1
|
Wu W. Dynamic field mapping and distortion correction using single-shot blip-rewound EPI and joint multi-echo reconstruction. Magn Reson Med 2024; 92:82-97. [PMID: 38308081 DOI: 10.1002/mrm.30038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE To develop a method for dynamic∆ B 0 $$ \Delta {B}_0 $$ mapping and distortion correction. METHODS A blip-rewound EPI trajectory was developed to acquire multiple 2D EPI images in a single readout with an interleaved order, which allows a short TE difference. A joint multi-echo reconstruction was utilized to exploit the shared information between EPI images. The reconstructed images from each readout are combined to produce a final magnitude image. A∆ B 0 $$ \Delta {B}_0 $$ map is calculated from the phase of these images for distortion correction. The efficacy of the proposed method is assessed with phantom and in vivo experiments. The performance of the proposed method in the presence of subject motion is also investigated. RESULTS Compared to conventional multi-echo EPI, the proposed method allows dynamic∆ B 0 $$ \Delta {B}_0 $$ mapping at matched resolution with a much shorter TR. Phantom and in vivo results show that the proposed method can provide a comparable magnitude image as conventional single-shot EPI. The∆ B 0 $$ \Delta {B}_0 $$ maps calculated from the proposed method are consistent with conventional multi-echo EPI in the phantom experiment. For in vivo experiments, the proposed method provides a more accurate estimation of∆ B 0 $$ \Delta {B}_0 $$ than conventional multi-echo EPI, which is prone to phase wrapping problems due to the long TE difference. In-vivo scan with subject motion shows the proposed dynamic field mapping method can improve the temporal stability of EPI time series compared to gradient echo (GRE) based static field mapping. CONCLUSION The proposed method allows accurate dynamic∆ B 0 $$ \Delta {B}_0 $$ mapping for robust distortion correction without compromising spatial or temporal resolution.
Collapse
Affiliation(s)
- Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Motyka S, Weiser P, Bachrata B, Hingerl L, Strasser B, Hangel G, Niess E, Niess F, Zaitsev M, Robinson SD, Langs G, Trattnig S, Bogner W. Predicting dynamic, motion-related changes in B 0 field in the brain at a 7T MRI using a subject-specific fine-trained U-net. Magn Reson Med 2024; 91:2044-2056. [PMID: 38193276 DOI: 10.1002/mrm.29980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.
Collapse
Affiliation(s)
- Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Paul Weiser
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Beata Bachrata
- Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Maxim Zaitsev
- Department of Radiology - Medical Physics, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg - Medical Centre, Freiburg, Germany
| | - Simon Daniel Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
3
|
Wallace TE, Kober T, Stockmann JP, Polimeni JR, Warfield SK, Afacan O. Real-time shimming with FID navigators. Magn Reson Med 2022; 88:2548-2563. [PMID: 36093989 PMCID: PMC9529812 DOI: 10.1002/mrm.29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improvingT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improvesT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jason P Stockmann
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jonathan R Polimeni
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Andronesi OC, Bhattacharyya PK, Bogner W, Choi IY, Hess AT, Lee P, Meintjes E, Tisdall MD, Zaitzev M, van der Kouwe A. Motion correction methods for MRS: experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4364. [PMID: 33089547 PMCID: PMC7855523 DOI: 10.1002/nbm.4364] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.
Collapse
Affiliation(s)
- Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding Author: Ovidiu C. Andronesi, MD, PhD, Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Thirteenth Street, Charlestown, MA 02129, USA;
| | | | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - In-Young Choi
- Department of Neurology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Aaron T. Hess
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ernesta Meintjes
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania
| | - Maxim Zaitzev
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- High Field Magnetic Resonance Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - André van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
van Houtum Q(, Mohamed Hoesein F(, Verhoeff J(, van Rossum P(, van Lindert A(, van der Velden T(, van der Kemp W(, Klomp D(, Arteaga de Castro C(. Feasibility of 31 P spectroscopic imaging at 7 T in lung carcinoma patients. NMR IN BIOMEDICINE 2021; 34:e4204. [PMID: 31736167 PMCID: PMC8244006 DOI: 10.1002/nbm.4204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 05/13/2023]
Abstract
Currently, it is difficult to predict effective therapy response to molecular therapies for the treatment of lung cancer based solely on anatomical images. 31 P MR spectroscopic imaging could provide as a non-invasive method to monitor potential biomarkers for early therapy evaluation, a necessity to improve personalized care and reduce cost. However, surface coils limit the imaging volume in conventional 31 P MRSI. High-energetic adiabatic RF pulses are required to achieve flip angle homogeneity but lead to high SAR. Birdcage coils permit use of conventional amplitude modulated pulses, even over large FOV, potentially decreasing overall SAR massively. Here, we investigate the feasibility of 3D 31 P MRSI at 7 T in lung carcinoma patients using an integrated 31 P birdcage body coil in combination with either a dual-coil or a 16-channel receiver. Simulations showed a maximum decrease in SNR per unit of time of 8% for flip angle deviations in short TR low flip-angle excitation 3D CSI. The minimal SNR loss allowed for fast 3D CSI without time-consuming calibration steps (>10:00 min.). 31 P spectra from four lung carcinoma patients were acquired within 29:00 minutes and with high SNR using both receivers. The latter allowed discrimination of individual phosphodiesters, inorganic phosphate, phosphocreatine and ATP. The receiver array allowed for an increased FOV compared to the dual-coil receiver. 3D 31 P-CSI were acquired successfully in four lung carcinoma patients using the integrated 31 P body coil at ultra-high field. The increased spectral resolution at 7 T allowed differentiation of multiple 31 P metabolites related to phospholipid and energy metabolism. Simulations provide motivation to exclude 31 P B1 calibrations, potentially decreasing total scan duration. Employing large receiver arrays improves the field of view allowing for full organ coverage. 31 P MRSI is feasible in lung carcinoma patients and has potential as a non-invasive method for monitoring personalized therapy response in lung tumors.
Collapse
|
6
|
Simultaneous feedback control for joint field and motion correction in brain MRI. Neuroimage 2020; 226:117286. [PMID: 32992003 DOI: 10.1016/j.neuroimage.2020.117286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 11/23/2022] Open
Abstract
T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.
Collapse
|
7
|
Wallace TE, Polimeni JR, Stockmann JP, Hoge WS, Kober T, Warfield SK, Afacan O. Dynamic distortion correction for functional MRI using FID navigators. Magn Reson Med 2020; 85:1294-1307. [PMID: 32970869 DOI: 10.1002/mrm.28505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a method for slice-wise dynamic distortion correction for EPI using rapid spatiotemporal B0 field measurements from FID navigators (FIDnavs) and to evaluate the efficacy of this new approach relative to an established data-driven technique. METHODS A low-resolution reference image was used to create a forward model of FIDnav signal changes to enable estimation of spatiotemporal B0 inhomogeneity variations up to second order from measured FIDnavs. Five volunteers were scanned at 3 T using a 64-channel coil with FID-navigated EPI. The accuracy of voxel shift measurements and geometric distortion correction was assessed for experimentally induced magnetic field perturbations. The temporal SNR was evaluated in EPI time-series acquired at rest and with a continuous nose-touching action, before and after image realignment. RESULTS Field inhomogeneity coefficients and voxel shift maps measured using FIDnavs were in excellent agreement with multi-echo EPI measurements. The FID-navigated distortion correction accurately corrected image geometry in the presence of induced magnetic field perturbations, outperforming the data-driven approach in regions with large field offsets. In functional MRI scans with nose touching, FIDnav-based correction yielded temporal SNR gains of 30% in gray matter. Following image realignment, which accounted for global image shifts, temporal SNR gains of 3% were achieved. CONCLUSIONS Our proposed application of FIDnavs enables slice-wise dynamic distortion correction with high temporal efficiency. We achieved improved signal stability by leveraging the encoding information from multichannel coils. This approach can be easily adapted to other EPI-based sequences to improve temporal SNR for a variety of clinical and research applications.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason P Stockmann
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - W Scott Hoge
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ferrer CJ, Bartels LW, van der Velden TA, Grüll H, Heijman E, Moonen CTW, Bos C. Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts. Magn Reson Med 2020; 83:962-973. [PMID: 31544289 PMCID: PMC6899537 DOI: 10.1002/mrm.27985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.
Collapse
Affiliation(s)
- Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| | | | | | - Holger Grüll
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
- Oncology SolutionsPhilips ResearchAachenGermany
| | | | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
9
|
Inductive measurement and encoding of k-space trajectories in MR raw data. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:655-667. [DOI: 10.1007/s10334-019-00770-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
|
10
|
Göksu C, Scheffler K, Siebner HR, Thielscher A, Hanson LG. The stray magnetic fields in Magnetic Resonance Current Density Imaging (MRCDI). Phys Med 2019; 59:142-150. [DOI: 10.1016/j.ejmp.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 02/01/2023] Open
|
11
|
Chang P, Nassirpour S, Eschelbach M, Scheffler K, Henning A. Constrained optimization for position calibration of an NMR field camera. Magn Reson Med 2017; 80:380-390. [PMID: 29159823 DOI: 10.1002/mrm.27010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. METHODS The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. RESULTS The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. CONCLUSION Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Paul Chang
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tuebingen, Germany
| | - Sahar Nassirpour
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tuebingen, Germany
| | - Martin Eschelbach
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Physics, Eberhard-Karls University of Tuebingen, Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tuebingen, Germany
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Physics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Jorge J, Gretsch F, Gallichan D, Marques JP. Tracking discrete off-resonance markers with three spokes (trackDOTS) for compensation of head motion and B0
perturbations: Accuracy and performance in anatomical imaging. Magn Reson Med 2017; 79:160-171. [DOI: 10.1002/mrm.26654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 01/29/2023]
Affiliation(s)
- João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Frédéric Gretsch
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Daniel Gallichan
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - José P. Marques
- Donders Institute; Radboud University; Nijmegen the Netherlands
| |
Collapse
|
13
|
Wezel J, Boer VO, van der Velden TA, Webb AG, Klomp DWJ, Versluis MJ, van Osch MJP, Garpebring A. A comparison of navigators, snap-shot field monitoring, and probe-based field model training for correcting B 0 -induced artifacts in T2*-weighted images at 7 T. Magn Reson Med 2016; 78:1373-1382. [PMID: 27859614 DOI: 10.1002/mrm.26524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/27/2016] [Accepted: 10/02/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE To compare methods for estimating B0 maps used in retrospective correction of high-resolution anatomical images at ultra-high field strength. The B0 maps were obtained using three methods: (1) 1D navigators and coil sensitivities, (2) field probe (FP) data and a low-order spherical harmonics model, and (3) FP data and a training-based model. METHODS Data from nine subjects were acquired while they performed activities inducing B0 field fluctuations. Estimated B0 fields were compared with reference data, and the reductions of artifacts were compared in corrected T2* images. RESULTS Reduction of sum-of-squares difference relative to a reference image was evaluated, and Method 1 yielded the largest artifact reduction: 27 ± 15%, 20 ± 18% (mean ± 1 standard deviation) for deep breathing and combined deep breathing and hand motion activities. Method 3 performed almost as well (24 ± 18%, 15 ± 17%), provided that adequate training data were used, and Method 2 gave a similar result (21 ± 16%, 19 ± 17%). CONCLUSION This study confirms that all of the investigated methods can be used in retrospective image correction. In terms of image quality, Method 1 had a small advantage, whereas the FP-based methods measured the B0 field slightly more accurately. The specific strengths and weaknesses of FPs and navigators should therefore be considered when determining which B0 -estimation method to use. Magn Reson Med 78:1373-1382, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Joep Wezel
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent O Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tijl A van der Velden
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Matthias J P van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders Garpebring
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Wezel J, Garpebring A, Webb AG, van Osch MJ, Beenakker JWM. Automated eye blink detection and correction method for clinical MR eye imaging. Magn Reson Med 2016; 78:165-171. [DOI: 10.1002/mrm.26355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Joep Wezel
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center; Leiden The Netherlands
| | - Anders Garpebring
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center; Leiden The Netherlands
- Radiation Sciences; Umeå University; Umeå Sweden
| | - Andrew G. Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center; Leiden The Netherlands
| | - Matthias J.P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center; Leiden The Netherlands
| | - Jan-Willem M. Beenakker
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center; Leiden The Netherlands
- Department of Ophthalmology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|