantly lower (P < 0.001) than in the peripheral zone (149 ms), but overlapped with the transition zone (91 ms). CONCLUSIONS Reproducible T2 mapping of the prostate is feasible with good spatial resolution in a clinically reasonable scan time, allowing reliable measurement of T2 in structures as small as 0.5 cm3 . Magn Reson Med 79:1586-1594, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harsh K Agarwal
- Philips Research NA, Cambridge, Massachusetts, USA.,National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laurens D van Buuren
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Søren Haack
- Department of Clinical Engineering, Aarhus University Hospital, Aarhus, Denmark
| | - Henk G van der Poel
- Department of Urology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ghazaleh Ghobadi
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Peter L Choyke
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Sharafi A, Chang G, Regatte RR. Biexponential T 2 relaxation estimation of human knee cartilage in vivo at 3T. J Magn Reson Imaging 2017; 47:809-819. [PMID: 28561955 DOI: 10.1002/jmri.25778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate biexponential T2 relaxation mapping of human knee cartilage in vivo in clinically feasible scan times. MATERIALS AND METHODS T2 -weighted magnetic resonance (MR) images were acquired from eight healthy volunteers using a standard 3T clinical scanner. A 3D Turbo-Flash sequence was modified to enable T2 -weighted imaging with different echo times. Series of T2 -weighted images were fitted using mono- and biexponential models with two- and four-parametric nonlinear approaches, respectively. RESULTS Biexponential relaxation of T2 was detected in the knee cartilage in five regions of interest in all eight healthy volunteers. Short/long relaxation components of T2 were estimated to be 8.27 ± 0.68 / 45.35 ± 3.79 msec with corresponding fractions of 41.3 ± 1.1% / 58.6 ± 4.6%, respectively. The monoexponential relaxation of T2 was measured to be 26.9 ± 2.27 msec. The experiments showed good repeatability with coefficient of variation root mean square (CVrms ) < 18% in all regions. The only difference in gender was observed in medial tibial cartilage, where the biexponential T2 in female volunteers was significantly higher compared to male volunteers (P = 0.014). Significant differences were observed in T2 relaxation between different regions on interest. CONCLUSION Biexponential relaxation of T2 was observed in the human knee cartilage in vivo. The short and long components are thought to be related to the tightly bound and loosely bound macromolecular water compartments. These preliminary results of biexponential T2 analysis could potentially be used to increase the specificity for detection of early osteoarthritis by measuring different water compartments and their fractions. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:809-819.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
46
|
Colotti R, Omoumi P, Bonanno G, Ledoux JB, van Heeswijk RB. Isotropic three-dimensionalT2mapping of knee cartilage: Development and validation. J Magn Reson Imaging 2017; 47:362-371. [DOI: 10.1002/jmri.25755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Roberto Colotti
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Patrick Omoumi
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Gabriele Bonanno
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Division of Cardiology, Department of Medicine; Johns Hopkins University; Baltimore Maryland USA
- Division of MR Research, Russell Morgan Department of Radiology and Radiological Sciences; Johns Hopkins University; Baltimore Maryland USA
| | - Jean-Baptiste Ledoux
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Centre for Biomedical Imaging (CIBM); Lausanne Switzerland
| | - Ruud B. van Heeswijk
- Department of Radiology; University Hospital (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| |
Collapse
|
47
|
Cluster analysis of quantitative MRI T 2 and T 1ρ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthritis Cartilage 2017; 25:513-520. [PMID: 27720806 PMCID: PMC5359021 DOI: 10.1016/j.joca.2016.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/07/2016] [Accepted: 09/22/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To identify focal lesions of elevated MRI T2 and T1ρ relaxation times in articular cartilage of an ACL-injured group using a novel cluster analysis technique. MATERIALS AND METHODS Eighteen ACL-injured patients underwent 3T MRI T2 and T1ρ relaxometry at baseline, 6 months and 1 year and six healthy volunteers at baseline, 1 day and 1 year. Clusters of contiguous pixels above or below T2 and T1ρ intensity and area thresholds were identified on a projection map of the 3D femoral cartilage surface. The total area of femoral cartilage plate covered by clusters (%CA) was split into areas above (%CA+) and below (%CA-) the thresholds and the differences in %CA(+ or -) over time in the ACL-injured group were determined using the Wilcoxon signed rank test. RESULTS %CA+ was greater in the ACL-injured patients than the healthy volunteers at 6 months and 1 year with average %CA+ of 5.2 ± 4.0% (p = 0.0054) and 6.6 ± 3.7% (p = 0.0041) for T2 and 6.2 ± 7.1% (p = 0.063) and 8.2 ± 6.9% (p = 0.042) for T1ρ, respectively. %CA- at 6 months and 1 year was 3.0 ± 1.8% (p > 0.1) and 5.9 ± 5.0% (p > 0.1) for T2 and 4.4 ± 4.9% (p > 0.1) and 4.5 ± 4.6% (p > 0.1) for T1ρ, respectively. CONCLUSION With the proposed cluster analysis technique, we have quantified cartilage lesion coverage and demonstrated that the ACL-injured group had greater areas of elevated T2 and T1ρ relaxation times as compared to healthy volunteers.
Collapse
|
48
|
Liu D, Steingoetter A, Curcic J, Kozerke S. Exploiting multicompartment effects in triple-echo steady-state T 2 mapping for fat fraction quantification. Magn Reson Med 2017; 79:423-429. [PMID: 28342191 DOI: 10.1002/mrm.26680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To investigate and exploit the effect of intravoxel off-resonance compartments in the triple-echo steady-state (TESS) sequence without fat suppression for T2 mapping and to leverage the results for fat fraction quantification. METHODS In multicompartment tissue, where at least one compartment is excited off-resonance, the total signal exhibits periodic modulations as a function of echo time (TE). Simulated multicompartment TESS signals were synthesized at various TEs. Fat emulsion phantoms were prepared and scanned at the same TE combinations using TESS. In vivo knee data were obtained with TESS to validate the simulations. The multicompartment effect was exploited for fat fraction quantification in the stomach by acquiring TESS signals at two TE combinations. RESULTS Simulated and measured multicompartment signal intensities were in good agreement. Multicompartment effects caused erroneous T2 offsets, even at low water-fat ratios. The choice of TE caused T2 variations of as much as 28% in cartilage. The feasibility of fat fraction quantification to monitor the decrease of fat content in the stomach during digestion is demonstrated. CONCLUSIONS Intravoxel off-resonance compartments are a confounding factor for T2 quantification using TESS, causing errors that are dependent on the TE. At the same time, off-resonance effects may allow for efficient fat fraction mapping using steady-state imaging. Magn Reson Med 79:423-429, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dian Liu
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
| | - Andreas Steingoetter
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland.,Division of Gastroenterology and Hepatology, University Hospital Zurich, Switzerland
| | - Jelena Curcic
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland.,Division of Gastroenterology and Hepatology, University Hospital Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
| |
Collapse
|
49
|
Chaudhari AS, Sveinsson B, Moran CJ, McWalter EJ, Johnson EM, Zhang T, Gold GE, Hargreaves BA. Imaging and T 2 relaxometry of short-T 2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med 2017; 78:2136-2148. [PMID: 28074498 DOI: 10.1002/mrm.26577] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 11/19/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop a radial, double-echo steady-state (DESS) sequence with ultra-short echo-time (UTE) capabilities for T2 measurement of short-T2 tissues along with simultaneous rapid, signal-to-noise ratio (SNR)-efficient, and high-isotropic-resolution morphological knee imaging. METHODS THe 3D radial UTE readouts were incorporated into DESS, termed UTEDESS. Multiple-echo-time UTEDESS was used for performing T2 relaxometry for short-T2 tendons, ligaments, and menisci; and for Dixon water-fat imaging. In vivo T2 estimate repeatability and SNR efficiency for UTEDESS and Cartesian DESS were compared. The impact of coil combination methods on short-T2 measurements was evaluated by means of simulations. UTEDESS T2 measurements were compared with T2 measurements from Cartesian DESS, multi-echo spin-echo (MESE), and fast spin-echo (FSE). RESULTS UTEDESS produced isotropic resolution images with high SNR efficiency in all short-T2 tissues. Simulations and experiments demonstrated that sum-of-squares coil combinations overestimated short-T2 measurements. UTEDESS measurements of meniscal T2 were comparable to DESS, MESE, and FSE measurements while the tendon and ligament measurements were less biased than those from Cartesian DESS. Average UTEDESS T2 repeatability variation was under 10% in all tissues. CONCLUSION The T2 measurements of short-T2 tissues and high-resolution morphological imaging provided by UTEDESS makes it promising for studying the whole knee, both in routine clinical examinations and longitudinal studies. Magn Reson Med 78:2136-2148, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Akshay S Chaudhari
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Bragi Sveinsson
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Catherine J Moran
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Emily J McWalter
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ethan M Johnson
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Tao Zhang
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
50
|
Sveinsson B, Chaudhari AS, Gold GE, Hargreaves BA. A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging 2016; 38:63-70. [PMID: 28017730 DOI: 10.1016/j.mri.2016.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To introduce a simple analytical formula for estimating T2 from a single Double-Echo in Steady-State (DESS) scan. METHODS Extended Phase Graph (EPG) modeling was used to develop a straightforward linear approximation of the relationship between the two DESS signals, enabling accurate T2 estimation from one DESS scan. Simulations were performed to demonstrate cancellation of different echo pathways to validate this simple model. The resulting analytic formula was compared to previous methods for T2 estimation using DESS and fast spin-echo scans in agar phantoms and knee cartilage in three volunteers and three patients. The DESS approach allows 3D (256×256×44) T2-mapping with fat suppression in scan times of 3-4min. RESULTS The simulations demonstrated that the model approximates the true signal very well. If the T1 is within 20% of the assumed T1, the T2 estimation error was shown to be less than 5% for typical scans. The inherent residual error in the model was demonstrated to be small both due to signal decay and opposing signal contributions. The estimated T2 from the linear relationship agrees well with reference scans, both for the phantoms and in vivo. The method resulted in less underestimation of T2 than previous single-scan approaches, with processing times 60 times faster than using a numerical fit. CONCLUSION A simplified relationship between the two DESS signals allows for rapid 3D T2 quantification with DESS that is accurate, yet also simple. The simplicity of the method allows for immediate T2 estimation in cartilage during the MRI examination.
Collapse
Affiliation(s)
- B Sveinsson
- Department of Radiology, Stanford University, Stanford, CA, United States.
| | - A S Chaudhari
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - G E Gold
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - B A Hargreaves
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|