1
|
Duque DH, Yang PF, Gore JC, Chen LM. AI-assisted 3D analysis of grasping and reaching behavior of squirrel monkeys during recovery from cervical spinal cord injury. Behav Brain Res 2025; 476:115265. [PMID: 39307286 DOI: 10.1016/j.bbr.2024.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
We have previously demonstrated that machine learning-based video analysis, conducted via DeepLabCut, is more sensitive for detecting subtle deficits in hand grasping behavior than traditional end-point performance assessments. This superiority was observed in a nonhuman primate (NHP) model of cervical spinal cord injury, specifically a dorsal column lesion (DCL). The current study aims to further characterize the kinematic aspects of the deficits in hand reaching, grasping, and retrieving behavior from a 3D perspective following a DCL. Squirrel monkeys were trained to retrieve sugar pellets from eight wells, which were located either on a flat plate or a raised tube with varying well depths. This setup was designed to require coordinated finger movements during the task. Immediately after the DCL, the animals exhibited measurable behavioral deficits. These were characterized by significant increases in grasping speed squared and trial completion time, markedly widened movement trajectories of individual fingers, and abnormalities in inter-finger distance and orientation. Increased task difficulty was associated with more pronounced behavioral deficits. By three months post-DCL, video-based measurements indicated no significant recovery, even though global end-point performance had returned to baseline levels. Our findings demonstrate that deprivation of tactile information results in impaired dexterous hand behavior involving coordinated finger movements, and the impairment is sustained for 20 weeks. This spinal cord injury (SCI) model, along with DeepLapCut analysis, provides a valuable platform for separately evaluating sensory and motor functions and their contributions to dexterous hand behavior and may be used for evaluating therapeutic interventions using more sensitive behavioral outcome readouts.
Collapse
Affiliation(s)
- Daniela Hernandez Duque
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute of Surgery and Engineering (VISE), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Poulen G, Perrin FE. Advances in spinal cord injury: insights from non-human primates. Neural Regen Res 2024; 19:2354-2364. [PMID: 38526271 PMCID: PMC11090432 DOI: 10.4103/nrr.nrr-d-23-01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024] Open
Abstract
Spinal cord injury results in significant sensorimotor deficits, currently, there is no curative treatment for the symptoms induced by spinal cord injury. Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models. These models should replicate the symptoms observed in human, allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury. Non-human primates, due to their close phylogenetic association with humans, share more neuroanatomical, genetic, and physiological similarities with humans than rodents. Therefore, the responses to spinal cord injury in nonhuman primates most likely resemble the responses to traumatism in humans. In this review, we will discuss nonhuman primate models of spinal cord injury, focusing on in vivo assessments, including behavioral tests, magnetic resonance imaging, and electrical activity recordings, as well as ex vivo histological analyses. Additionally, we will present therapeutic strategies developed in non-human primates and discuss the unique specificities of non-human primate models of spinal cord injury.
Collapse
Affiliation(s)
- Gaetan Poulen
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Florence E. Perrin
- University of Montpellier, INSERM, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Tang Q, Ma Y, Cheng Q, Wu Y, Chen J, Du J, Lu P, Chang EY. Longitudinal Imaging of Injured Spinal Cord Myelin and White Matter with 3D Ultrashort Echo Time Magnetization Transfer (UTE-MT) and Diffusion MRI. J Imaging 2024; 10:213. [PMID: 39330433 PMCID: PMC11433189 DOI: 10.3390/jimaging10090213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Quantitative MRI techniques could be helpful to noninvasively and longitudinally monitor dynamic changes in spinal cord white matter following injury, but imaging and postprocessing techniques in small animals remain lacking. Unilateral C5 hemisection lesions were created in a rat model, and ultrashort echo time magnetization transfer (UTE-MT) and diffusion-weighted sequences were used for imaging following injury. Magnetization transfer ratio (MTR) measurements and preferential diffusion along the longitudinal axis of the spinal cord were calculated as fractional anisotropy or an apparent diffusion coefficient ratio over transverse directions. The area of myelinated white matter was obtained by thresholding the spinal cord using mean MTR or diffusion ratio values from the contralesional side of the spinal cord. A decrease in white matter areas was observed on the ipsilesional side caudal to the lesions, which is consistent with known myelin and axonal changes following spinal cord injury. The myelinated white matter area obtained through the UTE-MT technique and the white matter area obtained through diffusion imaging techniques showed better performance to distinguish evolution after injury (AUCs > 0.94, p < 0.001) than the mean MTR (AUC = 0.74, p = 0.01) or ADC ratio (AUC = 0.68, p = 0.05) values themselves. Immunostaining for myelin basic protein (MBP) and neurofilament protein NF200 (NF200) showed atrophy and axonal degeneration, confirming the MRI results. These compositional and microstructural MRI techniques may be used to detect demyelination or remyelination in the spinal cord after spinal cord injury.
Collapse
Affiliation(s)
- Qingbo Tang
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Radiology, University of California, San Diego, CA 92093, USA;
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, USA;
| | - Qun Cheng
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Neuroscience, University of California, San Diego, CA 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Junyuan Chen
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Radiology, University of California, San Diego, CA 92093, USA;
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jiang Du
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Radiology, University of California, San Diego, CA 92093, USA;
| | - Pengzhe Lu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Neuroscience, University of California, San Diego, CA 92093, USA
| | - Eric Y. Chang
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Manzanera Esteve IV, Wang F, Reed JL, Qi HX, Thayer W, Gore JC, Chen LM. Model-based parcellation of diffusion MRI of injured spinal cord predicts hand use impairment and recovery in squirrel monkeys. Behav Brain Res 2024; 459:114808. [PMID: 38081518 PMCID: PMC10865381 DOI: 10.1016/j.bbr.2023.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
A mathematical model-based parcellation of magnetic resonance diffusion tensor images (DTI) has been developed to quantify progressive changes in three types of tissues - grey (GM), white matter (WM), and damaged spinal cord tissue, along with behavioral assessments over a 6 month period following targeted spinal cord injuries (SCI) in monkeys. Sigmoid Gompertz function based fittings of DTI metrics provide early indicators that correlate with, and predict, recovery of hand grasping behavior. Our three tissue pool model provided unbiased, data-driven segmentation of spinal cord images and identified DTI metrics that can serve as reliable biomarkers of severity of spinal cord injuries and predictors of behavioral outcomes.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Wesley Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Duque DH, Racca JM, Manzanera Esteve IV, Yang PF, Gore JC, Chen LM. Machine-learning-based video analysis of grasping behavior during recovery from cervical spinal cord injury. Behav Brain Res 2023; 443:114150. [PMID: 36216141 PMCID: PMC10733977 DOI: 10.1016/j.bbr.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Comprehensive characterizations of hand grasping behaviors after cervical spinal cord injuries are fundamental for developing rehabilitation strategies to promote recovery in spinal-cord-injured primates. We used the machine-learning-based video analysis software, DeepLabCut, to sensitively quantify kinematic aspects of grasping behavioral deficits in squirrel monkeys with C5-level spinal cord injuries. Three squirrel monkeys were trained to grasp sugar pellets from wells of varying depths before and after a left unilateral lesion of the cervical dorsal column. Using DeepLabCut, we identified post-lesion deficits in kinematic grasping behavior that included changes in digit orientation, increased variance in vertical and horizontal digit movement, and longer time to complete the task. While video-based analyses of grasping behavior demonstrated deficits in fine-scale digit function that persisted through at least 14 weeks post-injury, traditional end-point behavioral analyses showed a recovery of global hand function as evidenced by recovery of the proportion of successful retrievals by approximately 14 weeks post-injury. The combination of traditional end-point and video-based kinematic analyses provides a more comprehensive characterization of grasping behavior and highlights that global grasping performance may recover despite persistent fine-scale kinematic deficits in digit function. Machine-learning-based video analysis of kinematic digit function, in conjunction with traditional end-point behavioral analyses of grasping behavior, provide sensitive and specific indices for monitoring recovery of fine-grained hand sensorimotor behavior after spinal cord injury that can aid future studies that seek to develop targeted therapeutic interventions for improving behavioral outcomes.
Collapse
Affiliation(s)
- Daniela Hernandez Duque
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute of Surgery and Engineering (VISE), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan M Racca
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Isaac V Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Kisel AA, Naumova AV, Yarnykh VL. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front Neurosci 2022; 16:819912. [PMID: 35221905 PMCID: PMC8863973 DOI: 10.3389/fnins.2022.819912] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications.
Collapse
Affiliation(s)
- Alena A. Kisel
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
| | - Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
- *Correspondence: Vasily L. Yarnykh,
| |
Collapse
|
8
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
9
|
Schading S, Emmenegger TM, Freund P. Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers. Curr Neurol Neurosci Rep 2021; 21:49. [PMID: 34268621 PMCID: PMC8282571 DOI: 10.1007/s11910-021-01134-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Traumatic spinal cord injury (SCI) is a life-changing event with drastic implications for patients due to sensorimotor impairment and autonomous dysfunction. Current clinical evaluations focus on the assessment of injury level and severity using standardized neurological examinations. However, they fail to predict individual trajectories of recovery, which highlights the need for the development of advanced diagnostics. This narrative review identifies recent advances in the search of clinically relevant biomarkers in the field of SCI. RECENT FINDINGS Advanced neuroimaging and molecular biomarkers sensitive to the disease processes initiated by the SCI have been identified. These biomarkers range from advanced neuroimaging techniques, neurophysiological readouts, and molecular biomarkers identifying the concentrations of several proteins in blood and CSF samples. Some of these biomarkers improve current prediction models based on clinical readouts. Validation with larger patient cohorts is warranted. Several biomarkers have been identified-ranging from imaging to molecular markers-that could serve as advanced diagnostic and hence supplement current clinical assessments.
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim M Emmenegger
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| |
Collapse
|
10
|
Abstract
Traumatic spinal cord injury is a common neurologic insult worldwide that can result in severe disability. Early stabilization of the patient's airway, breathing, and circulation as well as cervical and thoracolumbar spinal immobilization is necessary to prevent additional injury and optimize outcomes. Computed tomography (CT) scan and magnetic resonance imaging (MRI) of the spinal column can assist with determining the extent of bony and ligamentous injury, which will guide surgical management. With or without surgical intervention, patients with spinal cord injury require intensive care unit management and close observation to monitor for potential complications.
Collapse
Affiliation(s)
- Ilyas Eli
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - David P Lerner
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Zoher Ghogawala
- Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA.
| |
Collapse
|
11
|
Wang F, Zu Z, Wu TL, Yan X, Lu M, Yang PF, Byun NE, Reed JL, Gore JC, Chen LM. Sensitivity and specificity of CEST and NOE MRI in injured spinal cord in monkeys. NEUROIMAGE-CLINICAL 2021; 30:102633. [PMID: 33780866 PMCID: PMC8039857 DOI: 10.1016/j.nicl.2021.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 11/04/2022]
Abstract
Compare sensitivity and specificity of CEST and NOE measures from 6-pool fitting. Differentiate regional molecular signatures at and around spinal cord injury. Provide parameters that improve the diagnostic accuracy of molecular alteration. Down-sampled data acquisition can capture the characteristic molecular profile. High translational potential for clinical assessment of spinal cord injury.
Purpose The sensitivity and accuracy of chemical exchange saturation transfer (CEST) and nuclear Overhauser enhancement (NOE) effects for assessing injury-associated changes in cervical spinal cords were evaluated in squirrel monkeys. Multiple interacting pools of protons, including one identified by an NOE at −1.6 ppm relative to water (NOE(-1.6)), were derived and quantified from fitting proton Z-spectra. The effects of down-sampled data acquisitions and corrections for non-specific factors including T1, semi-solid magnetization transfer, and direct saturation of free water (DS), were investigated. The overall goal is to develop a protocol for rapid data acquisition for assessing the molecular signatures of the injured spinal cord and its surrounding regions. Methods MRI scans were recorded of anesthetized squirrel monkeys at 9.4 T, before and after a unilateral dorsal column sectioning of the cervical spinal cord. Z-spectral images at 51 different RF offsets were acquired. The amplitudes of CEST and NOE effects from multiple proton pools were quantified using a six-pool Lorenzian fitting of each Z-spectrum (MTRmfit). In addition, down-sampled data using reduced selections of RF offsets were analyzed and compared. An apparent exchange-dependent relaxation (AREXmfit) method was also used to correct for non-specific factors in quantifying regional spectra around lesion sites. Results The parametric maps from multi-pool fitting using the complete sampling data (P51e) detected unilateral changes at and around the injury. The maps derived from selected twofold down-sampled data with appropriate interpolation (P26sI51) revealed quite similar spatial distributions of different pools as those obtained using P51e at each resonance shift. Across 10 subjects, both data acquisition schemes detected significant decreases in NOE(-3.5) and NOE(-1.6) and increases in DS(0.0) and CEST(3.5) at the lesion site relative to measures of the normal tissues before injury. AREXmfit of cysts and other abnormal tissues at and around the lesion site also exhibited significant changes, especially at 3.5, −1.6 and −3.5 ppm RF offsets. Conclusion These results confirm that a reduced set of RF offsets and down sampling are adequate for CEST imaging of injured spinal cord and allow shorter imaging times and/or permit additional signal averaging. AREXmfit correction improved the accuracy of CEST and NOE measures. The results provide a rapid (~13 mins), sensitive, and accurate protocol for deriving multiple NOE and CEST effects simultaneously in spinal cord imaging at high field.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Nellie E Byun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA; Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA.
| |
Collapse
|
12
|
Longitudinal changes in DTI parameters of specific spinal white matter tracts correlate with behavior following spinal cord injury in monkeys. Sci Rep 2020; 10:17316. [PMID: 33057016 PMCID: PMC7560889 DOI: 10.1038/s41598-020-74234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
This study aims to evaluate how parameters derived from diffusion tensor imaging reflect axonal disruption and demyelination in specific white matter tracts within the spinal cord of squirrel monkeys following traumatic injuries, and their relationships to function and behavior. After a unilateral section of the dorsal white matter tract of the cervical spinal cord, we found that both lesioned dorsal and intact lateral tracts on the lesion side exhibited prominent disruptions in fiber orientation, integrity and myelination. The degrees of pathological changes were significantly more severe in segments below the lesion than above. The lateral tract on the opposite (non-injured) side was minimally affected by the injury. Over time, RD, FA, and AD values of the dorsal and lateral tracts on the injured side closely tracked measurements of the behavioral recovery. This unilateral section of the dorsal spinal tract provides a realistic model in which axonal disruption and demyelination occur together in the cord. Our data show that specific tract and segmental FA and RD values are sensitive to the effects of injury and reflect specific behavioral changes, indicating their potential as relevant indicators of recovery or for assessing treatment outcomes. These observations have translational value for guiding future studies of human subjects with spinal cord injuries.
Collapse
|
13
|
Jiang K, Fang Y, Ferguson CM, Tang H, Mishra PK, Macura SI, Lerman LO. Quantitative Magnetization Transfer Detects Renal Fibrosis in Murine Kidneys With Renal Artery Stenosis. J Magn Reson Imaging 2020; 53:10.1002/jmri.27370. [PMID: 32964585 PMCID: PMC7965778 DOI: 10.1002/jmri.27370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway in tubulointerstitial injury and a major determinant of renal insufficiency. Collagen deposition, a key feature of renal fibrosis, may serve as an imaging biomarker to differentiate scarred from healthy kidneys. PURPOSE To test the feasibility of using quantitative magnetization transfer (qMT), which assesses tissue macromolecule content, to measure renal fibrosis. STUDY TYPE Prospective. ANIMAL MODEL Fifteen 129S1 mice were studied 4 weeks after either sham (n = 7) or unilateral renal artery stenosis (RAS, n = 8) surgeries. FIELD STRENGTH/SEQUENCE Magnetization transfer (MT)-weighted images were acquired at 16.4T using an MT-prepared fast-low-angle-shot sequence. Renal B0, B1, and T1 maps were also acquired, using a dual-echo gradient echo, an actual flip angle, and inversion recovery method, respectively. ASSESSMENT A two-pool model was used to estimate the bound water fraction (f) and other tissue imaging biomarkers. Masson's trichrome staining was subsequently performed ex vivo to evaluate renal fibrosis. STATISTICAL TESTS Comparisons of renal parameters between sham and RAS were performed using independent samples t-tests. Pearson's correlation was conducted to investigate the relationship between renal fibrosis by histology and the qMT-derived bound pool fraction f. RESULTS The two-pool model provided accurate fittings of measured MT signal. The qMT-derived f of RAS kidneys was significantly increased compared to sham in all kidney zones (renal cortex [CO], 7.6 ± 2.4% vs. 4.6 ± 0.6%; outer medulla [OM], 8.2 ± 4.2% vs. 4.2 ± 0.9%; inner medulla [IM] + P, 5.8 ± 1.6% vs. 2.9 ± 0.6%, all P < 0.05). Measured f correlated well with histological fibrosis in all kidney zones (CO, Pearson's correlation coefficient r = 0.95; OM, r = 0.93; IM + P, r = 0.94, all P < 0.05). DATA CONCLUSION The bound pool fraction f can be quantified using qMT at 16.4T in murine kidneys, increases significantly in fibrotic RAS kidneys, and correlates well with fibrosis by histology. Therefore, qMT may constitute a valuable tool for measuring renal fibrosis in RAS. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Yiyuan Fang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Prasanna K. Mishra
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Slobodan I. Macura
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Wu TL, Byun NE, Wang F, Mishra A, Janve VA, Chen LM, Gore JC. Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging. NMR IN BIOMEDICINE 2020; 33:e4216. [PMID: 31943383 PMCID: PMC7155919 DOI: 10.1002/nbm.4216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 05/09/2023]
Abstract
Spinal cord injuries (SCIs) are a leading cause of disability and can severely impact the quality of life. However, to date, the processes of spontaneous repair of damaged spinal cord remain incompletely understood, partly due to a lack of appropriate longitudinal tracking methods. Noninvasive, multiparametric magnetic resonance imaging (MRI) provides potential biomarkers for the comprehensive evaluation of spontaneous repair after SCI. In this study in rats, a clinically relevant contusion injury was introduced at the lumbar level that impairs both hindlimb motor and sensory functions. Quantitative MRI measurements were acquired at baseline and serially post-SCI for up to 2 wk. The progressions of injury and spontaneous recovery in both white and gray matter were tracked longitudinally using pool-size ratio (PSR) measurements derived from quantitative magnetization transfer (qMT) methods, measurements of water diffusion parameters using diffusion tensor imaging (DTI) and intrasegment functional connectivity derived from resting state functional MRI. Changes in these quantitative imaging measurements were correlated with behavioral readouts. We found (a) a progressive decrease in PSR values within 2 wk post-SCI, indicating a progressive demyelination at the center of the injury that was validated with histological staining, (b) PSR correlated closely with fractional anisotropy and transverse relaxation of free water, but did not show significant correlations with behavioral recovery, and (c) preliminary evidence that SCI induced a decrease in functional connectivity between dorsal horns below the injury site at 24 h. Findings from this study not only confirm the value of qMT and DTI methods for assessing the myelination state of injured spinal cord but indicate that they may also have further implications on whether therapies targeted towards remyelination may be appropriate. Additionally, a better understanding of changes after SCI provides valuable information to guide and assess interventions.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States
| | - Nellie E. Byun
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Vaibhav A. Janve
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
- Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, United States
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
15
|
Wang F, Colvin DC, Wang S, Li H, Zu Z, Harris RC, Zhang MZ, Gore JC. Spin-lock relaxation rate dispersion reveals spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney. Magn Reson Med 2020; 84:2074-2087. [PMID: 32141646 DOI: 10.1002/mrm.28230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop and evaluate a reliable non-invasive means for assessing the severity and progression of fibrosis in kidneys. We used spin-lock MR imaging with different locking fields to detect and characterize progressive renal fibrosis in an hHB-EGFTg/Tg mouse model. METHODS Male hHB-EGFTg/Tg mice, a well-established model of progressive fibrosis, and age-matched normal wild type (WT) mice, were imaged at 7T at ages 5-7, 11-13, and 30-40 weeks. Spin-lock relaxation rates R1 ρ were measured at different locking fields (frequencies) and the resultant dispersion curves were fit to a model of exchanging water pools. The obtained MRI parameters were evaluated as potential indicators of tubulointerstitial fibrosis in kidney. Histological examinations of renal fibrosis were also carried out post-mortem after MRI. RESULTS Histology detected extensive fibrosis in the hHB-EGFTg/Tg mice, in which collagen deposition and reductions in capillary density were observed in the fibrotic regions of kidneys. R2 and R1 ρ values at different spin-lock powers clearly dropped in the fibrotic region as fibrosis progressed. There was less variation in the asymptotic locking field relaxation rate R 1 ρ ∞ between the groups. The exchange parameter Sρ and the inflection frequency ωinfl changed by larger factors. CONCLUSION Both Sρ and ωinfl depend primarily on the average exchange rate between water and other chemically shifted resonances such as hydroxyls and amides. Spin-lock relaxation rate dispersion, rather than single measurements of relaxation rates, provides more comprehensive and specific information on spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel C Colvin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Optimization of a transmit/receive surface coil for squirrel monkey spinal cord imaging. Magn Reson Imaging 2020; 68:197-202. [PMID: 32087231 DOI: 10.1016/j.mri.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
MR Imaging the spinal cord of non-human primates (NHP), such as squirrel monkey, is important since the injuries in NHP resemble those that afflict human spinal cords. Our previous studies have reported a multi-parametric MRI protocol, including functional MRI, diffusion tensor imaging, quantitative magnetization transfer and chemical exchange saturation transfer, which allows non-invasive detection and monitoring of injury-associated structural, functional and molecular changes over time. High signal-to-noise ratio (SNR) is critical for obtaining high-resolution images and robust estimates of MRI parameters. In this work, we describe our construction and use of a single channel coil designed to maximize the SNR for imaging the squirrel monkey cervical spinal cord in a 21 cm bore magnet at 9.4 T. We first numerically optimized the coil dimension of a single loop coil and then evaluated the benefits of a quadrature design. We then built an optimized coil based on the simulation results and compared its SNR performance with a non-optimized single coil in both phantoms and in vivo.
Collapse
|
17
|
Freund P, Seif M, Weiskopf N, Friston K, Fehlings MG, Thompson AJ, Curt A. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol 2019; 18:1123-1135. [DOI: 10.1016/s1474-4422(19)30138-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023]
|
18
|
Wang F, Wang S, Zhang Y, Li K, Harris RC, Gore JC, Zhang MZ. Noninvasive quantitative magnetization transfer MRI reveals tubulointerstitial fibrosis in murine kidney. NMR IN BIOMEDICINE 2019; 32:e4128. [PMID: 31355979 PMCID: PMC6817372 DOI: 10.1002/nbm.4128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 05/09/2023]
Abstract
Excessive tissue scarring, or fibrosis, is a critical contributor to end stage renal disease, but current clinical tests are not sufficient for assessing renal fibrosis. Quantitative magnetization transfer (qMT) MRI provides indirect information about the macromolecular composition of tissues. We evaluated measurements of the pool size ratio (PSR, the ratio of immobilized macromolecular to free water protons) obtained by qMT as a biomarker of tubulointerstitial fibrosis in a well-established murine model with progressive renal disease. MR images were acquired from 16-week-old fibrotic hHB-EGFTg/Tg mice and normal wild-type (WT) mice (N = 12) at 7 T. QMT parameters were derived using a two-pool five-parameter fitting model. A normal range of PSR values in the cortex and outer stripe of outer medulla (CR + OSOM) was determined by averaging across voxels within WT kidneys (mean ± 2SD). Regions in diseased mice whose PSR values exceeded the normal range above a threshold value (tPSR) were identified and measured. The spatial distribution of fibrosis was confirmed using picrosirius red stains. Compared with normal WT mice, scattered clusters of high PSR regions were observed in the OSOM of hHB-EGFTg/Tg mouse kidneys. Moderate increases in mean PSR (mPSR) of CR + OSOM regions were observed across fibrotic kidneys. The abnormally high PSR regions (% area) detected by the tPSR were significantly increased in hHB-EGFTg/Tg mice, and were highly correlated with regions of fibrosis detected by histological fibrosis indices measured from picrosirius red staining. Renal tubulointerstitial fibrosis in OSOM can thus be assessed by qMT MRI using an appropriate analysis of PSR. This technique may be used as an imaging biomarker for chronic kidney diseases.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, TN, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Vanderbilt University, TN, USA
| | - Yahua Zhang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Vanderbilt University, TN, USA
| | - Ke Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, TN, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Vanderbilt University, TN, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Vanderbilt University, TN, USA
| |
Collapse
|
19
|
Spatiotemporal trajectories of quantitative magnetization transfer measurements in injured spinal cord using simplified acquisitions. NEUROIMAGE-CLINICAL 2019; 23:101921. [PMID: 31491830 PMCID: PMC6639592 DOI: 10.1016/j.nicl.2019.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Purpose This study aims to systematically evaluate the accuracy and precision of pool size ratio (PSR) measurements from quantitative magnetization transfer (qMT) acquisitions using simplified models in the context of assessing injury-associated spatiotemporal changes in spinal cords of non-human primates. This study also aims to characterize changes in the spinal tissue pathology in individual subjects, both regionally and longitudinally, in order to demonstrate the relationship between regional tissue compositional changes and sensorimotor behavioral recovery after cervical spinal cord injury (SCI). Methods MRI scans were recorded on anesthetized monkeys at 9.4 T, before and serially after a unilateral section of the dorsal column tract. Images were acquired following saturating RF pulses at different offset frequencies. Models incorporating two pools of protons but with differing numbers of variable parameters were used to fit the data to derive qMT parameters. The results using different amounts of measured data and assuming different numbers of variable model parameters were compared. Behavioral impairments and recovery were assessed by a food grasping-retrieving task. Histological sections were obtained post mortem for validation of the injury. Results QMT fitting provided maps of pool size ratio (PSR), the relative amounts of immobilized protons exchanging magnetization compared to the “free” water. All the selected modeling approaches detected a lesion/cyst at the site of injury as significant reductions in PSR values. The regional contrasts in the PSR maps obtained using the different fittings varied, but the 2-parameter fitting results showed strong positive correlations with results from 5-parameter modeling. 2-parameter fitting results with modest (>3) RF offsets showed comparable sensitivity for detecting demyelination in white matter and loss of macromolecules in gray matter around lesion sites compared to 5-parameter fitting with fully-sampled data acquisitions. Histology confirmed that decreases of PSR corresponded to regional demyelination around lesion sites, especially when demyelination occurred along the dorsal column on the injury side. Longitudinally, PSR values of injured dorsal column tract and gray matter horns exhibited remarkable recovery that associated with behavioral improvement. Conclusion Simplified qMT modeling approaches provide efficient and sensitive means to detect and characterize injury-associated demyelination in white matter tracts and loss of macromolecules in gray matter and to monitor its recovery over time. Simplified 2-parameter and fully sampled 5-parameter qMT modeling achieved comparable accuracy and precision of PSR values. Successfully tracked and differentiated myelination states of specific WM tracts and macromolecular changes in GM horns. Recovery of WM and GM pathology assessed by qMT correlated with improvements in hand uses after injury. High translational potential for clinical studies of human patients with spinal cord injury.
Collapse
|
20
|
Battiston M, Schneider T, Grussu F, Yiannakas MC, Prados F, De Angelis F, Gandini Wheeler-Kingshott CAM, Samson RS. Fast bound pool fraction mapping via steady-state magnetization transfer saturation using single-shot EPI. Magn Reson Med 2019; 82:1025-1040. [PMID: 31081239 DOI: 10.1002/mrm.27792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE To enable clinical applications of quantitative magnetization transfer (qMT) imaging by developing a fast method to map one of its fundamental model parameters, the bound pool fraction (BPF), in the human brain. THEORY AND METHODS The theory of steady-state MT in the fast-exchange approximation is used to provide measurements of BPF, and bound pool transverse relaxation time ( T 2 B ). A sequence that allows sampling of the signal during steady-state MT saturation is used to perform BPF mapping with a 10-min-long fully echo planar imaging-based MRI protocol, including inversion recovery T1 mapping and B1 error mapping. The approach is applied in 6 healthy subjects and 1 multiple sclerosis patient, and validated against a single-slice full qMT reference acquisition. RESULTS BPF measurements are in agreement with literature values using off-resonance MT, with average BPF of 0.114(0.100-0.128) in white matter and 0.068(0.054-0.085) in gray matter. Median voxel-wise percentage error compared with standard single slice qMT is 4.6%. Slope and intercept of linear regression between new and reference BPF are 0.83(0.81-0.85) and 0.013(0.11-0.16). Bland-Altman plot mean bias is 0.005. In the multiple sclerosis case, the BPF is sensitive to pathological changes in lesions. CONCLUSION The method developed provides accurate BPF estimates and enables shorter scan time compared with currently available approaches, demonstrating the potential of bringing myelin sensitive measurement closer to the clinic.
Collapse
Affiliation(s)
- Marco Battiston
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | | | - Francesco Grussu
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Marios C Yiannakas
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ferran Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Universitat Oberta de Catalunya, Barcelona, Spain
| | - Floriana De Angelis
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Rebecca S Samson
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
21
|
Wang F, Katagiri D, Li K, Takahashi K, Wang S, Nagasaka S, Li H, Quarles CC, Zhang MZ, Shimizu A, Gore JC, Harris RC, Takahashi T. Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI. Magn Reson Med 2018; 80:2655-2669. [PMID: 29845659 PMCID: PMC6269231 DOI: 10.1002/mrm.27231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Renal fibrosis is a hallmark of progressive renal disease; however, current clinical tests are insufficient for assessing renal fibrosis. Here we evaluated the utility of quantitative magnetization transfer MRI in detecting renal fibrosis in a murine model of progressive diabetic nephropathy (DN). METHODS The db/db eNOS-/- mice, a well-recognized model of progressive DN, and normal wild-type mice were imaged at 7T. The quantitative magnetization transfer data were collected in coronal plane using a 2D magnetization transfer prepared spoiled gradient echo sequence with a Gaussian-shaped presaturation pulse. Parameters were derived using a two-pool fitting model. A normal range of cortical pool size ratio (PSR) was defined as Mean±2SD of wild-type kidneys (N = 20). The cortical regions whose PSR values exceeded this threshold (threshold PSR) were assessed. The correlations between the PSR-based and histological (collagen IV or picrosirius red stain) fibrosis measurements were evaluated. RESULTS Compared with wild-type mice, moderate increases in mean PSR values and scattered clusters of high PSR region were observed in cortex of DN mouse kidneys. Abnormally high PSR regions (% area) that were detected by the threshold PSR were significantly increased in renal cortexes of DN mice. These regions progressively increased on aging and highly correlated with histological fibrosis measures, while the mean PSR values correlated much less. CONCLUSION Renal fibrosis in DN can be assessed by the quantitative magnetization transfer MRI and threshold analysis. This technique may be used as a novel imaging biomarker for DN and other renal diseases.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, TN, USA
| | - Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
| | - Ke Li
- Vanderbilt University Institute of Imaging Science, TN, USA
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
| | - Shinya Nagasaka
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, TN, USA
| | - C. Chad Quarles
- Vanderbilt University Institute of Imaging Science, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, TN, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, TN, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, TN, USA
| |
Collapse
|
22
|
Wang F, Takahashi K, Li H, Zu Z, Li K, Xu J, Harris RC, Takahashi T, Gore JC. Assessment of unilateral ureter obstruction with multi-parametric MRI. Magn Reson Med 2017; 79:2216-2227. [PMID: 28736875 DOI: 10.1002/mrm.26849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Quantitative multi-parametric MRI (mpMRI) methods may allow the assessment of renal injury and function in a sensitive and objective manner. This study aimed to evaluate an array of MRI methods that exploit endogenous contrasts including relaxation rates, pool size ratio (PSR) derived from quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), nuclear Overhauser enhancement (NOE), and apparent diffusion coefficient (ADC) for their sensitivity and specificity in detecting abnormal features associated with kidney disease in a murine model of unilateral ureter obstruction (UUO). METHODS MRI scans were performed in anesthetized C57BL/6N mice 1, 3, or 6 days after UUO at 7T. Paraffin tissue sections were stained with Masson trichrome following MRI. RESULTS Compared to contralateral kidneys, the cortices of UUO kidneys showed decreases of relaxation rates R1 and R2 , PSR, NOE, and ADC. No significant changes in CEST effects were observed for the cortical region of UUO kidneys. The MRI parametric changes in renal cortex are related to tubular cell death, tubular atrophy, tubular dilation, urine retention, and interstitial fibrosis in the cortex of UUO kidneys. CONCLUSION Measurements of multiple MRI parameters provide comprehensive information about the molecular and cellular changes produced by UUO. Magn Reson Med 79:2216-2227, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ke Li
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Wang F, Zu Z, Wu R, Wu TL, Gore JC, Chen LM. MRI evaluation of regional and longitudinal changes in Z-spectra of injured spinal cord of monkeys. Magn Reson Med 2017; 79:1070-1082. [PMID: 28547862 DOI: 10.1002/mrm.26756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE In principle, MR methods that exploit magnetization transfer (MT) may be used to quantify changes in the molecular composition of tissues after injury. The ability to track such changes in injured spinal cord may allow more precise assessment of the state of neural tissues. METHODS Z-Spectra were obtained from the cervical spinal cord before and after a unilateral dorsal column lesion in monkeys at 9.4T. The amplitudes of chemical exchange saturation transfer (CEST) and nuclear Overhauser enhancement (NOE) effects from multiple proton pools, along with nonspecific semisolid MT effects from immobile macromolecules, were quantified using a five-peak Lorenzian fitting of each Z-spectrum. RESULTS Abnormal tissues/cysts that formed around lesion sites exhibited relatively low correlations between their Z-spectra and that of normal gray matter (GM). Compared with normal GM, cysts showed strong CEST but weak semisolid MT and NOE effects after injury. The abnormal tissues around lesion sites were heterogeneous and showed different regional Z-spectra. Different regional correlations between proton pools were observed. Longitudinally, injured spinal cord tissue exhibited remarkable recovery in all subjects. CONCLUSION Characterization of multiple proton pools from Z-spectra permitted noninvasive, regional, quantitative assessments of changes in tissue composition of injured spinal cord over time. Magn Reson Med 79:1070-1082, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ruiqi Wu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Tung-Lin Wu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Li Min Chen
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord. J Neurosci 2015. [PMID: 26203144 DOI: 10.1523/jneurosci.0583-15.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus-response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. Significance statement: This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management.
Collapse
|