1
|
Loai S, Qiang B, Laflamme MA, Cheng HLM. Blood-pool MRI assessment of myocardial microvascular reactivity. Front Cardiovasc Med 2023; 10:1216587. [PMID: 38028477 PMCID: PMC10646425 DOI: 10.3389/fcvm.2023.1216587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The ability to non-invasively image myocardial microvascular dilation and constriction is essential to assessing intact function and dysfunction. Yet, conventional measurements based on blood oxygenation are not specific to changes in blood volume. The purpose of this study was to extend to the heart a blood-pool MRI approach for assessing vasomodulation in the presence of blood gas changes and investigate if sex-related differences exist. Methods Animals [five male and five female healthy Sprague Dawley rats (200-500 g)] were intubated, ventilated, and cycled through room air (normoxia) and hypercapnia (10% CO2) in 10-minute cycles after i.v. injection of blood-pool agent Ablavar (0.3 mmol/kg). Pre-contrast T1 maps and T1-weighted 3D CINE were acquired on a 3 Tesla preclinical MRI scanner, followed by repeated 3D CINE every 5 min until the end of the gas regime. Invasive laser Doppler flowmetry of myocardial perfusion was performed to corroborate MRI results. Results Myocardial microvascular dilation to hypercapnia and constriction to normoxia were readily visualized on T1 maps. Over 10 min of hypercapnia, female myocardial T1 reduced by 20% (vasodilation), while no significant change was observed in the male myocardium. After return to normoxia, myocardial T1 increased (vasoconstriction) in both sexes (18% in females and 16% in males). Laser Doppler perfusion measurements confirmed vasomodulatory responses observed on MRI. Conclusion Blood-pool MRI is sensitive and specific to vasomodulation in the myocardial microcirculation. Sex-related differences exist in the healthy myocardium in response to mild hypercapnic stimuli.
Collapse
Affiliation(s)
- Sadi Loai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Hillier E, Friedrich MG. The Potential of Oxygenation-Sensitive CMR in Heart Failure. Curr Heart Fail Rep 2021; 18:304-314. [PMID: 34378154 DOI: 10.1007/s11897-021-00525-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Cardiac magnetic resonance imaging (CMR) use in the context of heart failure (HF) has increased over the last decade as it is able to provide detailed, quantitative information on function, morphology, and myocardial tissue composition. Furthermore, oxygenation-sensitive CMR (OS-CMR) has emerged as a CMR imaging method capable of monitoring changes of myocardial oxygenation without the use of exogenous contrast agents. RECENT FINDINGS The contributions of OS-CMR to the investigation of patients with HF includes not only a fully quantitative assessment of cardiac morphology, function, and tissue characteristics, but also high-resolution information on both endothelium-dependent and endothelium-independent vascular function as assessed through changes of myocardial oxygenation. In patients with heart failure, OS-CMR can provide deep phenotyping on the status and important associated pathophysiology as a one-stop, needle-free diagnostic imaging test.
Collapse
Affiliation(s)
- Elizabeth Hillier
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.,Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Matthias G Friedrich
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Departments of Medicine and Diagnostic Radiology, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
3
|
Value CMR: Towards a Comprehensive, Rapid, Cost-Effective Cardiovascular Magnetic Resonance Imaging. Int J Biomed Imaging 2021; 2021:8851958. [PMID: 34054936 PMCID: PMC8147553 DOI: 10.1155/2021/8851958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Cardiac magnetic resonance imaging (CMR) is considered the gold standard for measuring cardiac function. Further, in a single CMR exam, information about cardiac structure, tissue composition, and blood flow could be obtained. Nevertheless, CMR is underutilized due to long scanning times, the need for multiple breath-holds, use of a contrast agent, and relatively high cost. In this work, we propose a rapid, comprehensive, contrast-free CMR exam that does not require repeated breath-holds, based on recent developments in imaging sequences. Time-consuming conventional sequences have been replaced by advanced sequences in the proposed CMR exam. Specifically, conventional 2D cine and phase-contrast (PC) sequences have been replaced by optimized 3D-cine and 4D-flow sequences, respectively. Furthermore, conventional myocardial tagging has been replaced by fast strain-encoding (SENC) imaging. Finally, T1 and T2 mapping sequences are included in the proposed exam, which allows for myocardial tissue characterization. The proposed rapid exam has been tested in vivo. The proposed exam reduced the scan time from >1 hour with conventional sequences to <20 minutes. Corresponding cardiovascular measurements from the proposed rapid CMR exam showed good agreement with those from conventional sequences and showed that they can differentiate between healthy volunteers and patients. Compared to 2D cine imaging that requires 12-16 separate breath-holds, the implemented 3D-cine sequence allows for whole heart coverage in 1-2 breath-holds. The 4D-flow sequence allows for whole-chest coverage in less than 10 minutes. Finally, SENC imaging reduces scan time to only one slice per heartbeat. In conclusion, the proposed rapid, contrast-free, and comprehensive cardiovascular exam does not require repeated breath-holds or to be supervised by a cardiac imager. These improvements make it tolerable by patients and would help improve cost effectiveness of CMR and increase its adoption in clinical practice.
Collapse
|
4
|
Ohlendorf R, Wiśniowska A, Desai M, Barandov A, Slusarczyk AL, Li N, Jasanoff A. Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nat Commun 2020; 11:2399. [PMID: 32404879 PMCID: PMC7220906 DOI: 10.1038/s41467-020-16118-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Agata Wiśniowska
- Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Adrian L Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Le Page LM, Rider OJ, Lewis AJ, Noden V, Kerr M, Giles L, Ambrose LJ, Ball V, Mansor L, Heather LC, Tyler DJ. Assessing the effect of hypoxia on cardiac metabolism using hyperpolarized 13 C magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2019; 32:e4099. [PMID: 31090979 PMCID: PMC6619452 DOI: 10.1002/nbm.4099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 05/03/2023]
Abstract
Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Noninvasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon-13 magnetic resonance spectroscopy (HP 13 C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13 C MRS can be used to assess the in vivo heart's metabolism of pyruvate in response to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), 1 week or 3 weeks of hypoxia. In vivo MRS of hyperpolarized [1-13 C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. Hematocrit was elevated after 1 week and 3 weeks of hypoxia. 30 minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas 1 or 3 weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1-13 C] pyruvate into [1-13 C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism of pyruvate was comparable with that observed in normoxia. We have successfully visualized the effects of systemic hypoxia on cardiac metabolism of pyruvate using hyperpolarized 13 C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13 C MRS data for assessing the cardiometabolic effects of hypoxia in disease.
Collapse
Affiliation(s)
- Lydia M. Le Page
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of Physical Therapy and Rehabilitation ScienceUniversity of CaliforniaSan FranciscoSan FranciscoUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoSan FranciscoUSA
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Andrew J. Lewis
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Victoria Noden
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Matthew Kerr
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Lucia Giles
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Lucy J.A. Ambrose
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Vicky Ball
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Latt Mansor
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Lisa C. Heather
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Fischer K, Guensch DP, Shie N, Lebel J, Friedrich MG. Breathing Maneuvers as a Vasoactive Stimulus for Detecting Inducible Myocardial Ischemia - An Experimental Cardiovascular Magnetic Resonance Study. PLoS One 2016; 11:e0164524. [PMID: 27741282 PMCID: PMC5065132 DOI: 10.1371/journal.pone.0164524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Breathing maneuvers can elicit a similar vascular response as vasodilatory agents like adenosine; yet, their potential diagnostic utility in the presence of coronary artery stenosis is unknown. The objective of the study is to investigate if breathing maneuvers can non-invasively detect inducible ischemia in an experimental animal model when the myocardium is imaged with oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR). METHODS AND FINDINGS In 11 anesthetised swine with experimentally induced significant stenosis (fractional flow reserve <0.75) of the left anterior descending coronary artery (LAD) and 9 control animals, OS-CMR at 3T was performed during two different breathing maneuvers, a long breath-hold; and a combined maneuver of 60s of hyperventilation followed by a long breath-hold. The resulting change of myocardial oxygenation was compared to the invasive measurements of coronary blood flow, blood gases, and oxygen extraction. In control animals, all breathing maneuvers could significantly alter coronary blood flow as hyperventilation decreased coronary blood flow by 34±23%. A long breath-hold alone led to an increase of 97±88%, while the increase was 346±327% (p<0.001), when the long breath-hold was performed after hyperventilation. In stenosis animals, the coronary blood flow response was attenuated after both hyperventilation and the following breath-hold. This was matched by the observed oxygenation response as breath-holds following hyperventilation consistently yielded a significant difference in the signal of the MRI images between the perfusion territory of the stenosis LAD and remote myocardium. There was no difference between the coronary territories during the other breathing maneuvers or in the control group at any point. CONCLUSION In an experimental animal model, the response to a combined breathing maneuver of hyperventilation with subsequent breath-holding is blunted in myocardium subject to significant coronary artery stenosis. This maneuver may allow for detecting severe coronary artery stenosis and have a significant clinical potential as a non-pharmacological method for diagnostic testing in patients with suspected coronary artery disease.
Collapse
Affiliation(s)
- Kady Fischer
- Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- University Hospital Bern, Department Anaesthesiology and Pain Therapy, Inselspital, University of Bern, Bern, Switzerland
- University Hospital Bern, Institute for Diagnostic, Interventional and Paediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Dominik P Guensch
- Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- University Hospital Bern, Department Anaesthesiology and Pain Therapy, Inselspital, University of Bern, Bern, Switzerland
- University Hospital Bern, Institute for Diagnostic, Interventional and Paediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Nancy Shie
- Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Julie Lebel
- Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Matthias G Friedrich
- Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Department of Radiology, Université de Montréal, Montreal, QC, Canada
- Departments of Medicine and Diagnostic Radiology, McGill University, Montreal, QC, Canada
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- Departments of Cardiac Sciences and Radiology, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
7
|
Guensch DP, Nadeshalingam G, Fischer K, Stalder AF, Friedrich MG. The impact of hematocrit on oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2016; 18:42. [PMID: 27435406 PMCID: PMC4952059 DOI: 10.1186/s12968-016-0262-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxygenation-sensitive (OS) Cardiovascular Magnetic Resonance (CMR) is a promising utility in the diagnosis of heart disease. Contrast in OS-CMR images is generated through deoxyhemoglobin in the tissue, which is negatively correlated with the signal intensity (SI). Thus, changing hematocrit levels may be a confounder in the interpretation of OS-CMR results. We hypothesized that hemodilution confounds the observed signal intensity in OS-CMR images. METHODS Venous and arterial blood from five pigs was diluted with lactated Ringer solution in 10 % increments to 50 %. The changes in signal intensity (SI) were compared to changes in blood gases and hemoglobin concentration. We performed an OS-CMR scan in 21 healthy volunteers using vasoactive breathing stimuli at baseline, which was then repeated after rapid infusion of 1 L of lactated Ringer's solution within 5-8 min. Changes of SI were measured and compared between the hydration states. RESULTS The % change in SI from baseline for arterial (r = -0.67, p < 0.0001) and venous blood (r = -0.55, p = 0.002) were negatively correlated with the changes in hemoglobin (Hb). SI changes in venous blood were also associated with SO2 (r = 0.68, p < 0.0001) and deoxyHb concentration (-0.65, p < 0.0001). In healthy volunteers, rapid infusion resulted in a significant drop in the hemoglobin concentration (142.5 ± 15.2 g/L vs. 128.8 ± 15.2 g/L; p < 0.0001). Baseline myocardial SI increased by 3.0 ± 5.7 % (p = 0.026) following rapid infusion, and in males there was a strong association between the change in hemoglobin concentration and % changes in SI (r = 0.82, p = 0.002). After hyperhydration, the SI response after hyperventilation was attenuated (HV, p = 0.037), as was the maximum SI increase during apnea (p = 0.012). The extent of SI attenuation was correlated with the reduction in hemoglobin concentration at the end of apnea (r = 0.55, p = 0.012) for all subjects and at maximal SI (r = 0.63, p = 0.037) and the end of breath-hold (r = 0.68, p = 0.016) for males only. CONCLUSION In dynamic studies using oxygenation-sensitive CMR, the hematocrit level affects baseline signal intensity and the observed signal intensity response. Thus, the hydration status of the patient may be a confounder for OS-CMR image analysis.
Collapse
Affiliation(s)
- Dominik P. Guensch
- />Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Montreal, QC Canada
- />Department of Anesthesiology and Pain Therapy, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
- />Instutite of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gobinath Nadeshalingam
- />Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Montreal, QC Canada
| | - Kady Fischer
- />Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Montreal, QC Canada
- />Department of Anesthesiology and Pain Therapy, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | | | - Matthias G. Friedrich
- />Philippa & Marvin Carsley CMR Centre at the Montreal Heart Institute, Montreal, QC Canada
- />Department of Medicine, Heidelberg University, Heidelberg, Germany
- />Departments of Cardiac Sciences and Radiology, University of Calgary, Calgary, AB Canada
- />Department of Radiology, Université de Montréal, Montreal, QC Canada
- />Departments of Medicine and Radiology, McGill University Health Centre, Montreal, QC Canada
| |
Collapse
|