1
|
Dergachyova O, Yu Z, Hodono S, Cloos M, Madelin G. Analysis of blurring due to short T 2 decay at different resolutions in 23Na MRI. ARXIV 2024:arXiv:2404.11774v1. [PMID: 38699168 PMCID: PMC11065050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The nuclear magnetic resonance signal from sodium (23Na) nuclei demonstrates a fast bi-exponential T2 decay in biological tissues (T2,short = 0.5-5 ms and T2,long = 10-30 ms). Hence, blurring observed in sodium images acquired with center-out sequences is generally assumed to be dominated by signal attenuation at higher k-space frequencies. Most of the studies in the field primarily focus on the impact of readout duration on blurring but neglect the impact of resolution. In this paper, we examine the blurring effect of short T2 on images at different resolutions. A series of simulations, as well as phantom and in vivo scans were performed at varying resolutions and readout durations in order to evaluate progressive changes in image quality. We demonstrate that, given a fixed readout duration, T2 decay produces distinct blurring effects at different resolutions. Therefore, in addition to voxel size-dependent partial volume effects, the choice of resolution adds additional T2-dependent blurring.
Collapse
Affiliation(s)
- Olga Dergachyova
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zidan Yu
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Shota Hodono
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martijn Cloos
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Rochitte CE, Silva DC, Otaduy MC, Chaim KT, Nomura CH, Caramelli B. Cardiac Magnetic Resonance Imaging in a 7 Tesla Magnetic Field: Initial Experience with Hydrogen and Sodium Nuclei. Arq Bras Cardiol 2023; 120:e20220762. [PMID: 37556655 PMCID: PMC10382146 DOI: 10.36660/abc.20220762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/19/2023] [Accepted: 05/10/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Carlos E. Rochitte
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do, São Paulo, SP – Brasil
| | - Douglas C. Silva
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do, São Paulo, SP – Brasil
| | - Maria C. Otaduy
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilHospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Departamento de Radiologia e Oncologia do, São Paulo, SP – Brasil
| | - Khallil T. Chaim
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilHospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Departamento de Radiologia e Oncologia do, São Paulo, SP – Brasil
| | - Cesar H. Nomura
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do, São Paulo, SP – Brasil
| | - Bruno Caramelli
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Unidade de Medicina Interdisciplinar em Cardiologia, São Paulo, SP – Brasil
| |
Collapse
|
3
|
Starke L, Millward JM, Prinz C, Sherazi F, Waiczies H, Lippert C, Nazaré M, Paul F, Niendorf T, Waiczies S. First in vivo fluorine-19 magnetic resonance imaging of the multiple sclerosis drug siponimod. Theranostics 2023; 13:1217-1234. [PMID: 36923535 PMCID: PMC10008739 DOI: 10.7150/thno.77041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Theranostic imaging methods could greatly enhance our understanding of the distribution of CNS-acting drugs in individual patients. Fluorine-19 magnetic resonance imaging (19F MRI) offers the opportunity to localize and quantify fluorinated drugs non-invasively, without modifications and without the application of ionizing or other harmful radiation. Here we investigated siponimod, a sphingosine 1-phosphate (S1P) receptor antagonist indicated for secondary progressive multiple sclerosis (SPMS), to determine the feasibility of in vivo 19F MR imaging of a disease modifying drug. Methods: The 19F MR properties of siponimod were characterized using spectroscopic techniques. Four MRI methods were investigated to determine which was the most sensitive for 19F MR imaging of siponimod under biological conditions. We subsequently administered siponimod orally to 6 mice and acquired 19F MR spectra and images in vivo directly after administration, and in ex vivo tissues. Results: The 19F transverse relaxation time of siponimod was 381 ms when dissolved in dimethyl sulfoxide, and substantially reduced to 5 ms when combined with serum, and to 20 ms in ex vivo liver tissue. Ultrashort echo time (UTE) imaging was determined to be the most sensitive MRI technique for imaging siponimod in a biological context and was used to map the drug in vivo in the stomach and liver. Ex vivo images in the liver and brain showed an inhomogeneous distribution of siponimod in both organs. In the brain, siponimod accumulated predominantly in the cerebrum but not the cerebellum. No secondary 19F signals were detected from metabolites. From a translational perspective, we found that acquisitions done on a 3.0 T clinical MR scanner were 2.75 times more sensitive than acquisitions performed on a preclinical 9.4 T MR setup when taking changes in brain size across species into consideration and using equivalent relative spatial resolution. Conclusion: Siponimod can be imaged non-invasively using 19F UTE MRI in the form administered to MS patients, without modification. This study lays the groundwork for more extensive preclinical and clinical investigations. With the necessary technical development, 19F MRI has the potential to become a powerful theranostic tool for studying the time-course and distribution of CNS-acting drugs within the brain, especially during pathology.
Collapse
Affiliation(s)
- Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,SRH Fernhochschule - The Mobile University, Riedlingen, Germany
| | - Fatima Sherazi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Christoph Lippert
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
4
|
Giovannetti G, Flori A, Martini N, Francischello R, Aquaro GD, Pingitore A, Frijia F. Sodium Radiofrequency Coils for Magnetic Resonance: From Design to Applications. ELECTRONICS 2021; 10:1788. [DOI: 10.3390/electronics10151788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Sodium (23Na) is the most abundant cation present in the human body and is involved in a large number of vital body functions. In the last few years, the interest in Sodium Magnetic Resonance Imaging (23Na MRI) has considerably increased for its relevance in physiological and physiopathological aspects. Indeed, sodium MRI offers the possibility to extend the anatomical imaging information by providing additional and complementary information on physiology and cellular metabolism with the heteronuclear Magnetic Resonance Spectroscopy (MRS). Constraints are the rapidly decaying of sodium signal, the sensitivity lack due to the low sodium concentration versus 1H-MRI induce scan times not clinically acceptable and it also constitutes a challenge for sodium MRI. With the available magnetic fields for clinical MRI scanners (1.5 T, 3 T, 7 T), and the hardware capabilities such as strong gradient strengths with high slew rates and new dedicated radiofrequency (RF) sodium coils, it is possible to reach reasonable measurement times (~10–15 min) with a resolution of a few millimeters, where it has already been applied in vivo in many human organs such as the brain, cartilage, kidneys, heart, as well as in muscle and the breast. In this work, we review the different geometries and setup of sodium coils described in the available literature for different in vivo applications in human organs with clinical MR scanners, by providing details of the design, modeling and construction of the coils.
Collapse
|
5
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
6
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Boehmert L, Kuehne A, Waiczies H, Wenz D, Eigentler TW, Funk S, Knobelsdorff‐Brenkenhoff F, Schulz‐Menger J, Nagel AM, Seeliger E, Niendorf T. Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel
1
H/
23
Na radiofrequency antenna array. Magn Reson Med 2019; 82:2343-2356. [DOI: 10.1002/mrm.27880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | | | | | - Daniel Wenz
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Stephanie Funk
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Helios Clinics Berlin‐Buch Berlin Germany
| | - Florian Knobelsdorff‐Brenkenhoff
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Helios Clinics Berlin‐Buch Berlin Germany
- Clinic Agatharied, Dept. of Cardiology Academic Teaching Hospital of the Ludwig‐Maximilians‐University Munich Hausham Germany
| | - Jeanette Schulz‐Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Helios Clinics Berlin‐Buch Berlin Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Centre (DKFZ) Heidelberg Germany
- Institute of Medical Physics University of Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Erdmann Seeliger
- Institute of Vegetative Physiology Charité University Medicine Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
- MRI.TOOLS GmbH Berlin Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine Berlin Germany
| |
Collapse
|
8
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
9
|
Lott J, Platt T, Niesporek SC, Paech D, G. R. Behl N, Niendorf T, Bachert P, Ladd ME, Nagel AM. Corrections of myocardial tissue sodium concentration measurements in human cardiac
23
Na MRI at 7 Tesla. Magn Reson Med 2019; 82:159-173. [DOI: 10.1002/mrm.27703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Johanna Lott
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
| | - Tanja Platt
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
| | | | - Daniel Paech
- German Cancer Research Center (DKFZ) Radiology, Heidelberg Germany
| | - Nicolas G. R. Behl
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
| | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin Germany
- MRI. TOOLS GmbH Berlin Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
- University of Heidelberg Faculty of Medicine Heidelberg Germany
| | - Armin M. Nagel
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU), University Hospital Erlangen Institute of Radiology Erlangen Germany
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Institute of Medical Physics Erlangen Germany
| |
Collapse
|
10
|
Lommen JM, Flassbeck S, Behl NG, Niesporek S, Bachert P, Ladd ME, Nagel AM. Probing the microscopic environment of 23
Na ions in brain tissue by MRI: On the accuracy of different sampling schemes for the determination of rapid, biexponential T2* decay at low signal-to-noise ratio. Magn Reson Med 2018; 80:571-584. [DOI: 10.1002/mrm.27059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan M. Lommen
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Nicolas G.R. Behl
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Niesporek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
- University of Heidelberg, Faculty of Medicine; Heidelberg Germany
| | - Armin M. Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
11
|
Souto ALM, Souto RM, Teixeira ICR, Nacif MS. Myocardial Viability on Cardiac Magnetic Resonance. Arq Bras Cardiol 2017; 108:458-469. [PMID: 28591322 PMCID: PMC5444893 DOI: 10.5935/abc.20170056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022] Open
Abstract
The study of myocardial viability is of great importance in the orientation and management of patients requiring myocardial revascularization or angioplasty. The technique of delayed enhancement (DE) is accurate and has transformed the study of viability into an easy test, not only for the detection of fibrosis but also as a binary test detecting what is viable or not. On DE, fibrosis equal to or greater than 50% of the segmental area is considered as non-viable, whereas that below 50% is considered viable. During the same evaluation, cardiac magnetic resonance (CMR) may also use other techniques for functional and perfusion studies to obtain a global evaluation of ischemic heart disease. This study aims to highlight the current concepts and broadly emphasize the use of CMR as a method that over the last 20 years has become a reference in the detection of infarction and assessment of myocardial viability. Resumo O estudo de viabilidade miocárdica é de grande importância para a orientação e manejo de pacientes que necessitam de cirurgia de revascularização miocárdica ou angioplastia. A técnica de realce tardio (RT) é precisa e transformou o estudo de viabilidade em um teste fácil, não só para a detecção de fibrose, mas também como um modelo binário para a detecção do que é ou não é viável. Uma fibrose identificada pelo RT é considerada como não viável quando igual ou maior do que 50% da área segmentar e como viável quando menor que 50%. A ressonância magnética cardíaca (RMC) também pode lançar mão de outras técnicas para estudo funcional e de perfusão para uma avaliação global da doença isquêmica do coração no mesmo exame. Este estudo tem como objetivo destacar os conceitos atuais e enfatizar amplamente o uso da RMC como um método que nos últimos 20 anos se tornou referência na detecção de infarto e avaliação de viabilidade miocárdica.
Collapse
Affiliation(s)
| | | | | | - Marcelo Souto Nacif
- Universidade Federal Fluminense, Niterói, RJ - Brazil.,Centro de Imagem Complexo Hospitalar de Niterói, Niterói, RJ - Brazil.,Unidade de Radiologia Clínica - Hospital Vivalle - Rede D´Or - São Luiz, São José dos Campo, SP - Brazil
| |
Collapse
|
12
|
Bottomley PA. Sodium MRI in human heart: a review. NMR IN BIOMEDICINE 2016; 29:187-96. [PMID: 25683054 PMCID: PMC4868405 DOI: 10.1002/nbm.3265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 05/13/2023]
Abstract
This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.
Collapse
Affiliation(s)
- Paul A Bottomley
- Division of MR Research, Department of Radiology, Park Bldg 310, Johns Hopkins University, 601 600 N, Caroline Wolfe Street, Baltimore MD, USA 21287-0843, PH: (USA) 410 955 0366, FAX: (USA) 410 614 1977,
| |
Collapse
|
13
|
Graessl A, Ruehle A, Waiczies H, Resetar A, Hoffmann SH, Rieger J, Wetterling F, Winter L, Nagel AM, Niendorf T. Sodium MRI of the human heart at 7.0 T: preliminary results. NMR IN BIOMEDICINE 2015; 28:967-975. [PMID: 26082025 DOI: 10.1002/nbm.3338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
The objective of this work was to examine the feasibility of three-dimensional (3D) and whole heart coverage (23)Na cardiac MRI at 7.0 T including single-cardiac-phase and cinematic (cine) regimes. A four-channel transceiver RF coil array tailored for (23)Na MRI of the heart at 7.0 T (f = 78.5 MHz) is proposed. An integrated bow-tie antenna building block is used for (1)H MR to support shimming, localization and planning in a clinical workflow. Signal absorption rate simulations and assessment of RF power deposition were performed to meet the RF safety requirements. (23) Na cardiac MR was conducted in an in vivo feasibility study. 3D gradient echo (GRE) imaging in conjunction with Cartesian phase encoding (total acquisition time T(AQ) = 6 min 16 s) and whole heart coverage imaging employing a density-adapted 3D radial acquisition technique (T(AQ) = 18 min 20 s) were used. For 3D GRE-based (23)Na MRI, acquisition of standard views of the heart using a nominal in-plane resolution of (5.0 × 5.0) mm(2) and a slice thickness of 15 mm were feasible. For whole heart coverage 3D density-adapted radial (23)Na acquisitions a nominal isotropic spatial resolution of 6 mm was accomplished. This improvement versus 3D conventional GRE acquisitions reduced partial volume effects along the slice direction and enabled retrospective image reconstruction of standard or arbitrary views of the heart. Sodium cine imaging capabilities were achieved with the proposed RF coil configuration in conjunction with 3D radial acquisitions and cardiac gating. Cardiac-gated reconstruction provided an enhancement in blood-myocardium contrast of 20% versus the same data reconstructed without cardiac gating. The proposed transceiver array enables (23)Na MR of the human heart at 7.0 T within clinical acceptable scan times. This capability is in positive alignment with the needs of explorations that are designed to examine the potential of (23)Na MRI for the assessment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Andreas Graessl
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Anjuli Ruehle
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Ana Resetar
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H Hoffmann
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|