1
|
Luo Q, Sun K, Dan G, Zhou XJ. Fast 3D fMRI acquisition with high spatial resolutions over a reduced FOV. Magn Reson Med 2024; 92:1952-1964. [PMID: 38888135 PMCID: PMC11341251 DOI: 10.1002/mrm.30191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To develop and demonstrate a fast 3D fMRI acquisition technique with high spatial resolution over a reduced FOV, named k-t 3D reduced FOV imaging (3D-rFOVI). METHODS Based on 3D gradient-echo EPI, k-t 3D-rFOVI used a 2D RF pulse to reduce the FOV in the in-plane phase-encoding direction, boosting spatial resolution without increasing echo train length. For image acceleration, full sampling was applied in the central k-space region along the through-slab direction (kz) for all time frames, while randomized undersampling was used in outer kz regions at different time frames. Images were acquired at 3T and reconstructed using a method based on partial separability. fMRI detection sensitivity of k-t 3D-rFOVI was quantitively analyzed with simulation data. Human visual fMRI experiments were performed to evaluate k-t 3D-rFOVI and compare it with a commercial multiband EPI sequence. RESULTS The simulation data showed that k-t 3D-rFOVI can detect 100% of fMRI activations with an acceleration factor (R) of 2 and ˜80% with R = 6. In the human fMRI data acquired with 1.5-mm spatial resolution and 800-ms volume TR (TRvol), k-t 3D-rFOVI with R = 4 detected 46% more activated voxels in the visual cortex than the multiband EPI. Additional fMRI experiments showed that k-t 3D-rFOVI can achieve TRvol of 480 ms with R = 6, while reliably detecting visual activation. CONCLUSIONS k-t 3D-rFOVI can simultaneously achieve a high spatial resolution (1.5-mm isotropically) and short TRvol (480-ms) at 3T. It offers a robust acquisition technique for fast fMRI studies over a focused brain volume.
Collapse
Affiliation(s)
- Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Sun K, Zhong Z, Dan G, Wang K, Karaman MM, Luo Q, Zhou XJ. Simultaneous multi-segment (SMSeg) EPI over multiple focal regions. Phys Med Biol 2023; 68:10.1088/1361-6560/acb2a9. [PMID: 36634366 PMCID: PMC9994176 DOI: 10.1088/1361-6560/acb2a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Objective.This study aimed at developing a simultaneous multi-segment (SMSeg) imaging technique using a two-dimensional (2D) RF pulse in conjunction with echo planar imaging (EPI) to image multiple focal regions.Approach.The SMSeg technique leveraged periodic replicates of the excitation profile of a 2D RF pulse to simultaneously excite multiple focal regions at different locations. These locations were controlled by rotating and scaling transmit k-space trajectories. The resulting multiple isolated focal regions were projected into a composite 'slice' for display. GRAPPA-based parallel imaging was incorporated into SMSeg by taking advantage of coil sensitivity variations in both the phase-encoded and slice-selection directions. The SMSeg technique was implemented at 3 T in a single-shot gradient-echo EPI sequence and demonstrated in a phantom and human brains for both anatomic imaging and functional imaging.Main results.In both the phantom and the human brain, SMSeg images from three focal regions were simultaneously acquired. SMSeg imaging enabled up to a six-fold acceleration in parallel imaging without causing appreciable residual aliasing artifacts when compared with a conventional gradient-echo EPI sequence with the same acceleration factor. In the functional imaging experiment, BOLD activations associated with a visuomotor task were simultaneously detected in two non-coplanar segments (each with a size of 240 × 30 mm2), corresponding to visual and motor cortices, respectively.Significance.Our study has demonstrated that SMSeg imaging can be a viable method for studying multiple focal regions simultaneously.
Collapse
Affiliation(s)
- Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Zheng Zhong
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kezhou Wang
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America.,VasSol, Inc., River Forest, IL, United States of America
| | - M Muge Karaman
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States of America.,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America.,Departments of Radiology and Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, IL, United States of America
| |
Collapse
|
3
|
Vinding MS, Aigner CS, Schmitter S, Lund TE. DeepControl: 2DRF pulses facilitating B 1 + inhomogeneity and B 0 off-resonance compensation in vivo at 7 T. Magn Reson Med 2021; 85:3308-3317. [PMID: 33480029 DOI: 10.1002/mrm.28667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE Rapid 2DRF pulse design with subject-specific B 1 + inhomogeneity and B0 off-resonance compensation at 7 T predicted from convolutional neural networks is presented. METHODS The convolution neural network was trained on half a million single-channel transmit 2DRF pulses optimized with an optimal control method using artificial 2D targets, B 1 + and B0 maps. Predicted pulses were tested in a phantom and in vivo at 7 T with measured B 1 + and B0 maps from a high-resolution gradient echo sequence. RESULTS Pulse prediction by the trained convolutional neural network was done on the fly during the MR session in approximately 9 ms for multiple hand-drawn regions of interest and the measured B 1 + and B0 maps. Compensation of B 1 + inhomogeneity and B0 off-resonances has been confirmed in the phantom and in vivo experiments. The reconstructed image data agree well with the simulations using the acquired B 1 + and B0 maps, and the 2DRF pulse predicted by the convolutional neural networks is as good as the conventional RF pulse obtained by optimal control. CONCLUSION The proposed convolutional neural network-based 2DRF pulse design method predicts 2DRF pulses with an excellent excitation pattern and compensated B 1 + and B0 variations at 7 T. The rapid 2DRF pulse prediction (9 ms) enables subject-specific high-quality 2DRF pulses without the need to run lengthy optimizations.
Collapse
Affiliation(s)
- Mads Sloth Vinding
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Torben Ellegaard Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
4
|
Gao Y, Wang P, Qian M, Zhao J, Xu H, Zhang X. A surface loop array for in vivo small animal MRI/fMRI on 7T human scanners. Phys Med Biol 2019; 64:035009. [PMID: 30566918 DOI: 10.1088/1361-6560/aaf9e4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Small animals such as non-human primate (NHP) and rodent are valuable models in frontier neuroscience researches, and comparative research between the animal model and human is helpful to understand and reveal the functional brain circuits in cognition and underlying mechanism in psychological disease. Small animals can be trained or anesthetized to endure long-term and multiple imaging scans; however, the concomitant needs in subcortical structure and function investigations pose major challenges in, e.g. spatial resolution, scan time efficiency, spatial/temporal signal-to-noise-ratio, as well as apparatus mechanical fixation. In addition, comparative investigations across species are also expected to be conducted under similar physical environment (such as the main magnetic field strength, RF pulse shape, sequence protocols, gradient waveform, system stability, etc in MRI), in order to avoid possible deviation in signal detection under different platforms, as well as to reduce experiment complexity. We have proposed a novel 5-channel surface coil that is equipped on 7T human MRI scanners and designed for small animal structural and functional MRI. Through a series of in vivo experiments over an anesthetized rat and macaque, the presented coil shows its main characteristics in, i.e. flexible coil mounting, reduced FOV, high temporal SNR, and parallel imaging capability. Such design is able to compensate the relatively lower gradient slew rate of human scanners versus those with smaller bores, and thus effectively facilitates in vivo microscopic structural MR images being obtained within a shortened and safe period of anesthesia; besides, it also enables high-resolution functional MRI (i.e. spin-echo based) being achieved with reasonable temporal resolution, distortion level and functional contrast.
Collapse
Affiliation(s)
- Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
DSouza AM, Abidin AZ, Chockanathan U, Schifitto G, Wismüller A. Mutual connectivity analysis of resting-state functional MRI data with local models. Neuroimage 2018; 178:210-223. [PMID: 29777828 DOI: 10.1016/j.neuroimage.2018.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Functional connectivity analysis of functional MRI (fMRI) can represent brain networks and reveal insights into interactions amongst different brain regions. However, most connectivity analysis approaches adopted in practice are linear and non-directional. In this paper, we demonstrate the advantage of a data-driven, directed connectivity analysis approach called Mutual Connectivity Analysis using Local Models (MCA-LM) that approximates connectivity by modeling nonlinear dependencies of signal interaction, over more conventionally used approaches, such as Pearson's and partial correlation, Patel's conditional dependence measures, etcetera. We demonstrate on realistic simulations of fMRI data that, at long sampling intervals, i.e. high repetition time (TR) of fMRI signals, MCA-LM performs better than or comparable to correlation-based methods and Patel's measures. However, at fast image acquisition rates corresponding to low TR, MCA-LM significantly outperforms these methods. This insight is particularly useful in the light of recent advances in fast fMRI acquisition techniques. Methods that can capture the complex dynamics of brain activity, such as MCA-LM, should be adopted to extract as much information as possible from the improved representation. Furthermore, MCA-LM works very well for simulations generated at weak neuronal interaction strengths, and simulations modeling inhibitory and excitatory connections as it disentangles the two opposing effects between pairs of regions/voxels. Additionally, we demonstrate that MCA-LM is capable of capturing meaningful directed connectivity on experimental fMRI data. Such results suggest that it introduces sufficient complexity into modeling fMRI time-series interactions that simple, linear approaches cannot, while being data-driven, computationally practical and easy to use. In conclusion, MCA-LM can provide valuable insights towards better understanding brain activity.
Collapse
Affiliation(s)
- Adora M DSouza
- Department of Electrical Engineering, University of Rochester, Rochester, NY, USA.
| | - Anas Z Abidin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Udaysankar Chockanathan
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Department of Imaging Sciences, University of Rochester, NY, USA
| | - Axel Wismüller
- Department of Electrical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Imaging Sciences, University of Rochester, NY, USA; Faculty of Medicine and Institute of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
6
|
Poser BA, Setsompop K. Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field. Neuroimage 2018; 168:101-118. [PMID: 28392492 PMCID: PMC5630499 DOI: 10.1016/j.neuroimage.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/18/2022] Open
Abstract
The SNR and CNR benefits of ultra-high field (UHF) have helped push the envelope of achievable spatial resolution in MRI. For applications based on susceptibility contrast where there is a large CNR gain, high quality sub-millimeter resolution imaging is now being routinely performed, particularly in fMRI and phase imaging/QSM. This has enabled the study of structure and function of very fine-scale structures in the brain. UHF has also helped push the spatial resolution of many other MRI applications as will be outlined in this review. However, this push in resolution comes at a cost of a large encoding burden leading to very lengthy scans. Developments in parallel imaging with controlled aliasing and the move away from 2D slice-by-slice imaging to much more SNR-efficient simultaneous multi-slice (SMS) and 3D acquisitions have helped address this issue. In particular, these developments have revolutionized the efficiency of UHF MRI to enable high spatiotemporal resolution imaging at an order of magnitude faster acquisition. In addition to describing the main approaches to these techniques, this review will also outline important key practical considerations in using these methods in practice. Furthermore, new RF pulse design to tackle the B1+ and SAR issues of UHF and the increased SAR and power requirement of SMS RF pulses will also be touched upon. Finally, an outlook into new developments of smart encoding in more dimensions, particularly through using better temporal/across-contrast encoding and reconstruction will be described. Just as controlled aliasing fully exploits spatial encoding in parallel imaging to provide large multiplicative gains in accelerations, the complimentary use of these new approaches in temporal and across-contrast encoding are expected to provide exciting opportunities for further large gains in efficiency to further push the spatiotemporal resolution of MRI.
Collapse
Affiliation(s)
- Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Kawin Setsompop
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
7
|
Barry RL, Vannesjo SJ, By S, Gore JC, Smith SA. Spinal cord MRI at 7T. Neuroimage 2018; 168:437-451. [PMID: 28684332 PMCID: PMC5894871 DOI: 10.1016/j.neuroimage.2017.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) of the human spinal cord at 7T has been demonstrated by a handful of research sites worldwide, and the spinal cord remains one of the areas in which higher fields and resolution could have high impact. The small diameter of the cord (∼1 cm) necessitates high spatial resolution to minimize partial volume effects between gray and white matter, and so MRI of the cord can greatly benefit from increased signal-to-noise ratio and contrasts at ultra-high field (UHF). Herein we review the current state of UHF spinal cord imaging. Technical challenges to successful UHF spinal cord MRI include radiofrequency (B1) nonuniformities and a general lack of optimized radiofrequency coils, amplified physiological noise, and an absence of methods for robust B0 shimming along the cord to mitigate image distortions and signal losses. Numerous solutions to address these challenges have been and are continuing to be explored, and include novel approaches for signal excitation and acquisition, dynamic shimming and specialized shim coils, and acquisitions with increased coverage or optimal slice angulations.
Collapse
Affiliation(s)
- Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - S Johanna Vannesjo
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Samantha By
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Setsompop K, Feinberg DA, Polimeni JR. Rapid brain MRI acquisition techniques at ultra-high fields. NMR IN BIOMEDICINE 2016; 29:1198-221. [PMID: 26835884 PMCID: PMC5245168 DOI: 10.1002/nbm.3478] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - David A. Feinberg
- Helen Wills Institute for Neuroscience, University of California, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Taviani V, Alley MT, Banerjee S, Nishimura DG, Daniel BL, Vasanawala SS, Hargreaves BA. High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 2016; 77:209-220. [PMID: 26778549 DOI: 10.1002/mrm.26110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a technique for high-resolution diffusion-weighted imaging (DWI) and to compare it with standard DWI methods. METHODS Multiple in-plane bands of magnetization were simultaneously excited by identically phase modulating each subpulse of a two-dimensional (2D) RF pulse. Several excitations with the same multiband pattern progressively shifted in the phase-encode direction were used to cover the prescribed field of view (FOV). The phase-encoded FOV was limited to the width of a single band to reduce off-resonance-induced distortion and blurring. Parallel imaging (PI) techniques were used to resolve aliasing from the other bands and to combine the different excitations. Following validation in phantoms and healthy volunteers, a preliminary study in breast cancer patients (N=14) was performed to compare the proposed method to conventional DWI with PI and to reduced-FOV DWI. RESULTS The proposed method gave high-resolution diffusion-weighted images with minimal artifacts at the band intersections. Compared to PI alone, higher phase-encoded FOV-reduction factors and reduced noise amplification were obtained, which translated to higher resolution images than conventional (non-multiband) DWI. The same resolution and image quality achievable over targeted regions using existing reduced-FOV methods was obtained, but the proposed method also enables complete bilateral coverage. CONCLUSION We developed an in-plane multiband technique for high-resolution DWI and compared its performance with other standard DWI methods. Magn Reson Med 77:209-220, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valentina Taviani
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Marcus T Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Dwight G Nishimura
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Bruce L Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|