1
|
Perron S, McCormack DG, Parraga G, Ouriadov A. Undersampled Diffusion-Weighted 129Xe MRI Morphometry of Airspace Enlargement: Feasibility in Chronic Obstructive Pulmonary Disease. Diagnostics (Basel) 2023; 13:diagnostics13081477. [PMID: 37189579 DOI: 10.3390/diagnostics13081477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Multi-b diffusion-weighted hyperpolarized gas MRI measures pulmonary airspace enlargement using apparent diffusion coefficients (ADC) and mean linear intercepts (Lm). Rapid single-breath acquisitions may facilitate clinical translation, and, hence, we aimed to develop single-breath three-dimensional multi-b diffusion-weighted 129Xe MRI using k-space undersampling. We evaluated multi-b (0, 12, 20, 30 s/cm2) diffusion-weighted 129Xe ADC/morphometry estimates using a fully sampled and retrospectively undersampled k-space with two acceleration-factors (AF = 2 and 3) in never-smokers and ex-smokers with chronic obstructive pulmonary disease (COPD) or alpha-one anti-trypsin deficiency (AATD). For the three sampling cases, mean ADC/Lm values were not significantly different (all p > 0.5); ADC/Lm values were significantly different for the COPD subgroup (0.08 cm2s-1/580 µm, AF = 3; all p < 0.001) as compared to never-smokers (0.05 cm2s-1/300 µm, AF = 3). For never-smokers, mean differences of 7%/7% and 10%/7% were observed between fully sampled and retrospectively undersampled (AF = 2/AF = 3) ADC and Lm values, respectively. For the COPD subgroup, mean differences of 3%/4% and 11%/10% were observed between fully sampled and retrospectively undersampled (AF = 2/AF = 3) ADC and Lm, respectively. There was no relationship between acceleration factor with ADC or Lm (p = 0.9); voxel-wise ADC/Lm measured using AF = 2 and AF = 3 were significantly and strongly related to fully-sampled values (all p < 0.0001). Multi-b diffusion-weighted 129Xe MRI is feasible using two different acceleration methods to measure pulmonary airspace enlargement using Lm and ADC in COPD participants and never-smokers.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Grace Parraga
- Robarts Research Institute, London, ON N6A 5B7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 3K7, Canada
- Graduate Program in Biomedical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Alexei Ouriadov
- Robarts Research Institute, London, ON N6A 5B7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Taskiran NP, Hiura GT, Zhang X, Barr RG, Dashnaw SM, Hoffman EA, Malinsky D, Oelsner EC, Prince MR, Smith BM, Sun Y, Sun Y, Wild JM, Shen W, Hughes EW. Mapping Alveolar Oxygen Partial Pressure in COPD Using Hyperpolarized Helium-3: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study. Tomography 2022; 8:2268-2284. [PMID: 36136886 PMCID: PMC9498778 DOI: 10.3390/tomography8050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and emphysema are characterized by functional and structural damage which increases the spaces for gaseous diffusion and impairs oxygen exchange. Here we explore the potential for hyperpolarized (HP) 3He MRI to characterize lung structure and function in a large-scale population-based study. Participants (n = 54) from the Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study, a nested case-control study of COPD among participants with 10+ packyears underwent HP 3He MRI measuring pAO2, apparent diffusion coefficient (ADC), and ventilation. HP MRI measures were compared to full-lung CT and pulmonary function testing. High ADC values (>0.4 cm2/s) correlated with emphysema and heterogeneity in pAO2 measurements. Strong correlations were found between the heterogeneity of global pAO2 as summarized by its standard deviation (SD) (p < 0.0002) and non-physiologic pAO2 values (p < 0.0001) with percent emphysema on CT. A regional study revealed a strong association between pAO2 SD and visual emphysema severity (p < 0.003) and an association with the paraseptal emphysema subtype (p < 0.04) after adjustment for demographics and smoking status. HP noble gas pAO2 heterogeneity and the fraction of non-physiological pAO2 results increase in mild to moderate COPD. Measurements of pAO2 are sensitive to regional emphysematous damage detected by CT and may be used to probe pulmonary emphysema subtypes. HP noble gas lung MRI provides non-invasive information about COPD severity and lung function without ionizing radiation.
Collapse
Affiliation(s)
- Naz P. Taskiran
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Correspondence: (N.P.T.); (E.W.H.); Tel.: +1-347-3693052 (N.P.T.); +1-626-4838731 (E.W.H.)
| | - Grant T. Hiura
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Xuzhe Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - R. Graham Barr
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Stephen M. Dashnaw
- Neurological Institute, Radiology, Columbia University, New York, NY 10032, USA
| | - Eric A. Hoffman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Malinsky
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Elizabeth C. Oelsner
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Martin R. Prince
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin M. Smith
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yanping Sun
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Yifei Sun
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jim M. Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Wei Shen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Magnetic Resonance Research Center (CMRRC), Columbia University, New York, NY 10027, USA
| | - Emlyn W. Hughes
- Department of Physics, Columbia University, New York, NY 10027, USA
- Correspondence: (N.P.T.); (E.W.H.); Tel.: +1-347-3693052 (N.P.T.); +1-626-4838731 (E.W.H.)
| |
Collapse
|
3
|
Niedbalski PJ, Hall CS, Castro M, Eddy RL, Rayment JH, Svenningsen S, Parraga G, Zanette B, Santyr GE, Thomen RP, Stewart NJ, Collier GJ, Chan HF, Wild JM, Fain SB, Miller GW, Mata JF, Mugler JP, Driehuys B, Willmering MM, Cleveland ZI, Woods JC. Protocols for multi-site trials using hyperpolarized 129 Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129 Xe MRI clinical trials consortium. Magn Reson Med 2021; 86:2966-2986. [PMID: 34478584 DOI: 10.1002/mrm.28985] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rachel L Eddy
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Svenningsen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles E Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Thomen
- Departments of Radiology and Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - G Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Niedbalski PJ, Cochran AS, Freeman MS, Guo J, Fugate EM, Davis CB, Dahlke J, Quirk JD, Varisco BM, Woods JC, Cleveland ZI. Validating in vivo hyperpolarized 129 Xe diffusion MRI and diffusion morphometry in the mouse lung. Magn Reson Med 2021; 85:2160-2173. [PMID: 33017076 PMCID: PMC8544163 DOI: 10.1002/mrm.28539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Diffusion and lung morphometry imaging using hyperpolarized gases are promising tools to quantify pulmonary microstructure noninvasively in humans and in animal models. These techniques assume the motion encoded is exclusively diffusive gas displacement, but the impact of cardiac motion on measurements has never been explored. Furthermore, although diffusion morphometry has been validated against histology in humans and mice using 3 He, it has never been validated in mice for 129 Xe. Here, we examine the effect of cardiac motion on diffusion imaging and validate 129 Xe diffusion morphometry in mice. THEORY AND METHODS Mice were imaged using gradient-echo-based diffusion imaging, and apparent diffusion-coefficient (ADC) maps were generated with and without cardiac gating. Diffusion-weighted images were fit to a previously developed theoretical model using Bayesian probability theory, producing morphometric parameters that were compared with conventional histology. RESULTS Cardiac gating had no significant impact on ADC measurements (dual-gating: ADC = 0.020 cm2 /s, single-gating: ADC = 0.020 cm2 /s; P = .38). Diffusion-morphometry-generated maps of ADC (mean, 0.0165 ± 0.0001 cm2 /s) and acinar dimensions (alveolar sleeve depth [h] = 44 µm, acinar duct radii [R] = 99 µm, mean linear intercept [Lm ] = 74 µm) that agreed well with conventional histology (h = 45 µm, R = 108 µm, Lm = 63 µm). CONCLUSION Cardiac motion has negligible impact on 129 Xe ADC measurements in mice, arguing its impact will be similarly minimal in humans, where relative cardiac motion is reduced. Hyperpolarized 129 Xe diffusion morphometry accurately and noninvasively maps the dimensions of lung microstructure, suggesting it can quantify the pulmonary microstructure in mouse models of lung disease.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
| | - Matthew S. Freeman
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Cory B. Davis
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Physics, West Texas A&M University, Canyon, TX
| | - Jerry Dahlke
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - James D. Quirk
- Department of Radiology, Washington University, St. Louis, MO
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Radiology, Washington University, St. Louis, MO
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
5
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Salnikov OG, Svyatova A, Kovtunova LM, Chukanov NV, Bukhtiyarov VI, Kovtunov KV, Chekmenev EY, Koptyug IV. Heterogeneous Parahydrogen-Induced Polarization of Diethyl Ether for Magnetic Resonance Imaging Applications. Chemistry 2021; 27:1316-1322. [PMID: 32881102 PMCID: PMC7855047 DOI: 10.1002/chem.202003638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/29/2020] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) with the use of hyperpolarized gases as contrast agents provides valuable information on lungs structure and function. While the technology of 129 Xe hyperpolarization for clinical MRI research is well developed, it requires the expensive equipment for production and detection of hyperpolarized 129 Xe. Herein we present the 1 H hyperpolarization of diethyl ether vapor that can be imaged on any clinical MRI scanner. 1 H nuclear spin polarization of up to 1.3 % was achieved using heterogeneous hydrogenation of ethyl vinyl ether with parahydrogen over Rh/TiO2 catalyst. Liquefaction of diethyl ether vapor proceeds with partial preservation of hyperpolarization and prolongs its lifetime by ≈10 times. The proof-of-principle 2D 1 H MRI of hyperpolarized diethyl ether was demonstrated with 0.1×1.1 mm2 spatial and 120 ms temporal resolution. The long history of use of diethyl ether for anesthesia is expected to facilitate the clinical translation of the presented approach.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| |
Collapse
|
7
|
Kern AL, Gutberlet M, Moher Alsady T, Welte T, Wacker F, Hohlfeld JM, Vogel‐Claussen J. Investigating short‐time diffusion of hyperpolarized
129
Xe in lung air spaces and tissue: A feasibility study in chronic obstructive pulmonary disease patients. Magn Reson Med 2020; 84:2133-2146. [DOI: 10.1002/mrm.28264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Agilo L. Kern
- Institute of Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Tawfik Moher Alsady
- Institute of Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
- Department of Respiratory Medicine Hannover Medical School Hannover Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Jens M. Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
- Department of Respiratory Medicine Hannover Medical School Hannover Germany
- Department of Clinical Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM) Hannover Germany
| | - Jens Vogel‐Claussen
- Institute of Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
8
|
Ouriadov A, Guo F, McCormack DG, Parraga G. Accelerated 129 Xe MRI morphometry of terminal airspace enlargement: Feasibility in volunteers and those with alpha-1 antitrypsin deficiency. Magn Reson Med 2019; 84:416-426. [PMID: 31765497 DOI: 10.1002/mrm.28091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Multi-b diffusion-weighted hyperpolarized inhaled-gas MRI provides imaging biomarkers of terminal airspace enlargement including ADC and mean linear intercept (Lm ), but clinical translation has been limited because image acquisition requires relatively long or multiple breath-holds that are not well-tolerated by patients. Therefore, we aimed to accelerate single breath-hold 3D multi-b diffusion-weighted 129 Xe MRI, using k-space undersampling in imaging direction using a different undersampling pattern for different b-values combined with the stretched exponential model to generate maps of ventilation, apparent transverse relaxation time constant ( T 2 ∗ ), ADC, and Lm values in a single, short breath-hold; accelerated and non-accelerated measurements were directly compared. METHODS We evaluated multi-b (0, 12, 20, 30, and 45.5 s/cm2 ) diffusion-weighted 129 Xe T 2 ∗ /ADC/morphometry estimates using acceleration factor (AF = 1 and 7) and multi-breath sampling in 3 volunteers (HV), and 6 participants with alpha-1 antitrypsin deficiency (AATD). RESULTS For the HV subgroup, mean differences of 5%, 2%, and 8% were observed between fully sampled and undersampled k-space for ADC, Lm , and T 2 ∗ values, respectively. For the AATD subgroup, mean differences were 9%, 6%, and 12% between fully sampled and undersampled k-space for ADC, Lm and T 2 ∗ values, respectively. Although mean differences of 1% and 4.5% were observed between accelerated and multi-breath sampled ADC and Lm values, respectively, mean ADC/Lm estimates were not significantly different from corresponding mean ADCM /Lm M or mean ADCA /Lm A estimates (all P > 0.60 , A = undersampled and M = multi-breath sampled). CONCLUSIONS Accelerated multi-b diffusion-weighted 129 Xe MRI is feasible at AF = 7 for generating pulmonary ADC and Lm in AATD and normal lung.
Collapse
Affiliation(s)
- Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Fumin Guo
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada
| | - Grace Parraga
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada.,Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Loza LA, Kadlecek SJ, Pourfathi M, Hamedani H, Duncan IF, Ruppert K, Rizi RR. Quantification of Ventilation and Gas Uptake in Free-Breathing Mice With Hyperpolarized 129Xe MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2081-2091. [PMID: 30990426 PMCID: PMC7268199 DOI: 10.1109/tmi.2019.2911293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hyperpolarized 129Xe magnetic resonance imaging is a powerful modality capable of assessing lung structure and function. While it has shown promise as a clinical tool for the longitudinal assessment of lung function, its utility as an investigative tool for animal models of pulmonary diseases is limited by the necessity of invasive intubation and mechanical ventilation procedures. In this paper, we overcame this limitation by developing a gas delivery system and implementing a set of imaging schemes to acquire high-resolution gas- and dissolved-phase images in free-breathing mice. Gradient echo pulse sequences were used to acquire both high- and low-resolution gas-phase images, and regional fractional ventilation was quantified by comparing signal buildup among low-resolution gas-phase images acquired at two flip-angles. Dissolved-phase images were acquired using both ultra-short echo time and chemical shift imaging sequences with discrete sets of flip-angle/repetition time combinations to visualize gas uptake and distribution throughout the body. Spectral features distinct to various anatomical regions were identified in images acquired using the latter sequence and were used for the quantification of gas arrival times for respective compartments.
Collapse
|
10
|
Westcott A, McCormack DG, Parraga G, Ouriadov A. Advanced pulmonary MRI to quantify alveolar and acinar duct abnormalities: Current status and future clinical applications. J Magn Reson Imaging 2019; 50:28-40. [PMID: 30637857 DOI: 10.1002/jmri.26623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022] Open
Abstract
There are serious clinical gaps in our understanding of chronic lung disease that require novel, sensitive, and noninvasive in vivo measurements of the lung parenchyma to measure disease pathogenesis and progressive changes over time as well as response to treatment. Until recently, our knowledge and appreciation of the tissue changes that accompany lung disease has depended on ex vivo biopsy and concomitant histological and stereological measurements. These measurements have revealed the underlying pathologies that drive lung disease and have provided important observations about airway occlusion, obliteration of the terminal bronchioles and airspace enlargement, or fibrosis and their roles in disease initiation and progression. ex vivo tissue stereology and histology are the established gold standards and, more recently, micro-computed tomography (CT) measurements of ex vivo tissue samples has also been employed to reveal new mechanistic findings about the progression of obstructive lung disease in patients. While these approaches have provided important understandings using ex vivo analysis of excised samples, recently developed hyperpolarized noble gas MRI methods provide an opportunity to noninvasively measure acinar duct and terminal airway dimensions and geometry in vivo, and, without radiation burden. Therefore, in this review we summarize emerging pulmonary MRI morphometry methods that provide noninvasive in vivo measurements of the lung in patients with bronchopulmonary dysplasia and chronic obstructive pulmonary disease, among others. We discuss new findings, future research directions, as well as clinical opportunities to address current gaps in patient care and for testing of new therapies. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019;50:28-40.
Collapse
Affiliation(s)
- Andrew Westcott
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, University of Western Ontario, London, Canada
| | - Grace Parraga
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Canada.,Division of Respirology, Department of Medicine, University of Western Ontario, London, Canada
| | - Alexei Ouriadov
- Department of Physics and Astronomy, University of Western Ontario, London, Canada
| |
Collapse
|
11
|
Westcott A, Guo F, Parraga G, Ouriadov A. Rapid single-breath hyperpolarized noble gas MRI-based biomarkers of airspace enlargement. J Magn Reson Imaging 2018; 49:1713-1722. [PMID: 30578587 DOI: 10.1002/jmri.26574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multi-b diffusion-weighted hyperpolarized-gas MRI measures pulmonary airspace-enlargement using apparent diffusion coefficients (ADCs) and mean-linear-intercepts (Lm ). PURPOSE To develop single-breath 3D multi-b diffusion-weighted 3 He and 129 Xe MRI using k-space undersampling. Rapid, cost-efficient, single-breath acquisitions may facilitate clinical translation. STUDY TYPE Prospective. SUBJECTS We evaluated 12 participants, including nine subjects (mean age = 69 ± 9) who were included in the retrospective experiment and three chronic pulmonary obstruction disease (COPD) patients (mean age = 81 ± 6) who participated in the prospective study. FIELD STRENGTH A whole-body 3 T 2D/3D fast gradient recall echo (FGRE) sequence. ASSESSMENT Hyperpolarized 3 He/129 Xe MRI, spirometry, plethysmography computed tomography (CT). We evaluated 129 Xe ADC/morphometry estimates by retrospectively undersampling previously acquired fully sampled multibreath, multi-b diffusion-weighted data. Next, we prospectively evaluated the feasibility of accelerated (AF = 7) 3 He MRI static-ventilation/T2 * (extra short-TE, b = 0 image) and ADC/morphometry (five b-values) maps using a single gas-dose and 16-second breath-hold. To conservatively evaluate cost-improvement, we compared total costs of single vs. multiple 129 Xe doses. STATISTICAL TESTS Multivariate analysis of variance, independent t-tests and voxel-by-voxel basis difference test. RESULTS For the retrospectively undersampled 129 Xe data, a nonsignificant mean difference for ADC/Lm of 14%/12%, 12%/8%, and 11%/9% was observed (all, P > 0.4) between the fully sampled and accelerated data for the never-smoker, COPD, and alpha-1 antitrypsin deficiency (AATD) groups, respectively. The control never-smoker group had significantly lower ADC (P < 0.001) and Lm (P < 0.001) than the COPD/AATD group for both fully sampled and accelerated data. For the prospectively acquired 3 He MRI data, static-ventilation, T2 *, ADC, and morphometry maps were acquired using a single 16-second breath-hold scan and single gas dose. Accelerated imaging resulted in cost savings of ~$US 1000/patient, a conservative estimate based on 129 Xe MRI dose savings (single vs. five doses). DATA CONCLUSION This is a proof-of-concept demonstration of accelerated (7×) morphometry that shows that less cost- and time-efficient multibreath methods that lead to variability and patient fatigue may be avoided in the future. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Andrew Westcott
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Fumin Guo
- Robarts Research Institute, University of Western Ontario, London, Canada.,Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Grace Parraga
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Alexei Ouriadov
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Chan HF, Stewart NJ, Norquay G, Collier GJ, Wild JM. 3D diffusion-weighted 129 Xe MRI for whole lung morphometry. Magn Reson Med 2017; 79:2986-2995. [PMID: 29034509 PMCID: PMC5888195 DOI: 10.1002/mrm.26960] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Purpose To obtain whole lung morphometry measurements from 129Xe in a single breath‐hold with 3D multiple b‐value 129Xe diffusion‐weighted MRI (DW‐MRI) with an empirically optimized diffusion time and compressed sensing for scan acceleration. Methods Prospective three‐fold undersampled 3D multiple b‐value hyperpolarized 129Xe DW‐MRI datasets were acquired, and the diffusion time (Δ) was iterated so as to provide diffusive length scale (LmD) estimates from the stretched exponential model (SEM) that are comparable to those from 3He. The empirically optimized 129Xe diffusion time was then implemented with a four‐fold undersampling scheme and was prospectively benchmarked against 3He measurements in a cohort of five healthy volunteers, six ex‐smokers, and two chronic obstructive pulmonary disease patients using both SEM‐derived LmD and cylinder model (CM)‐derived mean chord length (Lm). Results Good agreement between the mean 129Xe and 3He LmD (mean difference, 2.2%) and Lm (mean difference, 1.1%) values was obtained in all subjects at an empirically optimized 129Xe Δ = 8.5 ms. Conclusion Compressed sensing has facilitated single‐breath 3D multiple b‐value 129Xe DW‐MRI acquisitions, and results at 129Xe Δ = 8.5 ms indicate that 129Xe provides a viable alternative to 3He for whole lung morphometry mapping with either the SEM or CM. Magn Reson Med 79:2986–2995, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Ho-Fung Chan
- POLARIS, Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Zhong J, Zhang H, Ruan W, Xie J, Li H, Deng H, Han Y, Sun X, Ye C, Zhou X. Simultaneous assessment of both lung morphometry and gas exchange function within a single breath-hold by hyperpolarized 129 Xe MRI. NMR IN BIOMEDICINE 2017; 30:e3730. [PMID: 28508450 DOI: 10.1002/nbm.3730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
During the measurement of hyperpolarized 129 Xe magnetic resonance imaging (MRI), the diffusion-weighted imaging (DWI) technique provides valuable information for the assessment of lung morphometry at the alveolar level, whereas the chemical shift saturation recovery (CSSR) technique can evaluate the gas exchange function of the lungs. To date, the two techniques have only been performed during separate breaths. However, the request for multiple breaths increases the cost and scanning time, limiting clinical application. Moreover, acquisition during separate breath-holds will increase the measurement error, because of the inconsistent physiological status of the lungs. Here, we present a new method, referred to as diffusion-weighted chemical shift saturation recovery (DWCSSR), in order to perform both DWI and CSSR within a single breath-hold. Compared with sequential single-breath schemes (namely the 'CSSR + DWI' scheme and the 'DWI + CSSR' scheme), the DWCSSR scheme is able to significantly shorten the breath-hold time, as well as to obtain high signal-to-noise ratio (SNR) signals in both DWI and CSSR data. This scheme enables comprehensive information on lung morphometry and function to be obtained within a single breath-hold. In vivo experimental results demonstrate that DWCSSR has great potential for the evaluation and diagnosis of pulmonary diseases.
Collapse
Affiliation(s)
- Jianping Zhong
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Huiting Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Junshuai Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Chaohui Ye
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Yablonskiy DA, Sukstanskii AL, Quirk JD. Diffusion lung imaging with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3448. [PMID: 26676342 PMCID: PMC4911335 DOI: 10.1002/nbm.3448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 05/28/2023]
Abstract
Lung imaging using conventional 1 H MRI presents great challenges because of the low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2 * is about 1-2 ms). MRI with hyperpolarized gases (3 He and 129 Xe) provides a valuable alternative because of the very strong signal originating from inhaled gas residing in the lung airspaces and relatively slow gas T2 * relaxation (typical T2 * is about 20-30 ms). However, in vivo human experiments should be performed very rapidly - usually during a single breath-hold. In this review, we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of the results of modeling of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows the extraction of quantitative information on the lung microstructure at the alveolar level. From an MRI scan of less than 15 s, this approach, called in vivo lung morphometry, allows the provision of quantitative values and spatial distributions of the same physiological parameters as measured by means of 'standard' invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). In addition, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure: average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiment based on the in vivo lung morphometry technique combined with quantitative computed tomography measurements, as well as with gradient echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume and length of the acinar airways, and allow the evaluation of lung parenchymal and non-parenchymal tissue. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - James D Quirk
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
15
|
Chan HF, Stewart NJ, Parra-Robles J, Collier GJ, Wild JM. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing. Magn Reson Med 2016; 77:1916-1925. [PMID: 27283321 PMCID: PMC5412864 DOI: 10.1002/mrm.26279] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
Purpose To demonstrate three‐dimensional (3D) multiple b‐value diffusion‐weighted (DW) MRI of hyperpolarized 3He gas for whole lung morphometry with compressed sensing (CS). Methods A fully‐sampled, two b‐value, 3D hyperpolarized 3He DW‐MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the ky and kz phase‐encoding directions for CS simulations. Optimal k‐space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully‐sampled 3He apparent diffusion coefficient (ADC) maps. Prospective three‐fold, undersampled, 3D multiple b‐value 3He DW‐MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (LmD) were validated against two‐dimensional (2D) and 3D fully‐sampled 3He DW‐MRI experiments. Results Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully‐sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and LmD values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. Conclusions Accelerated CS acquisition has facilitated 3D multiple b‐value 3He DW‐MRI scans in a single breath‐hold, enabling whole lung morphometry mapping. Magn Reson Med 77:1916–1925, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Ho-Fung Chan
- POLARIS, Academic Unit of Radiology, University of Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Academic Unit of Radiology, University of Sheffield, United Kingdom
| | - Juan Parra-Robles
- POLARIS, Academic Unit of Radiology, University of Sheffield, United Kingdom
| | - Guilhem J Collier
- POLARIS, Academic Unit of Radiology, University of Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Academic Unit of Radiology, University of Sheffield, United Kingdom.,Insigneo, Institute for in silico medicine, Sheffield, United Kingdom
| |
Collapse
|
16
|
Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas 2016; 37:698-712. [PMID: 27203725 DOI: 10.1088/0967-3334/37/6/698] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The measurement of rapid regional lung volume changes by electrical impedance tomography (EIT) could determine regional lung function in patients with obstructive lung diseases during pulmonary function testing (PFT). EIT examinations carried out before and after bronchodilator reversibility testing could detect the presence of spatial and temporal ventilation heterogeneities and analyse their changes in response to inhaled bronchodilator on the regional level. We examined seven patients suffering from chronic asthma (49 ± 19 years, mean age ± SD) using EIT at a scan rate of 33 images s(-1) during tidal breathing and PFT with forced full expiration. The patients were studied before and 5, 10 and 20 min after bronchodilator inhalation. Seven age- and sex-matched human subjects with no lung disease history served as a control study group. The spatial heterogeneity of lung function measures was quantified by the global inhomogeneity indices calculated from the pixel values of tidal volume, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak flow and forced expiratory flow between 25% and 75% of FVC as well as histograms of pixel FEV1/FVC values. Temporal heterogeneity was assessed using the pixel values of expiration times needed to exhale 75% and 90% of pixel FVC. Regional lung function was more homogeneous in the healthy subjects than in the patients with asthma. Spatial and temporal ventilation distribution improved in the patients with asthma after the bronchodilator administration as evidenced mainly by the histograms of pixel FEV1/FVC values and pixel expiration times. The examination of regional lung function using EIT enables the assessment of spatial and temporal heterogeneity of ventilation distribution during bronchodilator reversibility testing. EIT may become a new tool in PFT, allowing the estimation of the natural disease progression and therapy effects on the regional and not only global level.
Collapse
Affiliation(s)
- I Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
18
|
Quirk JD, Sukstanskii AL, Woods JC, Lutey BA, Conradi MS, Gierada DS, Yusen RD, Castro M, Yablonskiy DA. Experimental evidence of age-related adaptive changes in human acinar airways. J Appl Physiol (1985) 2015; 120:159-65. [PMID: 26542518 DOI: 10.1152/japplphysiol.00541.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/01/2015] [Indexed: 11/22/2022] Open
Abstract
The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger.
Collapse
Affiliation(s)
- James D Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander L Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Physics, Washington University, St. Louis, Missouri
| | - Barbara A Lutey
- Department of Internal Medicine, Division of Medical Education, Washington University School of Medicine, St. Louis, Missouri; and
| | - Mark S Conradi
- Department of Physics, Washington University, St. Louis, Missouri
| | - David S Gierada
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Roger D Yusen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mario Castro
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dmitriy A Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
19
|
Paulin GA, Ouriadov A, Lessard E, Sheikh K, McCormack DG, Parraga G. Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers. Physiol Rep 2015; 3:3/10/e12583. [PMID: 26462748 PMCID: PMC4632953 DOI: 10.14814/phy2.12583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (MRI) provides a way to generate in vivo lung images with contrast sensitive to the molecular displacement of inhaled gas at subcellular length scales. Here, we aimed to evaluate hyperpolarized 3He MRI estimates of the alveolar dimensions in 38 healthy elderly never-smokers (73 ± 6 years, 15 males) and 21 elderly ex-smokers (70 ± 10 years, 14 males) with (n = 8, 77 ± 6 years) and without emphysema (n = 13, 65 ± 10 years). The ex-smoker and never-smoker subgroups were significantly different for FEV1/FVC (P = 0.0001) and DLCO (P = 0.009); while ex-smokers with emphysema reported significantly diminished FEV1/FVC (P = 0.02) and a trend toward lower DLCO (P = 0.05) than ex-smokers without emphysema. MRI apparent diffusion coefficients (ADC) and CT measurements of emphysema (relative area–CT density histogram, RA950) were significantly different (P = 0.001 and P = 0.007) for never-smoker and ex-smoker subgroups. In never-smokers, the MRI estimate of mean linear intercept (260 ± 27 μm) was significantly elevated as compared to the results previously reported in younger never-smokers (210 ± 30 μm), and trended smaller than in the age-matched ex-smokers (320 ± 72 μm, P = 0.06) evaluated here. Never-smokers also reported significantly smaller internal (220 ± 24 μm, P = 0.01) acinar radius but greater alveolar sheath thickness (120 ± 4 μm, P < 0.0001) than ex-smokers. Never-smokers were also significantly different than ex-smokers without emphysema for alveolar sheath thickness but not ADC, while ex-smokers with emphysema reported significantly different ADC but not alveolar sheath thickness compared to ex-smokers without CT evidence of emphysema. Differences in alveolar measurements in never- and ex-smokers demonstrate the sensitivity of MRI measurements to the different effects of smoking and aging on acinar morphometry.
Collapse
Affiliation(s)
- Gregory A Paulin
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Alexei Ouriadov
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada
| | - Eric Lessard
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Khadija Sheikh
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Doganay O, Wade T, Hegarty E, McKenzie C, Schulte RF, Santyr GE. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL. Magn Reson Med 2015; 76:566-76. [PMID: 26332385 DOI: 10.1002/mrm.25911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE To implement and optimize a single-shot spiral encoding strategy for rapid 2D IDEAL projection imaging of hyperpolarized (Hp) (129) Xe in the gas phase, and in the pulmonary tissue (PT) and red blood cells (RBCs) compartments of the rat lung, respectively. THEORY AND METHODS A theoretical and experimental point spread function analysis was used to optimize the spiral k-space read-out time in a phantom. Hp (129) Xe IDEAL images from five healthy rats were used to: (i) optimize flip angles by a Bloch equation analysis using measured kinetics of gas exchange and (ii) investigate the feasibility of the approach to characterize the exchange of Hp (129) Xe. RESULTS A read-out time equal to approximately 1.8 × T2* was found to provide the best trade-off between spatial resolution and signal-to-noise ratio (SNR). Spiral IDEAL approaches that use the entire dissolved phase magnetization should give an SNR improvement of a factor of approximately three compared with Cartesian approaches with similar spatial resolution. The IDEAL strategy allowed imaging of gas, PT, and RBC compartments with sufficient SNR and temporal resolution to permit regional gas exchange measurements in healthy rats. CONCLUSION Single-shot spiral IDEAL imaging of gas, PT and RBC compartments and gas exchange is feasible in rat lung using Hp (129) Xe. Magn Reson Med 76:566-576, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ozkan Doganay
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Trevor Wade
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Elaine Hegarty
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Charles McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada.,Department of Medical Imaging, Western University, London, ON, Canada
| | | | - Giles E Santyr
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada.,Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Ouriadov A, Fox M, Hegarty E, Parraga G, Wong E, Santyr GE. Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe Morphometry: Proof-of-concept demonstration in a rat model. Magn Reson Med 2015; 75:2421-31. [PMID: 26154889 DOI: 10.1002/mrm.25825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is still the major dose-limiting toxicity related to lung cancer radiation therapy, and it is difficult to predict and detect patients who are at early risk of severe pneumonitis and fibrosis. The goal of this proof-of-concept preclinical demonstration was to investigate the potential of hyperpolarized (129) Xe diffusion-weighted MRI to detect the lung morphological changes associated with early stage RILI. METHODS Hyperpolarized (129) Xe MRI was performed using eight different diffusion sensitizations (0.0-115 s/cm(2) ) in a small group of control rats (n = 4) and rats 2 wk after radiation exposure (n = 5). The diffusion-weighted images were used to obtain morphological estimates of the pulmonary parenchyma including external radius (R), internal radius (r), alveolar sleeve depth (h), and mean airspace chord length (Lm ). The histological mean linear intercept (MLI) were obtained for five control and five irradiated animals. RESULTS Mean R, r, and Lm were both significantly different (P < 0.02) in the irradiated rats (74 ± 17 µm, 43 ± 12 µm, and 54 ± 17 µm, respectively) compared with the control rats (100 ± 12 µm, 67 ± 10 µm, and 79 ± 12 µm, respectively). Changes in measured Lm values were consistent with changes in MLI values observed by histology. CONCLUSIONS Hyperpolarized (129) Xe MRI provides a way to detect and measure regional microanatomical changes in lung parenchyma in a preclinical model of RILI. Magn Reson Med 75:2421-2431, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexei Ouriadov
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Matthew Fox
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Elaine Hegarty
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Physics and Astronomy, Western University, London, Ontario, Canada
| | - Giles E Santyr
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|