1
|
Jang M, Gupta A, Kovanlikaya A, Scholl JE, Zun Z. High-resolution anatomical imaging of the fetal brain with a reduced field of view using outer volume suppression. Magn Reson Med 2024; 92:1556-1567. [PMID: 38702999 PMCID: PMC11262973 DOI: 10.1002/mrm.30147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To achieve high-resolution fetal brain anatomical imaging without introducing image artifacts by reducing the FOV, and to demonstrate improved image quality compared to conventional full-FOV fetal brain imaging. METHODS Reduced FOV was achieved by applying outer volume suppression (OVS) pulses immediately prior to standard single-shot fast spin echo (SSFSE) imaging. In the OVS preparation, a saturation RF pulse followed by a gradient spoiler was repeated three times with optimized flip-angle weightings and a variable spoiler scheme to enhance signal suppression. Simulations and phantom and in-vivo experiments were performed to evaluate OVS performance. In-vivo high-resolution SSFSE images acquired using the proposed approach were compared with conventional and high-resolution SSFSE images with a full FOV, using image quality scores assessed by neuroradiologists and calculated image metrics. RESULTS Excellent signal suppression in the saturation bands was confirmed in phantom and in-vivo experiments. High-resolution SSFSE images with a reduced FOV acquired using OVS demonstrated the improved depiction of brain structures without significant motion and blurring artifacts. The proposed method showed the highest image quality scores in the criteria of sharpness, contrast, and artifact and was selected as the best method based on overall image quality. The calculated image sharpness and tissue contrast ratio were also the highest with the proposed method. CONCLUSION High-resolution fetal brain anatomical images acquired using a reduced FOV with OVS demonstrated improved image quality both qualitatively and quantitatively, suggesting the potential for enhanced diagnostic accuracy in detecting fetal brain abnormalities in utero.
Collapse
Affiliation(s)
- MinJung Jang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Arzu Kovanlikaya
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jessica E. Scholl
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Wang J, Yang Y, Weller DS, Zhou R, Van Houten M, Sun C, Epstein FH, Meyer CH, Kramer CM, Salerno M. High spatial resolution spiral first-pass myocardial perfusion imaging with whole-heart coverage at 3 T. Magn Reson Med 2021; 86:648-662. [PMID: 33709415 DOI: 10.1002/mrm.28701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop and evaluate a high spatial resolution (1.25 × 1.25 mm2 ) spiral first-pass myocardial perfusion imaging technique with whole-heart coverage at 3T, to better assess transmural differences in perfusion between the endocardium and epicardium, to quantify the myocardial ischemic burden, and to improve the detection of obstructive coronary artery disease. METHODS Whole-heart high-resolution spiral perfusion pulse sequences and corresponding motion-compensated reconstruction techniques for both interleaved single-slice (SS) and simultaneous multi-slice (SMS) acquisition with or without outer-volume suppression (OVS) were developed. The proposed techniques were evaluated in 34 healthy volunteers and 8 patients (55 data sets). SS and SMS images were reconstructed using motion-compensated L1-SPIRiT and SMS-Slice-L1-SPIRiT, respectively. Images were blindly graded by 2 experienced cardiologists on a 5-point scale (5, excellent; 1, poor). RESULTS High-quality perfusion imaging was achieved for both SS and SMS acquisitions with or without OVS. The SS technique without OVS had the highest scores (4.5 [4, 5]), which were greater than scores for SS with OVS (3.5 [3.25, 3.75], P < .05), MB = 2 without OVS (3.75 [3.25, 4], P < .05), and MB = 2 with OVS (3.75 [2.75, 4], P < .05), but significantly higher than those for MB = 3 without OVS (4 [4, 4], P = .95). SMS image quality was improved using SMS-Slice-L1-SPIRiT as compared to SMS-L1-SPIRiT (P < .05 for both reviewers). CONCLUSION We demonstrated the successful implementation of whole-heart spiral perfusion imaging with high resolution at 3T. Good image quality was achieved, and the SS without OVS showed the best image quality. Evaluation in patients with expected ischemic heart disease is warranted.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Yang Yang
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Daniel S Weller
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Ruixi Zhou
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew Van Houten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael Salerno
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Foroozandeh M. Spin dynamics during chirped pulses: applications to homonuclear decoupling and broadband excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 318:106768. [PMID: 32917298 DOI: 10.1016/j.jmr.2020.106768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Swept-frequency pulses have found applications in a wide range of areas including spectroscopic techniques where efficient control of spins is required. For many of these applications, a good understanding of the evolution of spin systems during these pulses plays a vital role, not only in describing the mechanism of techniques, but also in enabling new methodologies. In magnetic resonance spectroscopy, broadband inversion, refocusing, and excitation using these pulses are among the most used applications in NMR, ESR, MRI, and in vivo MRS. In the present survey, a general expression for chirped pulses will be introduced, and some numerical approaches to calculate the spin dynamics during chirped pulses via solutions of the well-known Liouville-von Neumann equation and the lesser-explored Wei-Norman Lie algebra along with comprehensive examples are presented. In both cases, spin state trajectories are calculated using the solution of differential equations. Additionally, applications of the proposed methods to study the spin dynamics during the PSYCHE pulse element for broadband homonuclear decoupling and the CHORUS sequence for broadband excitation will be presented.
Collapse
|
4
|
Zeng DY, Baron CA, Malavé MO, Kerr AB, Yang PC, Hu BS, Nishimura DG. Combined T 2 -preparation and multidimensional outer volume suppression for coronary artery imaging with 3D cones trajectories. Magn Reson Med 2020; 83:2221-2231. [PMID: 31691350 PMCID: PMC7047567 DOI: 10.1002/mrm.28057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop a modular magnetization preparation sequence for combined T2 -preparation and multidimensional outer volume suppression (OVS) for coronary artery imaging. METHODS A combined T2 -prepared 1D OVS sequence with fat saturation was defined to contain a 90°-60 180°60 composite nonselective tip-down pulse, two 180°Y hard pulses for refocusing, and a -90° spectral-spatial sinc tip-up pulse. For 2D OVS, 2 modules were concatenated, selective in X and then Y. Bloch simulations predicted robustness of the sequence to B0 and B1 inhomogeneities. The proposed sequence was compared with a T2 -prepared 2D OVS sequence proposed by Luo et al, which uses a spatially selective 2D spiral tip-up. The 2 sequences were compared in phantom studies and in vivo coronary artery imaging studies with a 3D cones trajectory. RESULTS Phantom results demonstrated superior OVS for the proposed sequence compared with the Luo sequence. In studies on 15 healthy volunteers, the proposed sequence had superior image edge profile acutance values compared with the Luo sequence for the right (P < .05) and left (P < .05) coronary arteries, suggesting superior vessel sharpness. The proposed sequence also had superior signal-to-noise ratio (P < .05) and passband-to-stopband ratio (P < .05). Reader scores and reader preference indicated superior coronary image quality of the proposed sequence for both the right (P < .05) and left (P < .05) coronary arteries. CONCLUSION The proposed sequence with concatenated 1D spatially selective tip-ups and integrated fat saturation has superior image quality and suppression compared with the Luo sequence with 2D spatially selective tip-up.
Collapse
Affiliation(s)
- David Y Zeng
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Corey A Baron
- Department of Electrical Engineering, Stanford University, Stanford, California
- Department of Medical Biophysics, Western University, London, Canada
| | - Mario O Malavé
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Adam B Kerr
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
| | - Bob S Hu
- Department of Electrical Engineering, Stanford University, Stanford, California
- Department of Cardiology, Palo Alto Medical Foundation, Palo Alto, California
| | - Dwight G Nishimura
- Department of Electrical Engineering, Stanford University, Stanford, California
| |
Collapse
|
5
|
Landes VL, Nayak KS. Iterative correction of RF envelope distortion with GRATER-measured waveforms. Magn Reson Med 2019; 83:188-194. [PMID: 31441540 DOI: 10.1002/mrm.27930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop and evaluate a method for RF envelope correction without extra hardware or synchronization. METHODS Transmitted RF waveforms are measured through a simple pulse sequence called the gradient reversal approach to evaluate RF (GRATER). The measured RF waveforms are used to compute predistorted RF waveforms. This process is repeated until a stopping criterion is met, for example, based on pulse performance or a maximum number of iterations. Excitation profiles and simultaneous multi-slice (SMS) image quality are compared before and after RF predistortion. RESULTS The proposed method improved the accuracy of multiband RF pulses, reducing normalized root mean squared error (NRMSE) by >12-fold, and reducing spurious side-lobe excitation by >6-fold. The reduction in unwanted side-lobe signal is demonstrated using SMS bSSFP imaging at 3T in phantoms and in the heart. CONCLUSION Iterative GRATER-based predistortion is a practical, hardware-free way to boost performance of short duration, low flip angle RF pulses, such as those used in SMS bSSFP imaging. Because of its efficiency, this technique could be included as part of an initial scan setup or for use with subsequent scans.
Collapse
Affiliation(s)
- Vanessa L Landes
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
6
|
Coristine AJ, Chaptinel J, Ginami G, Bonanno G, Coppo S, van Heeswijk RB, Piccini D, Stuber M. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T 2 -prep for free-breathing, whole-heart coronary MRA. Magn Reson Med 2018; 79:1293-1303. [PMID: 28568961 PMCID: PMC5931377 DOI: 10.1002/mrm.26764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE In respiratory self-navigation (SN), signal from static structures, such as the chest wall, may complicate motion detection or introduce post-correction artefacts. Suppressing signal from superfluous tissues may therefore improve image quality. We thus test the hypothesis that SN whole-heart coronary magnetic resonance angiography (MRA) will benefit from an outer-volume suppressing 2D-T2 -Prep and present both phantom and in vivo results. METHODS A 2D-T2 -Prep and a conventional T2 -Prep were used prior to a free-breathing 3D-radial SN sequence. Both techniques were compared by imaging a home-built moving cardiac phantom and by performing coronary MRA in nine healthy volunteers. Reconstructions were performed using both a reference-based and a reference-independent approach to motion tracking, along with several coil combinations. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared, along with vessel sharpness (VS). RESULTS In phantoms, using the 2D-T2 -Prep increased SNR by 16% to 53% and mean VS by 8%; improved motion tracking precision was also achieved. In volunteers, SNR increased by an average of 29% to 33% in the blood pool and by 15% to 25% in the myocardium, depending on the choice of reconstruction coils and algorithm, and VS increased by 34%. CONCLUSION A 2D-T2 -Prep significantly improves image quality in both phantoms and volunteers when performing SN coronary MRA. Magn Reson Med 79:1293-1303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- A. J. Coristine
- Department of BioMedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - J. Chaptinel
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Ginami
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Bonanno
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - S. Coppo
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - R. B. van Heeswijk
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - D. Piccini
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - M. Stuber
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| |
Collapse
|
7
|
Landes VL, Nayak KS. Simple method for RF pulse measurement using gradient reversal. Magn Reson Med 2017; 79:2642-2651. [PMID: 28905516 DOI: 10.1002/mrm.26920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop and evaluate a simple method for measuring the envelope of small-tip radiofrequency (RF) excitation waveforms in MRI, without extra hardware or synchronization. THEORY AND METHODS Gradient reversal approach to evaluate RF (GRATER) involves RF excitation with a constant gradient and reversal of that gradient during signal reception to acquire the time-reversed version of an RF envelope. An outer-volume suppression prepulse is used optionally to preselect a uniform volume. GRATER was evaluated in phantom and in vivo experiments. It was compared with the programmed waveform and the traditional pick-up coil method. RESULTS In uniform phantom experiments, pick-up coil, GRATER, and outer-volume suppression + GRATER matched the programmed waveforms to less than 2.1%, less than 6.1%, and less than 2.4% normalized root mean square error, respectively, for real RF pulses with flip angle less than or equal to 30°, time-bandwidth product 2 to 8, and two to five excitation bands. For flip angles greater than 30°, GRATER measurement error increased as predicted by Bloch simulation. Fat-water phantom and in vivo experiments with outer-volume suppression + GRATER demonstrated less than 6.4% normalized root mean square error. CONCLUSIONS The GRATER sequence measures small-tip RF envelopes without extra hardware or synchronization in just over two times the RF duration. The sequence may be useful in prescan calibration and for measurement and precompensation of RF amplifier nonlinearity. Magn Reson Med 79:2642-2651, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Vanessa L Landes
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angles, California, USA
| |
Collapse
|
8
|
Yang Y, Zhao L, Chen X, Shaw PW, Gonzalez JA, Epstein FH, Meyer CH, Kramer CM, Salerno M. Reduced field of view single-shot spiral perfusion imaging. Magn Reson Med 2017; 79:208-216. [PMID: 28321908 DOI: 10.1002/mrm.26664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a single-shot spiral perfusion pulse sequence with outer-volume suppression (OVS) to achieve whole-heart coverage with a short temporal footprint of 10 ms per slice location. METHODS A highly accelerated single-shot variable density spiral pulse sequence with an integrated OVS module for reduced field of view (rFOV) perfusion imaging with 2 mm spatial resolution was developed and evaluated in simulations, phantom experiments and in clinical patients with (n = 8) or without (n = 8) OVS. Images were reconstructed by block low-rank sparsity with motion guidance (BLOSM) and graded by two cardiologists on a 5-point scale (1, excellent; 5, poor). RESULTS Simulation and phantom results showed that OVS effectively suppressed the signal outside the desired field of view (FOV). Clinical patient data demonstrated high quality perfusion images with rFOV. The average image quality scores of full FOV cases and rFOV cases were 3.1 ± 0.64 and 2.3 ± 0.46, respectively, (P = 0.02) from cardiologist 1 and 2.5 ± 0.54 and 1.8 ± 0.47, respectively, (P = 0.04) from cardiologist 2, showing superior image quality for the rFOV images compared with the full FOV images. CONCLUSION A single-shot spiral perfusion sequence that uses OVS and BLOSM performs perfusion imaging with a very short temporal footprint per image supporting whole-heart coverage with good image quality. Magn Reson Med 79:208-216, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yang Yang
- Departments of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Li Zhao
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xiao Chen
- Medical Imaging Technologies, Siemens Medical Solutions USA, Inc
| | - Peter W Shaw
- Cardiology Professional Services, Berkshire Medical Center, Pittsfield, Massachusetts, USA
| | - Jorge A Gonzalez
- Division of Cardiovascular Disease, Scripps Clinic, John R. Anderson V Medical Pavilion, La Jolla, California, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christopher M Kramer
- Departments of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael Salerno
- Departments of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Coristine AJ, Yerly J, Stuber M. A Cylindrical, Inner Volume Selecting 2D-T2-Prep Improves GRAPPA-Accelerated Image Quality in MRA of the Right Coronary Artery. PLoS One 2016; 11:e0163618. [PMID: 27736866 PMCID: PMC5063575 DOI: 10.1371/journal.pone.0163618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/12/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite restricted volumes. By incorporating a "pencil beam" 2D pulse into a T2-Prep, one may create a "2D-T2-Prep" that combines T2-weighting with an intrinsic outer volume suppression. This may particularly benefit parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing foldover signal with a 2D-T2-Prep, image quality may therefore improve. We present numerical simulations, phantom and in vivo validations to address this hypothesis. METHODS A 2D-T2-Prep and a conventional T2-Prep were used with GRAPPA-accelerated MRI (R = 1.6). The techniques were first compared in numerical phantoms, where per pixel maps of SNR (SNRmulti), noise, and g-factor were predicted for idealized sequences. Physical phantoms, with compartments doped to mimic blood, myocardium, fat, and coronary vasculature, were scanned with both T2-Preparation techniques to determine the actual SNRmulti and vessel sharpness. For in vivo experiments, the right coronary artery (RCA) was imaged in 10 healthy adults, using accelerations of R = 1,3, and 6, and vessel sharpness was measured for each. RESULTS In both simulations and phantom experiments, the 2D-T2-Prep improved SNR relative to the conventional T2-Prep, by an amount that depended on both the acceleration factor and the degree of outer volume suppression. For in vivo images of the RCA, vessel sharpness improved most at higher acceleration factors, demonstrating that the 2D-T2-Prep especially benefits accelerated coronary MRA. CONCLUSION Suppressing outer volume signal with a 2D-T2-Prep improves image quality particularly well in GRAPPA-accelerated acquisitions in simulations, phantoms, and volunteers, demonstrating that it should be considered when performing accelerated coronary MRA.
Collapse
Affiliation(s)
- Andrew J. Coristine
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| | - Jerome Yerly
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| |
Collapse
|
10
|
Menon RG, Miller GW, Jeudy J, Rajagopalan S, Shin T. Free breathing three-dimensional late gadolinium enhancement cardiovascular magnetic resonance using outer volume suppressed projection navigators. Magn Reson Med 2016; 77:1533-1543. [PMID: 27122450 DOI: 10.1002/mrm.26234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop a three-dimensional, free-breathing, late gadolinium enhancement (3D FB-LGE) cardiovascular magnetic resonance (CMR) technique, and to compare it with clinically used two-dimensional breath-hold LGE (2D BH-LGE). METHODS The proposed 3D FB-LGE method consisted of inversion preparation, inversion delay, fat saturation, outer volume suppression, one-dimensional projection navigators, and a segmented stack of spirals acquisition. The 3D FB-LGE and 2D BH-LGE scans were performed on 29 cardiac patients. Qualitative analysis and quantitative analysis (in patients with scar) were performed. RESULTS No significant differences were noted between the 3D FB-LGE and 2D BH-LGE data sets in terms of overall image quality score (2D: 4.69 ± 0.60 versus 3D: 4.55 ± 0.51, P = 0.46) and image artifact score (2D: 1.10 ± 0.31 versus 3D: 1.17 ± 0.38; P = 0.63). The average difference in fractional scar volume between the 3D and 2D methods was 1.9% (n = 5). Acquisition time was significantly shorter for the 3D FB-LGE over 2D BH-LGE by a factor of 2.83 ± 0.77 (P < 0.0001). CONCLUSIONS The 3D FB-LGE is a viable option for patients, particularly in acute settings or in patients who are unable to comply with breath-hold instructions. Magn Reson Med 77:1533-1543, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Rajiv G Menon
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| | - G Wilson Miller
- Department of Radiology & Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jean Jeudy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Taehoon Shin
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Islam H, Glover GH. Reduced field of view imaging using a static second-order gradient for functional MRI applications. Magn Reson Med 2016; 75:817-22. [PMID: 25809723 PMCID: PMC4583326 DOI: 10.1002/mrm.25650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE Imaging using reduced FOV excitation allows higher resolution or signal-to-noise ratio (SNR) per scan time but often requires long radiofrequency pulses. The goal of this study was to improve a recent reduced field of view (FOV) method that uses a second-order shim gradient to decrease pulse length and evaluate its use in functional MRI (fMRI) applications. THEORY AND METHODS The method, which was initially limited to excite thin disc-shaped regions at the isocenter, was extended to excite thicker regions off the isocenter and produced accurate excitation profiles on a grid phantom. Visual stimulation fMRI scans were performed with full and reduced FOV. The resolution of the time series images and functional activation maps were assessed using the full-width half-maxima of the autocorrelation functions (FACFs) of the noise images and the activation map values, respectively. RESULTS The resolution was higher in the reduced FOV time series images (4.1% ± 3.7% FACF reduction, P < 0.02) and functional activation maps (3.1% ± 3.4% FACF reduction, P < 0.01), but the SNR was lower (by 26.5% ± 16.9%). However, for a few subjects, the targeted region could not be localized to the reduced FOV due to the low Z2 gradient strength. CONCLUSION The results of this study suggest that the proposed method is feasible, though it would benefit from a stronger gradient coil.
Collapse
Affiliation(s)
- Haisam Islam
- Lucas Center, Departments of Bioengineering and Radiology, Stanford University, Stanford, California, USA
| | - Gary H Glover
- Lucas Center, Departments of Bioengineering and Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Taviani V, Alley MT, Banerjee S, Nishimura DG, Daniel BL, Vasanawala SS, Hargreaves BA. High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 2016; 77:209-220. [PMID: 26778549 DOI: 10.1002/mrm.26110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a technique for high-resolution diffusion-weighted imaging (DWI) and to compare it with standard DWI methods. METHODS Multiple in-plane bands of magnetization were simultaneously excited by identically phase modulating each subpulse of a two-dimensional (2D) RF pulse. Several excitations with the same multiband pattern progressively shifted in the phase-encode direction were used to cover the prescribed field of view (FOV). The phase-encoded FOV was limited to the width of a single band to reduce off-resonance-induced distortion and blurring. Parallel imaging (PI) techniques were used to resolve aliasing from the other bands and to combine the different excitations. Following validation in phantoms and healthy volunteers, a preliminary study in breast cancer patients (N=14) was performed to compare the proposed method to conventional DWI with PI and to reduced-FOV DWI. RESULTS The proposed method gave high-resolution diffusion-weighted images with minimal artifacts at the band intersections. Compared to PI alone, higher phase-encoded FOV-reduction factors and reduced noise amplification were obtained, which translated to higher resolution images than conventional (non-multiband) DWI. The same resolution and image quality achievable over targeted regions using existing reduced-FOV methods was obtained, but the proposed method also enables complete bilateral coverage. CONCLUSION We developed an in-plane multiband technique for high-resolution DWI and compared its performance with other standard DWI methods. Magn Reson Med 77:209-220, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valentina Taviani
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Marcus T Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Dwight G Nishimura
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Bruce L Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
13
|
Luo J, Addy NO, Ingle RR, Hargreaves BA, Hu BS, Nishimura DG, Shin T. Combined outer volume suppression and T2 preparation sequence for coronary angiography. Magn Reson Med 2015; 74:1632-9. [PMID: 25521477 PMCID: PMC4470881 DOI: 10.1002/mrm.25575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a magnetization preparation sequence for simultaneous outer volume suppression (OVS) and T2 weighting in whole-heart coronary magnetic resonance angiography. METHODS A combined OVS and T2 preparation sequence (OVS-T2 Prep) was designed with a nonselective adiabatic 90° tipdown pulse, two adiabatic 180° refocusing pulses, and a 2D spiral -90° tipup pulse. The OVS-T2 Prep preserves the magnetization inside an elliptic cylinder with T2 weighting, while saturating the magnetization outside the cylinder. Its performance was tested on phantoms and on 13 normal subjects with coronary magnetic resonance angiography using 3D cones trajectories. RESULTS Phantom studies showed expected T2 -dependent signal amplitude in the spatial passband and suppressed signal in the spatial stopband. In vivo studies with full-field-of-view cones yielded a passband-to-stopband signal ratio of 3.18 ± 0.77 and blood-myocardium contrast-to-noise ratio enhancement by a factor of 1.43 ± 0.20 (P < 0.001). In vivo studies with reduced-field-of-view cones showed that OVS-T2 Prep well suppressed the aliasing artifacts, as supported by significantly reduced signal in the regions with no tissues compared to the images acquired without preparation (P < 0.0001). CONCLUSION OVS-T2 Prep is a compact sequence that can accelerate coronary magnetic resonance angiography by suppressing signals from tissues surrounding the heart while simultaneously enhancing the blood-myocardium contrast.
Collapse
Affiliation(s)
- Jieying Luo
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Nii Okai Addy
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - R. Reeve Ingle
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | | | - Bob S. Hu
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
- Palo Alto Medical Foundation, Palo Alto, California, USA
| | - Dwight G. Nishimura
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Taehoon Shin
- Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Coristine AJ, van Heeswijk RB, Stuber M. Combined T2-preparation and two-dimensional pencil-beam inner volume selection. Magn Reson Med 2014; 74:529-36. [DOI: 10.1002/mrm.25442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew J. Coristine
- Department of Radiology; University Hospital (CHUV) / University of Lausanne (UNIL); Lausanne VD Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM); Lausanne VD Switzerland
| | - Ruud B. van Heeswijk
- Department of Radiology; University Hospital (CHUV) / University of Lausanne (UNIL); Lausanne VD Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM); Lausanne VD Switzerland
| | - Matthias Stuber
- Department of Radiology; University Hospital (CHUV) / University of Lausanne (UNIL); Lausanne VD Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM); Lausanne VD Switzerland
| |
Collapse
|
15
|
Reynaud O, Gallichan D, Schaller B, Gruetter R. Fast low-specific absorption rate B0
-mapping along projections at high field using two-dimensional radiofrequency pulses. Magn Reson Med 2014; 73:901-8. [DOI: 10.1002/mrm.25217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 12/24/2022]
|
16
|
Comparative evaluation of scapular and humeral coordinate systems based on biomedical images of the glenohumeral joint. J Biomech 2014; 47:736-41. [DOI: 10.1016/j.jbiomech.2013.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/20/2022]
|