1
|
Santyr G, Kanhere N, Morgado F, Rayment JH, Ratjen F, Couch MJ. Hyperpolarized Gas Magnetic Resonance Imaging of Pediatric Cystic Fibrosis Lung Disease. Acad Radiol 2019; 26:344-354. [PMID: 30087066 DOI: 10.1016/j.acra.2018.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 12/26/2022]
Abstract
Conventional pulmonary function tests appear normal in early cystic fibrosis (CF) lung disease. Therefore, new diagnostic approaches are required that can detect CF lung disease in children and monitor treatment response. Hyperpolarized (HP) gas (129Xe and 3He) magnetic resonance imaging (MRI) is a powerful, emergent tool for mapping regional lung function and may be well suited for studying pediatric CF. HP gas MRI is well tolerated, reproducible, and it can be performed longitudinally without the need for ionizing radiation. In particular, quantification of the distribution of ventilation, or ventilation defect percent (VDP), has been shown to be a sensitive indicator of CF lung disease and correlates well with pulmonary function tests. This article presents the current state of CF diagnosis and treatment and describes the potential role of HP gas MRI for detection of early CF lung disease and following the effects of interventions. The typical HP gas imaging workflow is described, along with a discussion of image analysis to calculate VDP, dosing considerations, and the reproducibility of VDP. The potential use of VDP as an outcome measure in CF is discussed, by considering the correlation with pulmonary function measures, preliminary interventional studies, and case studies involving longitudinal imaging and pulmonary exacerbations. Finally, emerging HP gas imaging techniques such as multiple breath washout imaging are introduced, followed by a discussion of future directions. Overall, HP gas MRI biomarkers are expected to provide sensitive outcome measures that can be used in disease surveillance as well as interventional studies involving novel CF therapies.
Collapse
Affiliation(s)
- Giles Santyr
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Nikhil Kanhere
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felipe Morgado
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcus J Couch
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Morgado F, Couch MJ, Stirrat E, Santyr G. Effect of T1relaxation on ventilation mapping using hyperpolarized129Xe multiple breath wash-out imaging. Magn Reson Med 2018; 80:2670-2680. [DOI: 10.1002/mrm.27234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Felipe Morgado
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario, Canada
| | - Marcus J. Couch
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario, Canada
| | - Elaine Stirrat
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario, Canada
| |
Collapse
|
3
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
4
|
Imai H, Matsumoto H, Miyakoshi E, Okumura S, Fujiwara H, Kimura A. Regional fractional ventilation mapping in spontaneously breathing mice using hyperpolarized ¹²⁹Xe MRI. NMR IN BIOMEDICINE 2015; 28:24-29. [PMID: 25312654 DOI: 10.1002/nbm.3222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/20/2014] [Accepted: 08/29/2014] [Indexed: 06/04/2023]
Abstract
The feasibility of ventilation imaging with hyperpolarized (HP) (129) Xe MRI has been investigated for quantitative and regional assessment of ventilation in spontaneously breathing mice. The multiple breath ventilation imaging technique was modified to the protocol of spontaneous inhalation of HP (129) Xe delivered continuously from a (129) Xe polarizer. A series of (129) Xe ventilation images was obtained by varying the number of breaths before the (129) Xe lung imaging. The fractional ventilation, r, was successfully evaluated for spontaneously breathing mice. An attempt was made to detect ventilation dysfunction in the emphysematous mouse lung induced by intratracheal administration of porcine pancreatic elastase (PPE). As a result, the distribution of fractional ventilation could be visualized by the r map. Significant dysfunction of ventilation was quantitatively identified in the PPE-treated group. The whole-lung r value of 0.34 ± 0.01 for control mice (N = 4) was significantly reduced, to 0.25 ± 0.07, in PPE-treated mice (N = 4) (p = 0.038). This study is the first application of multiple breath ventilation imaging to spontaneously breathing mice, and shows that this methodology is sensitive to differences in the pulmonary ventilation. This methodology is expected to improve simplicity as well as noninvasiveness when assessing regional ventilation in small rodents.
Collapse
Affiliation(s)
- Hirohiko Imai
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Systems Informatics, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Hamedani H, Shaghaghi H, Kadlecek SJ, Xin Y, Han B, Siddiqui S, Rajaei J, Ishii M, Rossman M, Rizi RR. Vertical gradients in regional alveolar oxygen tension in supine human lung imaged by hyperpolarized 3He MRI. NMR IN BIOMEDICINE 2014; 27:1439-50. [PMID: 25395184 PMCID: PMC5033039 DOI: 10.1002/nbm.3227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate whether regional alveolar oxygen tension (P(A)O2) vertical gradients imaged with hyperpolarized (3)He can identify smoking-induced pulmonary alterations. These gradients are compared with common clinical measurements including pulmonary function tests (PFTs), the six minute walk test, and the St. George's Respiratory Questionnaire. 8 healthy non-smokers, 12 asymptomatic smokers, and 7 symptomatic subjects with chronic obstructive pulmonary disease (COPD) underwent two sets of back-to-back P(A)O2 imaging acquisitions in the supine position in two opposite directions (top to bottom and bottom to top), followed by clinically standard pulmonary tests. The whole-lung mean, standard deviation (DP(A)O2) and vertical gradients of P(A)O2 along the slices were extracted, and the results were compared with clinically derived metrics. Statistical tests were performed to analyze the differences between cohorts. The anterior-posterior vertical gradients and DP(A)O2 effectively differentiated all three cohorts (p < 0.05). The average vertical gradient P(A)O2 in healthy subjects was -1.03 ± 0.51 Torr/cm toward lower values in the posterior/dependent regions. The directional gradient was absent in smokers (0.36 ± 1.22 Torr/cm) and was in the opposite direction in COPD subjects (2.18 ± 1.54 Torr/cm). The vertical gradients correlated with smoking history (p = 0.004); body mass index (p = 0.037), PFT metrics (forced expiratory volume in 1 s, p = 0.025; residual volume/total lung capacity percent predicted, p = 0.033) and with distance walked in 6 min (p = 0.009). Regional P(A)O2 data indicate that cigarette smoke induces physiological alterations that are not being detected by the most widely used physiological tests.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Biao Han
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennia Rajaei
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Masaru Ishii
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Milton Rossman
- Department of Pulmonary and Critical Care, Johns Hopkins University of Pennsylvania, Philadelphia, PA, Baltimore, MD, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Miller GW, Mugler JP, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR IN BIOMEDICINE 2014; 27:1542-56. [PMID: 24990096 PMCID: PMC4515033 DOI: 10.1002/nbm.3156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 05/05/2023]
Abstract
The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.
Collapse
Affiliation(s)
- G. Wilson Miller
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
- Address correspondence to: Wilson Miller, Radiology Research, 480 Ray C. Hunt Dr., Box 801339, Charlottesville, VA 22908, Phone: 434-243-9216, Fax: 434-924-9435,
| | - John P. Mugler
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
| | - Rui C. Sá
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
| | - Talissa A. Altes
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
| | - G. Kim Prisk
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| | - Susan R. Hopkins
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| |
Collapse
|