1
|
Choi S, Lake S, Harrison DM. Evaluation of the Blood-Brain Barrier, Demyelination, and Neurodegeneration in Paramagnetic Rim Lesions in Multiple Sclerosis on 7 Tesla MRI. J Magn Reson Imaging 2024; 59:941-951. [PMID: 37276054 PMCID: PMC10754232 DOI: 10.1002/jmri.28847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are associated with chronic inflammation in multiple sclerosis (MS). 7-Tesla (7T) magnetic resonance imaging (MRI) can evaluate the integrity of the blood-brain barrier (BBB) in addition to the tissue myelination status and cell loss. PURPOSE To use MRI metrics to investigate underlying physiology and clinical importance of PRLs. STUDY TYPE Prospective. SUBJECTS Thirty-six participants (mean-age 47, 23 females, 13 males) of mixed MS subtypes. FIELD STRENGTH/SEQUENCE 7T, MP2RAGE, MULTI-ECHO 3D-GRE, FLAIR. ASSESSMENT Lesion heterogeneity; longitudinal changes in lesion counts; comparison of T1, R2*, and χ; association between baseline lesion types and disease progression (2-3 annual MRI visits with additional years of annual clinical follow-up). STATISTICAL TESTS Two-sample t-test, Wilcoxon Rank-Sum test, Pearson's chi-square test, two-group comparison with linear-mixed-effect model, mixed-effect ANOVA, logistic regression. P-values <0.05 were considered significant. RESULTS A total of 58.3% of participants had at least one PRL at baseline. Higher male proportion in PRL+ group was found. Average change in PRL count was 0.20 (SD = 2.82) for PRLs and 0.00 (SD = 0.82) for mottled lesions. Mean and median pre-/post-contrast T1 were longer in PRL+ than in PRL-. No differences in mean χ were seen for lesions grouped by PRL (P = 0.310, pre-contrast; 0.086, post-contrast) or PRL/M presence (P = 0.234, pre-contrast; 0.163, post-contrast). Median χ were less negative in PRL+ and PRL/M+ than in PRL- and PRL/M-. Mean and median pre-/post-contrast R2* were slower in PRL+ compared to PRL-. Mean and median pre-/post-contrast R2* were slower in PRL/M+ than in PRL/M-. PRL presence at baseline was associated with confirmed EDSS Plus progression (OR 3.75 [1.22-7.59]) and PRL/M+ at baseline with confirmed EDSS Plus progression (OR 3.63 [1.14-7.43]). DATA CONCLUSION Evidence of BBB breakdown in PRLs was not seen. Quantitative metrics confirmed prior results suggesting greater demyelination, cell loss, and possibly disruption of tissue anisotropy in PRLs. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore Maryland
| | - Sarah Lake
- Hasbro Children’s Hospital, Brown University
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore Maryland
- Department of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
2
|
Feng R, Cao S, Zhuang J, Zhao J, Guan X, Zhang Y, Liu C, Wei H. An improved asymmetric susceptibility tensor imaging model with frequency offset correction. Magn Reson Med 2023; 89:828-844. [PMID: 36300852 DOI: 10.1002/mrm.29494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To improve susceptibility tensor imaging (STI) reconstruction using the asymmetric STI model with the correction of non-bulk-magnetic-susceptibility (NBMS) effects. METHOD A frequency offset term was introduced into the asymmetric STI model to account for the bias between measured MRI frequency signals and conventional susceptibility tensor models because of NBMS contributions. Experiments were conducted to compare the proposed model with conventional STI, conventional STI with the proposed frequency offset correction, and asymmetric STI on simulation, ex vivo mouse brain, and in vivo human brain data. RESULTS In the simulation where NBMS contributions are head rotation-invariant, the proposed method achieves the lowest errors in mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) and is more robust to noise in the estimation of principal eigenvector (PEV). When considering the head orientation dependency of NBMS contributions, the proposed method shows advantages in estimating MSA and PEV. On the mouse and human brain data, the proposed method produces more reliable MSA maps and more consistent white matter fiber directions when referring to those from DTI than the compared STI methods. CONCLUSION The proposed method can reduce the effects of NBMS-related frequency shifts on the susceptibility tensors in the brain white matter. This study inspires STI reconstruction from the perspective of better modeling the sources of frequency shifts.
Collapse
Affiliation(s)
- Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Steven Cao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jiayi Zhao
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
The effect of beta-amyloid and tau protein aggregations on magnetic susceptibility of anterior hippocampal laminae in Alzheimer's diseases. Neuroimage 2021; 244:118584. [PMID: 34537383 DOI: 10.1016/j.neuroimage.2021.118584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported the changes of magnetic susceptibility induced by iron deposition in hippocampus of Alzheimer's disease (AD) brains. It is well-known that hippocampus is divided into well-defined laminar architecture, which, however, is difficult to be resolved with in-vivo MRI due to the limited imaging resolution. The present study aims to investigate layer-specific magnetic susceptibility in the hippocampus of AD patients using high-resolution ex-vivo MRI, and elucidate its relationship with beta amyloid (Aβ) and tau protein histology. We performed quantitative susceptibility mapping (QSM) and T2* mapping on postmortem anterior hippocampus samples from four AD, four Primary Age-Related Tauopathy (PART), and three control brains. We manually segmented each sample into seven layers, including four layers in the cornu ammonis1 (CA1) and three layers in the dentate gyrus (DG), and then evaluated AD-related alterations of susceptibility and T2* values and their correlations with Aβ and tau in each hippocampal layer. Specifically, we found (1) layer-specific variations of susceptibility and T2* measurements in all samples; (2) the heterogeneity of susceptibility were higher in all layers of AD patients compared with the age- and gender-matched PART cases while the heterogeneity of T2* values were lower in four layers of CA1; and (3) voxel-wise MRI-histological correlation revealed both susceptibility and T2* values in the stratum molecular (SM) and stratum lacunosum (SL) layers were correlated with the Aβ content in AD, while the T2* values in the stratum radiatum (SR) layer were correlated with the tau content in the PART but not AD. These findings suggest a selective effect of the Aβ- and tau-pathology on the susceptibility and T2* values in the different layers of anterior hippocampus. Particularly, the alterations of magnetic susceptibility in the SM and SL layers may be associated with Aβ aggregation, while those in the SR layermay reflect the age-related tau protein aggregation.
Collapse
|
4
|
Garrett A, Rakhilin N, Wang N, McKey J, Cofer G, Anderson RB, Capel B, Johnson GA, Shen X. Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. J Neural Eng 2021; 18. [PMID: 33979784 DOI: 10.1088/1741-2552/ac0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.The peripheral nervous system (PNS) connects the central nervous system with the rest of the body to regulate many physiological functions and is therapeutically targeted to treat diseases such as epilepsy, depression, intestinal dysmotility, chronic pain, and more. However, we still lack understanding of PNS innervation in most organs because the large span, diffuse nature, and small terminal nerve bundle fibers have precluded whole-organism, high resolution mapping of the PNS. We sought to produce a comprehensive peripheral nerve atlas for use in future interrogation of neural circuitry and selection of targets for neuromodulation.Approach.We used diffusion tensor magnetic resonance imaging (DT-MRI) with high-speed compressed sensing to generate a tractogram of the whole mouse PNS. The tractography generated from the DT-MRI data is validated using lightsheet microscopy on optically cleared, antibody stained tissue.Main results.Herein we demonstrate the first comprehensive PNS tractography in a whole mouse. Using this technique, we scanned the whole mouse in 28 h and mapped PNS innervation and fiber network in multiple organs including heart, lung, liver, kidneys, stomach, intestines, and bladder at 70µm resolution. This whole-body PNS tractography map has provided unparalleled information; for example, it delineates the innervation along the gastrointestinal tract by multiple sacral levels and by the vagal nerves. The map enabled a quantitative tractogram that revealed relative innervation of the major organs by each vertebral foramen as well as the vagus nerve.Significance.This novel high-resolution nerve atlas provides a potential roadmap for future neuromodulation therapies and other investigations into the neural circuits which drive homeostasis and disease throughout the body.
Collapse
Affiliation(s)
- Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nian Wang
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Robert Bj Anderson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - G Allan Johnson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
5
|
Cao S, Wei H, Chen J, Liu C. Asymmetric susceptibility tensor imaging. Magn Reson Med 2021; 86:2266-2275. [PMID: 34014008 DOI: 10.1002/mrm.28823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate the symmetry constraint in susceptibility tensor imaging. THEORY The linear relationship between the MRI frequency shift and the magnetic susceptibility tensor is derived without constraining the tensor to be symmetric. In the asymmetric case, the system matrix is shown to be maximally rank 6. Nonetheless, relaxing the symmetry constraint may still improve tensor estimation because noise and image artifacts do not necessarily follow the constraint. METHODS Gradient echo phase data are obtained from postmortem mouse brain and kidney samples. Both symmetric and asymmetric tensor reconstructions are applied to the data. The reconstructions are then used for susceptibility tensor imaging fiber tracking. Simulations with ground truth and at various noise levels are also performed. The reconstruction methods are compared qualitatively and quantitatively. RESULTS Compared to regularized and unregularized symmetric reconstructions, the asymmetric reconstruction shows reduced noise and streaking artifacts, better contrast, and more complete fiber tracking. In simulation, the asymmetric reconstruction achieves better mean squared error and better angular difference in the presence of noise. Decomposing the asymmetric tensor into its symmetric and antisymmetric components confirms that the underlying susceptibility tensor is symmetric and that the main sources of asymmetry are noise and streaking artifacts. CONCLUSION Whereas the susceptibility tensor is symmetric, asymmetric reconstruction is more effective in suppressing noise and artifacts, resulting in more accurate estimation of the susceptibility tensor.
Collapse
Affiliation(s)
- Steven Cao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Hongjiang Wei
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Wang N, Zhuang J, Wie H, Dibb R, Qi Y, Liu C. Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI. J Magn Reson Imaging 2019; 50:1852-1865. [PMID: 31012202 PMCID: PMC6810724 DOI: 10.1002/jmri.26758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Various studies by MRI exhibit that the corpus callosum (CC) is the most vulnerable to cuprizone administration, detecting the demyelination and remyelination process using different MRI parameters are, however, lacking. PURPOSE To investigate the sensitivity of multiparametric MRI both in vivo and ex vivo for demyelination and remyelination. STUDY TYPE Prospective. ANIMAL MODEL A cuprizone mice model with an age-matched control group (n = 5), 4-week cuprizone exposure group followed by 9-week on a normal diet (n = 6), and a 13-week cuprizone exposure group (n = 6). FIELD STRENGTH/SEQUENCE 3D gradient recalled echo, T2 -weighted, and diffusion tensor imaging (DTI) at 7.0T and 9.4T. ASSESSMENT Quantification of DTI metrics, quantitative susceptibility mapping (QSM), and T2 -weighted imaging intensity in major white matter bundles. STATISTICAL TESTS Nonparametric permutation tests were used with a cluster-forming threshold as 3.09 (equivalent to P = 0.001), and the significant level as P = 0.05 with family-wise correction. RESULTS In vivo susceptibility values increased from -11.7 to -0.7 ppb (P < 0.001) in CC and from -13.7 to -5.1 ppb (P < 0.001) in the anterior commissure (AC) after the 13-week cuprizone exposure. Ex vivo susceptibility values increased from -25.4 to 7.4 ppb (P < 0.001) in CC and from -41.6 to -15.8 ppb (P < 0.001) in AC. Susceptibility values showed high variations to demyelination for in vivo studies (94.0% in CC, 62.8% in AC). Susceptibility values exhibited higher variations than radial diffusivity for ex vivo studies (129.1% vs. 28.3% in CC, 62.0% vs. 25.0% in AC). In addition to the differential susceptibility variations in different white matter tracts, intraregional demyelination variation was also present not only in CC but also in the AC area by voxel-based analysis. DATA CONCLUSION QSM is sensitive to the demyelination process of cuprizone exposure, which can be a complementary technique to conventional T2 -weighted images and DTI metrics. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1852-1865.
Collapse
Affiliation(s)
- Nian Wang
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Hongjiang Wie
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Wang N, Cofer G, Anderson RJ, Qi Y, Liu C, Johnson GA. Accelerating quantitative susceptibility imaging acquisition using compressed sensing. ACTA ACUST UNITED AC 2018; 63:245002. [DOI: 10.1088/1361-6560/aaf15d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
MRI gradient-echo phase contrast of the brain at ultra-short TE with off-resonance saturation. Neuroimage 2018; 175:1-11. [PMID: 29604452 DOI: 10.1016/j.neuroimage.2018.03.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Larmor-frequency shift or image phase measured by gradient-echo sequences has provided a new source of MRI contrast. This contrast is being used to study both the structure and function of the brain. So far, phase images of the brain have been largely obtained at long echo times as maximum phase signal-to-noise ratio (SNR) is achieved at TE = T2* (∼40 ms at 3T). The structures of the brain, however, are compartmentalized and complex with a wide range of signal relaxation times. At such long TE, the short-T2 components are largely attenuated and contribute minimally to phase contrast. The purpose of this study was to determine whether proton gradient-echo images of the brain exhibit phase contrast at ultra-short TE (UTE). Our data showed that UTE images acquired at 7 T without off-resonance saturation do not contain significant phase contrast between gray and white matter. However, UTE images of the brain can attain strong phase contrast even at a nominal TE of 106 μs by using off-resonance RF saturation pulses, which provide direct saturation of ultra-short-T2 components and indirect saturation of longer-T2 components via magnetization transfer. In addition, phase contrast between gray and white matter acquired at UTE with off-resonance saturation is reversed compared to that of the long-T2 signals acquired at long TEs. This finding opens up a potential new way to manipulate image phase contrast of the brain. By accessing short and ultra-short-T2 species, MRI phase images may further improve the characterization of tissue microstructure in the brain.
Collapse
|
9
|
O'Callaghan J, Holmes H, Powell N, Wells JA, Ismail O, Harrison IF, Siow B, Johnson R, Ahmed Z, Fisher A, Meftah S, O'Neill MJ, Murray TK, Collins EC, Shmueli K, Lythgoe MF. Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease. Neuroimage 2017; 159:334-345. [PMID: 28797738 PMCID: PMC5678288 DOI: 10.1016/j.neuroimage.2017.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease is connected to a number of other neurodegenerative conditions, known collectively as 'tauopathies', by the presence of aggregated tau protein in the brain. Neuroinflammation and oxidative stress in AD are associated with tau pathology and both the breakdown of axonal sheaths in white matter tracts and excess iron accumulation grey matter brain regions. Despite the identification of myelin and iron concentration as major sources of contrast in quantitative susceptibility maps of the brain, the sensitivity of this technique to tau pathology has yet to be explored. In this study, we perform Quantitative Susceptibility Mapping (QSM) and T2* mapping in the rTg4510, a mouse model of tauopathy, both in vivo and ex vivo. Significant correlations were observed between histological measures of myelin content and both mean regional magnetic susceptibility and T2* values. These results suggest that magnetic susceptibility is sensitive to tissue myelin concentrations across different regions of the brain. Differences in magnetic susceptibility were detected in the corpus callosum, striatum, hippocampus and thalamus of the rTg4510 mice relative to wild type controls. The concentration of neurofibrillary tangles was found to be low to intermediate in these brain regions indicating that QSM may be a useful biomarker for early stage detection of tau pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- J O'Callaghan
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK.
| | - H Holmes
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - N Powell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - J A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - O Ismail
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - I F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - B Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| | - R Johnson
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - Z Ahmed
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Fisher
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - S Meftah
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - M J O'Neill
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E C Collins
- Eli Lilly and Company, 355 E Merrill Street, Dock 48, Indianapolis, IN, 46225, USA
| | - K Shmueli
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - M F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, UK
| |
Collapse
|
10
|
Dibb R, Xie L, Wei H, Liu C. Magnetic susceptibility anisotropy outside the central nervous system. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3544. [PMID: 27199082 PMCID: PMC5112155 DOI: 10.1002/nbm.3544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/01/2023]
Abstract
Magnetic-susceptibility-based MRI has made important contributions to the characterization of tissue microstructure, chemical composition, and organ function. This has motivated a number of studies to explore the link between microstructure and susceptibility in organs and tissues throughout the body, including the kidney, heart, and connective tissue. These organs and tissues have anisotropic magnetic susceptibility properties and cellular organizations that are distinct from the lipid organization of myelin in the brain. For instance, anisotropy is traced to the epithelial lipid orientation in the kidney, the myofilament proteins in the heart, and the collagen fibrils in the knee cartilage. The magnetic susceptibility properties of these and other tissues are quantified using specific MRI tools: susceptibility tensor imaging (STI), quantitative susceptibility mapping (QSM), and individual QSM measurements with respect to tubular and filament directions determined from diffusion tensor imaging. These techniques provide complementary and supplementary information to that produced by traditional MRI methods. In the kidney, STI can track tubules in all layers including the cortex, outer medulla, and inner medulla. In the heart, STI detected myofibers throughout the myocardium. QSM in the knee revealed three unique layers in articular cartilage by exploiting the anisotropic susceptibility features of collagen. While QSM and STI are promising tools to study tissue susceptibility, certain technical challenges must be overcome in order to realize routine clinical use. This paper reviews essential experimental findings of susceptibility anisotropy in the body, the underlying mechanisms, and the associated MRI methodologies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Russell Dibb
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Luke Xie
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah 84108
| | - Hongjiang Wei
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, 27710
| | - Chunlei Liu
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|
11
|
Li W, Liu C, Duong TQ, van Zijl PC, Li X. Susceptibility tensor imaging (STI) of the brain. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3540. [PMID: 27120169 PMCID: PMC5083244 DOI: 10.1002/nbm.3540] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/23/2023]
Abstract
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Li
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Department of Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Chunlei Liu
- Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, NC 27710
- Department of Radiology, School of Medicine, Duke University, Durham, NC 27710
| | - Timothy Q. Duong
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Department of Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for functional brain imaging, Kennedy Krieger Institute, Baltimore, MD, 21205
- Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Xu Li
- F.M. Kirby Research Center for functional brain imaging, Kennedy Krieger Institute, Baltimore, MD, 21205
- Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| |
Collapse
|
12
|
Wei H, Xie L, Dibb R, Li W, Decker K, Zhang Y, Johnson GA, Liu C. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage 2016; 137:107-115. [PMID: 27181764 PMCID: PMC5201162 DOI: 10.1016/j.neuroimage.2016.05.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 01/05/2023] Open
Abstract
The proper microstructural arrangement of complex neural structures is essential for establishing the functional circuitry of the brain. We present an MRI method to resolve tissue microstructure and infer brain cytoarchitecture by mapping the magnetic susceptibility in the brain at high resolution. This is possible because of the heterogeneous magnetic susceptibility created by varying concentrations of lipids, proteins and irons from the cell membrane to cytoplasm. We demonstrate magnetic susceptibility maps at a nominal resolution of 10-μm isotropic, approaching the average cell size of a mouse brain. The maps reveal many detailed structures including the retina cell layers, olfactory sensory neurons, barrel cortex, cortical layers, axonal fibers in white and gray matter. Olfactory glomerulus density is calculated and structural connectivity is traced in the optic nerve, striatal neurons, and brainstem nerves. The method is robust and can be readily applied on MRI scanners at or above 7T.
Collapse
Affiliation(s)
- Hongjiang Wei
- Brain Imaging and Analysis Center, Duke University, Durham, NC 27705, USA
| | - Luke Xie
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Duke University, Durham, NC 27705, USA
| | - Wei Li
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Kyle Decker
- Center for In Vivo Microscopy, Duke University, Durham, NC 27705, USA
| | - Yuyao Zhang
- Brain Imaging and Analysis Center, Duke University, Durham, NC 27705, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC 27705, USA; Department of Radiology, School of Medicine, Duke University, Durham, NC 27705, USA
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University, Durham, NC 27705, USA; Department of Radiology, School of Medicine, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
13
|
Dibb R, Liu C. Joint eigenvector estimation from mutually anisotropic tensors improves susceptibility tensor imaging of the brain, kidney, and heart. Magn Reson Med 2016; 77:2331-2346. [PMID: 27385561 DOI: 10.1002/mrm.26321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. THEORY AND METHODS STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. RESULTS MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. CONCLUSION MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Russell Dibb
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Chunlei Liu
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA.,Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Brain Imaging & Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.,Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Xie L, Layton AT, Wang N, Larson PEZ, Zhang JL, Lee VS, Liu C, Johnson GA. Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function. Am J Physiol Renal Physiol 2015; 310:F174-82. [PMID: 26447222 DOI: 10.1152/ajprenal.00351.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/06/2015] [Indexed: 12/30/2022] Open
Abstract
Dynamic contrast-enhanced (DCE) MRI can provide key insight into renal function. DCE MRI is typically achieved through an injection of a gadolinium (Gd)-based contrast agent, which has desirable T1 quenching and tracer kinetics. However, significant T2* blooming effects and signal voids can arise when Gd becomes very concentrated, especially in the renal medulla and pelvis. One MRI sequence designed to alleviate T2* effects is the ultrashort echo time (UTE) sequence. In the present study, we observed T2* blooming in the inner medulla of the mouse kidney, despite using UTE at an echo time of 20 microseconds and a low dose of 0.03 mmol/kg Gd. We applied quantitative susceptibility mapping (QSM) and resolved the signal void into a positive susceptibility signal. The susceptibility values [in parts per million (ppm)] were converted into molar concentrations of Gd using a calibration curve. We determined the concentrating mechanism (referred to as the concentrating index) as a ratio of maximum Gd concentration in the inner medulla to the renal artery. The concentrating index was assessed longitudinally over a 17-wk course (3, 5, 7, 9, 13, 17 wk of age). We conclude that the UTE-based DCE method is limited in resolving extreme T2* content caused by the kidney's strong concentrating mechanism. QSM was able to resolve and confirm the source of the blooming effect to be the large positive susceptibility of concentrated Gd. UTE with QSM can complement traditional magnitude UTE and offer a powerful tool to study renal pathophysiology.
Collapse
Affiliation(s)
- Luke Xie
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina; Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| | - Nian Wang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Peder E Z Larson
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, California; and
| | - Jeff L Zhang
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah
| | - Vivian S Lee
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah
| | - Chunlei Liu
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
15
|
Wei H, Dibb R, Zhou Y, Sun Y, Xu J, Wang N, Liu C. Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR IN BIOMEDICINE 2015; 28:1294-303. [PMID: 26313885 PMCID: PMC4572914 DOI: 10.1002/nbm.3383] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 05/08/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a novel MRI technique for the measurement of tissue magnetic susceptibility in three dimensions. Although numerous algorithms have been developed to solve this ill-posed inverse problem, the estimation of susceptibility maps with a wide range of values is still problematic. In cases such as large veins, contrast agent uptake and intracranial hemorrhages, extreme susceptibility values in focal areas cause severe streaking artifacts. To enable the reduction of these artifacts, whilst preserving subtle susceptibility contrast, a two-level QSM reconstruction algorithm (streaking artifact reduction for QSM, STAR-QSM) was developed in this study by tuning a regularization parameter to automatically reconstruct both large and small susceptibility values. Compared with current state-of-the-art QSM methods, such as the improved sparse linear equation and least-squares (iLSQR) algorithm, STAR-QSM significantly reduced the streaking artifacts, whilst preserving the sharp boundaries for blood vessels of mouse brains in vivo and fine anatomical details of high-resolution mouse brains ex vivo. Brain image data from patients with cerebral hematoma and multiple sclerosis further illustrated the superiority of this method in reducing streaking artifacts caused by large susceptibility sources, whilst maintaining sharp anatomical details. STAR-QSM is implemented in STI Suite, a comprehensive shareware for susceptibility imaging and quantification.
Collapse
Affiliation(s)
- Hongjiang Wei
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nian Wang
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Dibb R, Qi Y, Liu C. Magnetic susceptibility anisotropy of myocardium imaged by cardiovascular magnetic resonance reflects the anisotropy of myocardial filament α-helix polypeptide bonds. J Cardiovasc Magn Reson 2015; 17:60. [PMID: 26177899 PMCID: PMC4504227 DOI: 10.1186/s12968-015-0159-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/23/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A key component of evaluating myocardial tissue function is the assessment of myofiber organization and structure. Studies suggest that striated muscle fibers are magnetically anisotropic, which, if measurable in the heart, may provide a tool to assess myocardial microstructure and function. METHODS To determine whether this weak anisotropy is observable and spatially quantifiable with cardiovascular magnetic resonance (CMR), both gradient-echo and diffusion-weighted data were collected from intact mouse heart specimens at 9.4 Tesla. Susceptibility anisotropy was experimentally calculated using a voxelwise analysis of myocardial tissue susceptibility as a function of myofiber angle. A myocardial tissue simulation was developed to evaluate the role of the known diamagnetic anisotropy of the peptide bond in the observed susceptibility contrast. RESULTS The CMR data revealed that myocardial tissue fibers that were parallel and perpendicular to the magnetic field direction appeared relatively paramagnetic and diamagnetic, respectively. A linear relationship was found between the magnetic susceptibility of the myocardial tissue and the squared sine of the myofiber angle with respect to the field direction. The multi-filament model simulation yielded susceptibility anisotropy values that reflected those found in the experimental data, and were consistent that this anisotropy decreased as the echo time increased. CONCLUSIONS Though other sources of susceptibility anisotropy in myocardium may exist, the arrangement of peptide bonds in the myofilaments is a significant, and likely the most dominant source of susceptibility anisotropy. This anisotropy can be further exploited to probe the integrity and organization of myofibers in both healthy and diseased heart tissue.
Collapse
Affiliation(s)
- Russell Dibb
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC, 27710, USA.
- Biomedical Engineering, Duke University Medical Center, Campus Box 90281, Durham, NC, 27708, USA.
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC, 27710, USA.
| | - Chunlei Liu
- Brain Imaging & Analysis Center, Duke University Medical Center, Box 3918, Durham, NC, 27710, USA.
- Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2015; 73:82-101. [PMID: 25044035 PMCID: PMC4297605 DOI: 10.1002/mrm.25358] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 01/03/2023]
Abstract
In MRI, the main magnetic field polarizes the electron cloud of a molecule, generating a chemical shift for observer protons within the molecule and a magnetic susceptibility inhomogeneity field for observer protons outside the molecule. The number of water protons surrounding a molecule for detecting its magnetic susceptibility is vastly greater than the number of protons within the molecule for detecting its chemical shift. However, the study of tissue magnetic susceptibility has been hindered by poor molecular specificities of hitherto used methods based on MRI signal phase and T2* contrast, which depend convolutedly on surrounding susceptibility sources. Deconvolution of the MRI signal phase can determine tissue susceptibility but is challenged by the lack of MRI signal in the background and by the zeroes in the dipole kernel. Recently, physically meaningful regularizations, including the Bayesian approach, have been developed to enable accurate quantitative susceptibility mapping (QSM) for studying iron distribution, metabolic oxygen consumption, blood degradation, calcification, demyelination, and other pathophysiological susceptibility changes, as well as contrast agent biodistribution in MRI. This paper attempts to summarize the basic physical concepts and essential algorithmic steps in QSM, to describe clinical and technical issues under active development, and to provide references, codes, and testing data for readers interested in QSM.
Collapse
Affiliation(s)
- Yi Wang
- Radiology, Weill Medical College of Cornell UniversityNew York, New York, USA
- Biomedical Engineering, Cornell UniversityIthaca, New York, USA
- Biomedical Engineering, Kyung Hee UniversitySeoul, South Korea
| | - Tian Liu
- MedImageMetric, LLCNew York, New York, USA
| |
Collapse
|
18
|
Cao W, Li W, Han H, O'Leary-Moore SK, Sulik KK, Allan Johnson G, Liu C. Prenatal alcohol exposure reduces magnetic susceptibility contrast and anisotropy in the white matter of mouse brains. Neuroimage 2014; 102 Pt 2:748-55. [PMID: 25175539 PMCID: PMC4252734 DOI: 10.1016/j.neuroimage.2014.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 01/14/2023] Open
Abstract
Prenatal alcohol exposure can result in long-term cognitive and behavioral deficits. Fetal alcohol spectrum disorder (FASD) refers to a range of permanent birth defects caused by prenatal alcohol exposure, and is the most common neurodevelopmental disorder in the US. Studies by autopsy and conventional structural MRI indicate that the midline structures of the brain are particularly vulnerable to prenatal alcohol exposure. Diffusion tensor imaging (DTI) has shown that abnormalities in brain white matter especially the corpus callosum are very common in FASD. Quantitative susceptibility mapping (QSM) is a novel technique that measures tissue's magnetic property. Such magnetic property is affected by tissue microstructure and molecular composition including that of myelin in the white matter. In this work, we studied three major white matter fiber bundles of a mouse model of FASD and compared it to control mice using both QSM and DTI. QSM revealed clear and significant abnormalities in anterior commissure, corpus callosum, and hippocampal commissure, which were likely due to reduced myelination. Our data also suggested that QSM may be even more sensitive than DTI for examining changes due to prenatal alcohol exposure. Although this is a preclinical study, the technique of QSM is readily translatable to human brain.
Collapse
Affiliation(s)
- Wei Cao
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Hui Han
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Shonagh K O'Leary-Moore
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Kathleen K Sulik
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, United States
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; Department of Radiology, Duke University, Durham, NC, United States.
| |
Collapse
|
19
|
Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 2014; 42:23-41. [PMID: 25270052 DOI: 10.1002/jmri.24768] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022] Open
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging.
Collapse
Affiliation(s)
- Chunlei Liu
- Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, North Carolina, USA.,Department of Radiology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Wei Li
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Department of Ophthalmology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Karen A Tong
- Department of Radiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California, USA
| | - Samuel Kuzminski
- Department of Radiology, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|