1
|
Taskiran NP, Hiura GT, Zhang X, Barr RG, Dashnaw SM, Hoffman EA, Malinsky D, Oelsner EC, Prince MR, Smith BM, Sun Y, Sun Y, Wild JM, Shen W, Hughes EW. Mapping Alveolar Oxygen Partial Pressure in COPD Using Hyperpolarized Helium-3: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study. Tomography 2022; 8:2268-2284. [PMID: 36136886 PMCID: PMC9498778 DOI: 10.3390/tomography8050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and emphysema are characterized by functional and structural damage which increases the spaces for gaseous diffusion and impairs oxygen exchange. Here we explore the potential for hyperpolarized (HP) 3He MRI to characterize lung structure and function in a large-scale population-based study. Participants (n = 54) from the Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study, a nested case-control study of COPD among participants with 10+ packyears underwent HP 3He MRI measuring pAO2, apparent diffusion coefficient (ADC), and ventilation. HP MRI measures were compared to full-lung CT and pulmonary function testing. High ADC values (>0.4 cm2/s) correlated with emphysema and heterogeneity in pAO2 measurements. Strong correlations were found between the heterogeneity of global pAO2 as summarized by its standard deviation (SD) (p < 0.0002) and non-physiologic pAO2 values (p < 0.0001) with percent emphysema on CT. A regional study revealed a strong association between pAO2 SD and visual emphysema severity (p < 0.003) and an association with the paraseptal emphysema subtype (p < 0.04) after adjustment for demographics and smoking status. HP noble gas pAO2 heterogeneity and the fraction of non-physiological pAO2 results increase in mild to moderate COPD. Measurements of pAO2 are sensitive to regional emphysematous damage detected by CT and may be used to probe pulmonary emphysema subtypes. HP noble gas lung MRI provides non-invasive information about COPD severity and lung function without ionizing radiation.
Collapse
Affiliation(s)
- Naz P. Taskiran
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Correspondence: (N.P.T.); (E.W.H.); Tel.: +1-347-3693052 (N.P.T.); +1-626-4838731 (E.W.H.)
| | - Grant T. Hiura
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Xuzhe Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - R. Graham Barr
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Stephen M. Dashnaw
- Neurological Institute, Radiology, Columbia University, New York, NY 10032, USA
| | - Eric A. Hoffman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Malinsky
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Elizabeth C. Oelsner
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Martin R. Prince
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin M. Smith
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yanping Sun
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Yifei Sun
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jim M. Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Wei Shen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Magnetic Resonance Research Center (CMRRC), Columbia University, New York, NY 10027, USA
| | - Emlyn W. Hughes
- Department of Physics, Columbia University, New York, NY 10027, USA
- Correspondence: (N.P.T.); (E.W.H.); Tel.: +1-347-3693052 (N.P.T.); +1-626-4838731 (E.W.H.)
| |
Collapse
|
2
|
A Model for Predicting Future FEV1 Decline in Smokers Using Hyperpolarized 3He Magnetic Resonance Imaging. Acad Radiol 2019; 26:383-394. [PMID: 30087068 DOI: 10.1016/j.acra.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to assess the effectiveness of hyperpolarized helium-3 magnetic resonance (MR)-based imaging markers in predicting future forced expiratory volume in one second decline/chronic obstructive pulmonary disorder progression in smokers compared to current diagnostic techniques. MATERIALS AND METHODS Total 60 subjects (15 nonsmokers and 45 smokers) participated in both baseline and follow-up visits (∼1.4 years apart). At both visits, subjects completed pulmonary function testing, a six-minute walk test , and the St. George Respiratory Questionnaire. Using helium-3 MR imaging, means (M) and standard deviations (H) of oxygen tension (PAO2), fractional ventilation, and apparent diffusion coefficient were calculated across 12 regions of interest in the lungs. Subjects who experienced FEV1 decline >100 mL/year were deemed "decliners," while those who did not were deemed "sustainers." Nonimaging and imaging prediction models were generated through a logistic regression model, which utilized measurements from sustainers and decliners. RESULTS The nonimaging prediction model included the St. George Respiratory Questionnaire total score, diffusing capacity of carbon monoxide by the alveolar volume (DLCO/VA), and distance walked in a six-minute walk test. A receiving operating character curve for this model yielded a sensitivity of 75% and specificity of 68% with an overall area under the curve of 65%. The imaging prediction model generated following the same methodology included ADCH, FVH, and PAO2H. The resulting receiving operating character curve yielded a sensitivity of 87.5%, specificity of 82.8%, and an area under the curve of 89.7%. CONCLUSION The imaging predication model generated from measurements obtained during 3He MR imaging is better able to predict future FEV1 decline compared to one based on current clinical tests and demographics. The imaging model's superiority appears to arise from its ability to distinguish well-circumscribed, severe disease from a more uniform distribution of moderately altered lung function, which is more closely associated with subsequent FEV1 decline.
Collapse
|
3
|
Achekzai T, Hamedani H, Kadlecek SJ, Ruppert K, Xin Y, Baron RJ, Duncan IF, Sertic F, Siddiqui S, Amzajerdian F, Pourfathi M, Loza LA, Cereda M, Rizi RR. Multibreath Hyperpolarized 3He Imaging Scheme to Measure Alveolar Oxygen Tension and Apparent Diffusion Coefficient. Acad Radiol 2019; 26:367-382. [PMID: 30630659 PMCID: PMC6540759 DOI: 10.1016/j.acra.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
RATIONALE AND OBJECTIVES In this study, we compared a newly developed multibreath simultaneous alveolar oxygen tension and apparent diffusion coefficient (PAO2-ADC) imaging sequence to a single-breath acquisition, with the aim of mitigating the compromising effects of intervoxel flow and slow-filling regions on single-breath measurements, especially in chronic obstructive pulmonary disease (COPD) subjects. MATERIALS AND METHODS Both single-breath and multibreath simultaneous PAO2-ADC imaging schemes were performed on a total of 10 human subjects (five asymptomatic smokers and five COPD subjects). Estimated PAO2 and ADC values derived from the different sequences were compared both globally and regionally. The distribution of voxels with nonphysiological values was also compared between the two schemes. RESULTS The multibreath protocol decreased the ventilation defect volumes by an average of 12.9 ± 6.6%. The multibreath sequence generated nonphysiological PAO2 values in 11.0 ± 8.5% fewer voxels than the single-breath sequence. Single-breath PAO2 maps also showed more regions with gas-flow artifacts and general signal heterogeneity. On average, the standard deviation of the PAO2 distribution was 16.5 ± 7.0% lower using multibreath PAO2-ADC imaging, suggesting a more homogeneous gas distribution. Both mean and standard deviation of the ADC increased significantly from single- to multibreath imaging (p = 0.048 and p = 0.070, respectively), suggesting more emphysematous regions in the slow-filling lung. CONCLUSION Multibreath PAO2-ADC imaging provides superior accuracy and efficiency compared to previous imaging protocols. PAO2 and ADC maps generated by multibreath imaging allowed for the qualification of various regions as emphysematous or obstructed, which single-breath PAO2 maps can only identify as defects. The simultaneous PAO2 and ADC measurements generated by the presented multibreath method were also more physiologically realistic, and allowed for more detailed analysis of the slow-filling regions characteristic of COPD subjects.
Collapse
Affiliation(s)
- Tahmina Achekzai
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan J Baron
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Federico Sertic
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis A Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Ruppert K, Amzajerdian F, Hamedani H, Xin Y, Loza L, Achekzai T, Duncan IF, Profka H, Siddiqui S, Pourfathi M, Cereda MF, Kadlecek S, Rizi RR. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles. Magn Reson Med 2018; 80:2439-2448. [PMID: 29682792 DOI: 10.1002/mrm.27217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. METHODS Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. RESULTS Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. CONCLUSION 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations.
Collapse
Affiliation(s)
- Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tahmina Achekzai
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio F Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Hamedani H, Kadlecek S, Xin Y, Siddiqui S, Gatens H, Naji J, Ishii M, Cereda M, Rossman M, Rizi R. A hybrid multibreath wash-in wash-out lung function quantification scheme in human subjects using hyperpolarized 3 He MRI for simultaneous assessment of specific ventilation, alveolar oxygen tension, oxygen uptake, and air trapping. Magn Reson Med 2017; 78:611-624. [PMID: 27734519 PMCID: PMC5391315 DOI: 10.1002/mrm.26401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
Abstract
PURPOSE To present a method for simultaneous acquisition of alveolar oxygen tension (PA O2 ), specific ventilation (SV), and apparent diffusion coefficient (ADC) of hyperpolarized (HP) gas in the human lung, allowing reinterpretation of the PA O2 and SV maps to produce a map of oxygen uptake (R). METHOD An imaging scheme was designed with a series of identical normoxic HP gas wash-in breaths to measure ADC, SV, PA O2 , and R in less than 2 min. Signal dynamics were fit to an iterative recursive model that regionally solved for these parameters. This measurement was successfully performed in 12 subjects classified in three healthy, smoker, and chronic obstructive pulmonary disease (COPD) cohorts. RESULTS The overall whole lung ADC, SV, PA O2 , and R in healthy, smoker, and COPD subjects was 0.20 ± 0.03 cm2 /s, 0.39 ± 0.06,113 ± 2 Torr, and 1.55 ± 0.35 Torr/s, respectively, in healthy subjects; 0.21 ± 0.03 cm2 /s, 0.33 ± 0.06, 115.9 ± 4 Torr, and 0.97 ± 0.2 Torr/s, respectively, in smokers; and 0.25 ± 0.06 cm2 /s, 0.23 ± 0.08, 114.8 ± 6.0Torr, and 0.94 ± 0.12 Torr/s, respectively, in subjects with COPD. Hetrogeneity of SV, PA O2 , and R were indicators of both smoking-related changes and disease, and the severity of the disease correlated with the degree of this heterogeneity. Subjects with symptoms showed reduced oxygen uptake and specific ventilation. CONCLUSION High-resolution, nearly coregistered and quantitative measures of lung function and structure were obtained with less than 1 L of HP gas. This hybrid multibreath technique produced measures of lung function that revealed clear differences among the cohorts and subjects and were confirmed by correlations with global lung measurements. Magn Reson Med 78:611-624, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Heather Gatens
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Naji
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Masaru Ishii
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Milton Rossman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Stewart NJ, Wild JM. MRI methods for structural and functional assessment of the lungs: proton and multinuclear. IMAGING 2016. [DOI: 10.1183/2312508x.10002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Clapp J, Hamedani H, Kadlecek S, Xin Y, Shaghaghi H, Siddiqui S, Rossman MD, Rizi RR. Multibreath alveolar oxygen tension imaging. Magn Reson Med 2015; 76:1092-101. [PMID: 26467179 DOI: 10.1002/mrm.26001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE This study tested the ability of a multibreath hyperpolarized HP (3) He MRI protocol to increase the accuracy of regional alveolar oxygen tension (PA O2 ) measurements by lessening the influence of gas-flow artifacts. Conventional single-breath PA O2 measurement has been susceptible to error induced by intervoxel gas flow, particularly when used to study subjects with moderate-to-severe chronic obstructive pulmonary disease (COPD). METHODS Both single-breath and multibreath PA O2 imaging schemes were implemented in seven human subjects (one healthy, three asymptomatic smokers, and three COPD). The number and location of voxels with nonphysiologic PA O2 values generated by intervoxel gas flow were compared between the two protocols. RESULTS The multibreath scheme resulted in a significantly lower total percentage of nonphysiologic PA O2 values (6.0%) than the single-breath scheme (13.7%) (P = 0.006). PA O2 maps showed several patterns of gas-flow artifacts that were present in the single-breath protocol but mitigated by the multibreath approach. Multibreath imaging also allowed for the analysis of slow-filling areas that presented no signal after a single breath. CONCLUSION A multibreath approach enhances the accuracy and completeness of noninvasive PA O2 measurement by significantly lessening the proportion of nonphysiologic values generated by intervoxel gas flow. Magn Reson Med 76:1092-1101, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Milton D Rossman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Marshall H, Parra-Robles J, Deppe MH, Lipson DA, Lawson R, Wild JM. (3)He pO2 mapping is limited by delayed-ventilation and diffusion in chronic obstructive pulmonary disease. Magn Reson Med 2015; 71:1172-8. [PMID: 23661570 DOI: 10.1002/mrm.24779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PURPOSE Lung pO2 mapping with (3)He MRI assumes that the sources of signal decay with time during a breath-hold are radiofrequency depolarization and oxygen-dependent T1 relaxation, but the method is sensitive to other sources of spatio-temporal signal change such as diffusion. The purpose of this work was to assess the use of (3)He pO2 mapping in patients with chronic obstructive pulmonary disease. METHODS Ten patients with moderate to severe chronic obstructive pulmonary disease were scanned with a 3D single breath-hold pO2 mapping sequence. RESULTS Images showed signal increasing over time in some lung regions due to delayed ventilation during breath-hold. Regions of physically unrealistic negative pO2 values were seen in all patients, and regional mean pO2 values of -0.3 bar were measured in the two patients most affected by delayed ventilation (where mean time to signal onset was 3-4 s). CONCLUSIONS Movement of gas within the lungs during breath-hold causes regional changes in signal over time that are not related to oxygen concentration, leading to erroneous pO2 measurements using the linear oxygen-dependent signal decay model. These spatio-temporal sources of signal change cannot be reliably separated at present, making pO2 mapping using this methodology unreliable in chronic obstructive pulmonary disease patients with significant bullous emphysema or delayed ventilation.
Collapse
Affiliation(s)
- Helen Marshall
- Department of Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, UK
| | | | | | | | | | | |
Collapse
|
9
|
Ishii M, Hamedani H, Clapp JT, Kadlecek SJ, Xin Y, Gefter WB, Rossman MD, Rizi RR. Oxygen-weighted Hyperpolarized (3)He MR Imaging: A Short-term Reproducibility Study in Human Subjects. Radiology 2015; 277:247-58. [PMID: 26110668 DOI: 10.1148/radiol.2015142038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine whether hyperpolarized helium 3 magnetic resonance (MR) imaging to measure alveolar partial pressure of oxygen (Pao2) shows sufficient test-retest repeatability and between-cohort differences to be used as a reliable technique for detection of alterations in gas exchange in asymptomatic smokers. MATERIALS AND METHODS The protocol was approved by the local institutional review board and was HIPAA compliant. Informed consent was obtained from all subjects. Two sets of MR images were obtained 10 minutes apart in 25 subjects: 10 nonsmokers (five men, five women; mean ± standard deviation age, 50 years ± 6) and 15 smokers (seven women, eight men; mean age, 50 years ± 8). A mixed-effects model was developed to identify the regional repeatability of Pao2 measurements as an intraclass correlation coefficient. Ten smokers were matched with the 10 nonsmokers on the basis of signal-to-noise ratio (SNR). Three separate models were generated: one for nonsmokers, one for the SNR-matched smokers, and one for the five remaining smokers, who were imaged with a significantly higher SNR. RESULTS Short-term back-to-back regional reproducibility was assessed by using intraclass correlation coefficients, which were 0.67 and 0.65 for SNR case-matched nonsmokers and smokers, respectively. Repeatability was a strong function of SNR; a 50% increase in SNR in the remaining smokers improved the intraclass correlation coefficient to 0.82. Although repeatability was not significantly different between the SNR-matched cohorts (P = .44), the smoker group showed higher spatial and temporal variability in Pao2. CONCLUSION The short-term test-retest repeatability of hyperpolarized gas MR imaging of regional Pao2 was good. Asymptomatic smokers exhibited greater spatial and temporal variability in Pao2 than did the nonsmokers, which suggests that this parameter allows detection of small functional alterations associated with smoking.
Collapse
Affiliation(s)
- Masaru Ishii
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Hooman Hamedani
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Justin T Clapp
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Stephen J Kadlecek
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Yi Xin
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Warren B Gefter
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Milton D Rossman
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Rahim R Rizi
- From the Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Md (M.I., R.R.R.); Department of Radiology (H.H., J.T.C., S.J.K., Y.X., W.G.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
10
|
Hamedani H, Shaghaghi H, Kadlecek SJ, Xin Y, Han B, Siddiqui S, Rajaei J, Ishii M, Rossman M, Rizi RR. Vertical gradients in regional alveolar oxygen tension in supine human lung imaged by hyperpolarized 3He MRI. NMR IN BIOMEDICINE 2014; 27:1439-50. [PMID: 25395184 PMCID: PMC5033039 DOI: 10.1002/nbm.3227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate whether regional alveolar oxygen tension (P(A)O2) vertical gradients imaged with hyperpolarized (3)He can identify smoking-induced pulmonary alterations. These gradients are compared with common clinical measurements including pulmonary function tests (PFTs), the six minute walk test, and the St. George's Respiratory Questionnaire. 8 healthy non-smokers, 12 asymptomatic smokers, and 7 symptomatic subjects with chronic obstructive pulmonary disease (COPD) underwent two sets of back-to-back P(A)O2 imaging acquisitions in the supine position in two opposite directions (top to bottom and bottom to top), followed by clinically standard pulmonary tests. The whole-lung mean, standard deviation (DP(A)O2) and vertical gradients of P(A)O2 along the slices were extracted, and the results were compared with clinically derived metrics. Statistical tests were performed to analyze the differences between cohorts. The anterior-posterior vertical gradients and DP(A)O2 effectively differentiated all three cohorts (p < 0.05). The average vertical gradient P(A)O2 in healthy subjects was -1.03 ± 0.51 Torr/cm toward lower values in the posterior/dependent regions. The directional gradient was absent in smokers (0.36 ± 1.22 Torr/cm) and was in the opposite direction in COPD subjects (2.18 ± 1.54 Torr/cm). The vertical gradients correlated with smoking history (p = 0.004); body mass index (p = 0.037), PFT metrics (forced expiratory volume in 1 s, p = 0.025; residual volume/total lung capacity percent predicted, p = 0.033) and with distance walked in 6 min (p = 0.009). Regional P(A)O2 data indicate that cigarette smoke induces physiological alterations that are not being detected by the most widely used physiological tests.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Biao Han
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennia Rajaei
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Masaru Ishii
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Milton Rossman
- Department of Pulmonary and Critical Care, Johns Hopkins University of Pennsylvania, Philadelphia, PA, Baltimore, MD, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Hamedani H, Kadlecek SJ, Ishii M, Xin Y, Emami K, Han B, Shaghaghi H, Gopstein D, Cereda M, Gefter WB, Rossman MD, Rizi RR. Alterations of regional alveolar oxygen tension in asymptomatic current smokers: assessment with hyperpolarized (3)He MR imaging. Radiology 2014; 274:585-96. [PMID: 25322340 DOI: 10.1148/radiol.14132809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the ability of helium 3 ((3)He) magnetic resonance (MR) imaging of regional alveolar partial pressure of oxygen (Pao2) to depict smoking-induced functional alterations and to compare its efficacy to that of current diagnostic techniques. MATERIALS AND METHODS This study was approved by the local institutional review board and was compliant with HIPAA. All subjects provided informed consent. A total of 43 subjects were separated into three groups: nonsmokers, asymptomatic smokers, and symptomatic smokers. All subjects underwent a Pao2 imaging session followed by clinically standard pulmonary function tests (PFTs), the 6-minute walk test, and St George Respiratory Questionnaire (SGRQ). The whole-lung mean and standard deviation of Pao2 were compared with metrics derived from PFTs, the 6-minute walk test, and the SGRQ. A logistic regression model was developed to identify the predictors of alterations to the lungs of asymptomatic smokers. RESULTS The whole-lung standard deviation of Pao2 correlated with PFT metrics (forced expiratory volume in 1 second [FEV1]/forced vital capacity [FVC], Pearson r = -0.69, P < .001; percentage predicted FEV1, Pearson r = -0.67, P < .001; diffusing capacity of lung for carbon monoxide [Dlco], Pearson r = -0.45, P = .003), SGRQ score (Pearson r = 0.67, P < .001), and distance walked in 6 minutes (Pearson r = -0.47, P = .002). The standard deviation of Pao2 was significantly higher in asymptomatic smokers than in nonsmokers (change in the standard deviation of Pao2 = 7.59 mm Hg, P = .041) and lower when compared with symptomatic smokers (change in the standard deviation of Pao2 = 10.72 mm Hg, P = .001). A multivariate prediction model containing FEV1/FVC and the standard deviation of Pao2 (as significant predictors of subclinical changes in smokers) and Dlco (as a confounding variable) was formulated. This model resulted in an area under the receiver operating characteristic curve with a significant increase of 29.2% when compared with a prediction model based solely on nonimaging clinical tests. CONCLUSION The (3)He MR imaging heterogeneity metric (standard deviation of Pao2) enabled the differentiation of all three study cohorts, which indicates that it can depict smoking-related functional alterations in asymptomatic current smokers.
Collapse
Affiliation(s)
- Hooman Hamedani
- From the Department of Radiology (H.H., S.J.K., M.I., Y.X., K.E., B.H., H.S., D.G., W.G., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Siddiqui S, Xin Y, Emami K, D'Armiento J, Shiomi T, Profka H, Mongkolwisetwara P, Rizi R. Hyperpolarized (3)He diffusion MRI and histology of secreted frizzled related protein-1 (SFRP1) deficient lungs in a Murine model. Magn Reson Imaging 2014; 32:535-40. [PMID: 24629512 DOI: 10.1016/j.mri.2014.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/04/2013] [Accepted: 01/27/2014] [Indexed: 12/25/2022]
Abstract
Secreted frizzled related protein-1 (SFRP1) plays a key role in many diverse processes, including embryogenesis, tissue repair, bone formation, and tumor genesis. Previous studies have shown the effects of the SFRP1 gene on lung development using the SFRP1 knockout mouse model via histological and physiological studies. In this study, the feasibility of ADC (acquired via HP (3)He) to detect altered lung structure in the SFRP1 knockout (SFRP1(-/-)) mice was investigated, and compared to analysis by histology. This study consisted of two groups, the wild-type (WT) mice and the knockout (KO) mice with n=6 mice for each group. (3)He ADC MRI and histology were performed on all of the animals. The global Lm values of WT and KO mice were 35.0±0.8μm and 38.4±3.8μm, respectively, which translated to an increase of 9.58% in the Lm of KO mice. The mean global ADCs for the WT and KO mice were 0.12±0.01cm(2)/s and 0.13±0.01cm(2)/s, respectively, which equated to a relative increase of 8.0% in the KO mice compared to the WT mice. In the sub-analysis of the anterior, medial and posterior lung regions, Lm increased by 10.50%, 6.66% and 11.84% in the KO mice, respectively, whereas the differences in ADC between the two groups in the anterior, medial, and posterior regions were 7.3%, 8.3%, and 4.6%, respectively. These results suggest that HP MRI measurements can be used as a suitable substitute for histology to obtain valuable information about lung geometry non-invasively. This technique is also advantageous as regional measurements can be performed, which can identify lung destruction more precisely. Most importantly, this approach extends far beyond the specific pathology analyzed in this study, as it can be applied to many other pathological conditions in the lung tissue, as well to many other embryonic studies.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiarash Emami
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Takayuki Shiomi
- Department of Medicine, Columbia University, New York, NY, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Abstract
Neutrophil lifespan and function are regulated by hypoxia via components of the hypoxia inducible factor (HIF)/von Hippel Lindau/hydroxylase pathway, including specific roles for HIF-1α and prolyl hydroxylase-3. HIF-2α has both distinct and overlapping biological roles with HIF-1α and has not previously been studied in the context of neutrophil biology. We investigated the role of HIF-2α in regulating key neutrophil functions. Human and murine peripheral blood neutrophils expressed HIF-2α, with expression up-regulated by acute and chronic inflammatory stimuli and in disease-associated inflammatory neutrophil. HIF2A gain-of-function mutations resulted in a reduction in neutrophil apoptosis both ex vivo, through the study of patient cells, and in vivo in a zebrafish tail injury model. In contrast, HIF-2α-deficient murine inflammatory neutrophils displayed increased sensitivity to nitrosative stress induced apoptosis ex vivo and increased neutrophil apoptosis in vivo, resulting in a reduction in neutrophilic inflammation and reduced tissue injury. Expression of HIF-2α was temporally dissociated from HIF-1α in vivo and predominated in the resolution phase of inflammation. These data support a critical and selective role for HIF-2α in persistence of neutrophilic inflammation and provide a platform to dissect the therapeutic utility of targeting HIF-2α in chronic inflammatory diseases.
Collapse
|
15
|
Kadlecek S, Hamedani H, Xu Y, Emami K, Xin Y, Ishii M, Rizi R. Regional alveolar partial pressure of oxygen measurement with parallel accelerated hyperpolarized gas MRI. Acad Radiol 2013; 20:1224-33. [PMID: 24029054 DOI: 10.1016/j.acra.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/19/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES Alveolar oxygen tension (Pao2) is sensitive to the interplay between local ventilation, perfusion, and alveolar-capillary membrane permeability, and thus reflects physiologic heterogeneity of healthy and diseased lung function. Several hyperpolarized helium ((3)He) magnetic resonance imaging (MRI)-based Pao2 mapping techniques have been reported, and considerable effort has gone toward reducing Pao2 measurement error. We present a new Pao2 imaging scheme, using parallel accelerated MRI, which significantly reduces measurement error. MATERIALS AND METHODS The proposed Pao2 mapping scheme was computer-simulated and was tested on both phantoms and five human subjects. Where possible, correspondence between actual local oxygen concentration and derived values was assessed for both bias (deviation from the true mean) and imaging artifact (deviation from the true spatial distribution). RESULTS Phantom experiments demonstrated a significantly reduced coefficient of variation using the accelerated scheme. Simulation results support this observation and predict that correspondence between the true spatial distribution and the derived map is always superior using the accelerated scheme, although the improvement becomes less significant as the signal-to-noise ratio increases. Paired measurements in the human subjects, comparing accelerated and fully sampled schemes, show a reduced Pao2 distribution width for 41 of 46 slices. CONCLUSION In contrast to proton MRI, acceleration of hyperpolarized imaging has no signal-to-noise penalty; its use in Pao2 measurement is therefore always beneficial. Comparison of multiple schemes shows that the benefit arises from a longer time-base during which oxygen-induced depolarization modifies the signal strength. Demonstration of the accelerated technique in human studies shows the feasibility of the method and suggests that measurement error is reduced here as well, particularly at low signal-to-noise levels.
Collapse
Affiliation(s)
- Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, 308C Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hamedani H, Kadlecek SJ, Ishii M, Emami K, Kuzma NN, Xin Y, Rossman M, Rizi RR. A variability study of regional alveolar oxygen tension measurement in humans using hyperpolarized (3) He MRI. Magn Reson Med 2013; 70:1557-66. [PMID: 23382040 DOI: 10.1002/mrm.24604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/28/2012] [Accepted: 11/27/2012] [Indexed: 11/06/2022]
Abstract
PURPOSE A systematic study of the short-term and long-term variability of regional alveolar partial pressure of oxygen tension (pA O2 ) measurements using (3) He magnetic resonance imaging was presented. Additionally, the repeatability of the average evaluated pA O2 was compared with that of the standard pulmonary function tests. METHODS Pulmonary function test and pA O2 imaging were performed on 4 nonsmokers (1 M, 3 F, 56 ± 1.7 years) and 4 smokers (3 M, 1 F, 52 ± 7.5 years) during three visits over the course of 2 weeks. Two measurements were performed per visit. Variability of pA O2 was assessed using a mixed-effect model, with an intraclass correlation coefficient calculated for each group. The coefficient of variation of pA O2 over the 3-day period was also compared with the coefficient of variation of pulmonary function test results. RESULTS Short-term regional variability based on intraclass correlation coefficient was 0.71 for nonsmokers, and 0.63 for smokers, with long-term variability significantly lower at 0.59 and 0.47, respectively. While the coefficient of variation of the average pA O2 was similar to the repeatability of the diffusing capacity of CO, it was significantly higher than that of Forced Vital Capacity (P = 0.02). CONCLUSION Short-term and long-term pA O2 variability differences were used as an indication of true physiological changes in order to measure technical reproducibility. Smokers show higher physiologic variability and less technical reproducibility. The suggested pA O2 -imaging technique showed a reasonable regional repeatability in nonsmokers as well as the ability to detect differences between the two groups with similar reproducibility and superior discriminatory ability when compared with pulmonary function tests.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Robertson HT, Buxton RB. Imaging for lung physiology: what do we wish we could measure? J Appl Physiol (1985) 2012; 113:317-27. [PMID: 22582217 DOI: 10.1152/japplphysiol.00146.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of imaging as a tool for investigating lung physiology is growing at an accelerating pace. Looking forward, we wished to identify unresolved issues in lung physiology that might realistically be addressed by imaging methods in development or imaging approaches that could be considered. The role of imaging is framed in terms of the importance of good spatial and temporal resolution and the types of questions that could be addressed as these technical capabilities improve. Recognizing that physiology is fundamentally a quantitative science, a recurring emphasis is on the need for imaging methods that provide reliable measurements of specific physiological parameters. The topics included necessarily reflect our perspective on what are interesting questions and are not meant to be a comprehensive review. Nevertheless, we hope that this essay will be a spur to physiologists to think about how imaging could usefully be applied in their research and to physical scientists developing new imaging methods to attack challenging questions imaging could potentially answer.
Collapse
Affiliation(s)
- H Thomas Robertson
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|