1
|
Bolar DS, Barnes RA, Chen C, Han F, Pfeuffer J, Liu TT, Wong EC. Reduced B 0/B 1 + sensitivity in velocity-selective inversion arterial spin labeling using adiabatic refocusing pulses. Magn Reson Med 2024; 92:2091-2100. [PMID: 39011598 DOI: 10.1002/mrm.30210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE To mitigate the B0/B1 + sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control. METHODS We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs. We compare performance between this train and the standard composite refocusing train, including with and without DPC, for dual-module VSI VSASL. We evaluate (1) simulated velocity-selective profiles and subtraction fidelity across a broad B0/B1 + range, (2) subtraction fidelity in phantoms, and (3) image quality, artifact presence, and gray-matter perfusion heterogeneity (as measured by the spatial coefficient of variation) in healthy human subjects. RESULTS Adiabatic refocusing significantly improves FT-VSI robustness to B0/B1 + inhomogeneity for a single label-control subtraction. Subtraction fidelity is dramatically improved in both simulation and phantoms compared with composite refocusing without DPC, and is similar compared with DPC methods. In humans, marked artifacts seen with the non-DPC composite refocusing approach are eliminated, corroborated by significantly reduced gray-matter heterogeneity (via lower spatial coefficient of variation values). CONCLUSION A novel VSASL labeling train using adiabatic refocusing pulses for VSI was found to reduce artifacts related to B0/B1 + inhomogeneity, thereby providing an alternative to DPC and its associated limitations, which include increased vulnerability to physiological noise and motion, reduced functional MRI applicability, and suboptimal data censoring.
Collapse
Affiliation(s)
- Divya S Bolar
- Center for Functional MRI, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Ryan A Barnes
- Center for Functional MRI, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Conan Chen
- Center for Functional MRI, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - Fei Han
- Siemens Medical Solutions, Malvern, Pennsylvania, USA
| | - Josef Pfeuffer
- Application Development, Siemens Healthineers AG, Erlangen, Germany
| | - Thomas T Liu
- Center for Functional MRI, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Eric C Wong
- Center for Functional MRI, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Lin Z, Jiang D, Hong Y, Zhang Y, Hsu YC, Lu H, Wu D. Vessel-specific quantification of cerebral venous oxygenation with velocity-encoding preparation and rapid acquisition. Magn Reson Med 2024; 92:782-791. [PMID: 38523598 DOI: 10.1002/mrm.30092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Non-invasive measurement of cerebral venous oxygenation (Yv) is of critical importance in brain diseases. The present work proposed a fast method to quantify regional Yv map for both large and small veins. METHODS A new sequence was developed, referred to as TRU-VERA (T2 relaxation under velocity encoding and rapid acquisition, which isolates blood spins from static tissue with velocity-encoding preparation, modulates the T2 weighting of venous signal with T2-preparation and utilizes a bSSFP readout to achieve fast acquisition with high resolution. The sequence was first optimized to achieve best sensitivity for both large and small veins, and then validated with TRUST (T2 relaxation under spin tagging), TRUPC (T2 relaxation under phase contrast), and accelerated TRUPC MRI. Regional difference of Yv was evaluated, and test-retest reproducibility was examined. RESULTS Optimal Venc was determined to be 3 cm/s, while recovery time and balanced SSFP flip angle within reasonable range had minimal effect on SNR efficiency. Venous T2 measured with TRU-VERA was highly correlated with T2 from TRUST (R2 = 0.90), and a conversion equation was established for further calibration to Yv. TRU-VERA sequences showed consistent Yv estimation with TRUPC (R2 = 0.64) and accelerated TRUPC (R2 = 0.79). Coefficient of variation was 0.84% for large veins and 2.49% for small veins, suggesting an excellent test-retest reproducibility. CONCLUSION The proposed TRU-VERA sequence is a promising method for vessel-specific oxygenation assessment.
Collapse
Affiliation(s)
- Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yiwen Hong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Liu D, Zhu D, Qin Q. Direct angiographic comparison of different velocity-selective saturation, inversion, and DANTE labeling modules on cerebral arteries. Magn Reson Med 2024; 92:761-771. [PMID: 38523590 PMCID: PMC11142876 DOI: 10.1002/mrm.30085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE This study evaluated the velocity-selective (VS) MRA with different VS labeling modules, including double refocused hyperbolic tangent, eight-segment B1-insensitive rotation, delay alternating with nutation for tailored excitation, Fourier transform-based VS saturation, and Fourier transform-based inversion. METHODS These five VS labeling modules were evaluated first through Bloch simulations, and then using VSMRA directly on various cerebral arteries of healthy subjects. The relative signal ratios from arterial ROIs and surrounding tissues as well as relative arteria-tissue contrast ratios of different methods were compared. RESULTS Double refocused hyperbolic tangent and eight-segment B1-insensitive rotation showed very similar labeling effects. Delay alternating with nutation for tailored excitation yielded high arterial signal but with residual tissue signal due to the spatial banding effect. Fourier transform-based VS saturation with half the time of other techniques serves as an efficient nonsubtractive VSMRA method, but the remaining tissue signal still obscured some small distal arteries that were delineated by other subtraction-based VSMRA, allowing more complete cancelation of static tissue. Fourier transform-based inversion produced the highest arterial signal in VSMRA with minimal tissue background. CONCLUSION This is the first study that angiographically compared five different VS labeling modules. Their labeling characteristics on arteries and tissue and implications for VSMRA and VS arterial spin labeling are discussed.
Collapse
Affiliation(s)
- Dapeng Liu
- Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Zhu
- Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Lambrecht S, Liu D, Dzaye O, Kamson DO, Reis J, Liebig T, Holdhoff M, Van Zijl P, Qin Q, Lin DDM. Velocity-Selective Arterial Spin Labeling Perfusion in Monitoring High Grade Gliomas Following Therapy: Clinical Feasibility at 1.5T and Comparison with Dynamic Susceptibility Contrast Perfusion. Brain Sci 2024; 14:126. [PMID: 38391701 PMCID: PMC10886779 DOI: 10.3390/brainsci14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
MR perfusion imaging is important in the clinical evaluation of primary brain tumors, particularly in differentiating between true progression and treatment-induced change. The utility of velocity-selective ASL (VSASL) compared to the more commonly utilized DSC perfusion technique was assessed in routine clinical surveillance MR exams of 28 patients with high-grade gliomas at 1.5T. Using RANO criteria, patients were assigned to two groups, one with detectable residual/recurrent tumor ("RT", n = 9), and the other with no detectable residual/recurrent tumor ("NRT", n = 19). An ROI was drawn to encompass the largest dimension of the lesion with measures normalized against normal gray matter to yield rCBF and tSNR from VSASL, as well as rCBF and leakage-corrected relative CBV (lc-rCBV) from DSC. VSASL (rCBF and tSNR) and DSC (rCBF and lc-rCBV) metrics were significantly higher in the RT group than the NRT group allowing adequate discrimination (p < 0.05, Mann-Whitney test). Lin's concordance analyses showed moderate to excellent concordance between the two methods, with a stronger, moderate correlation between VSASL rCBF and DSC lc-rCBV (r = 0.57, p = 0.002; Pearson's correlation). These results suggest that VSASL is clinically feasible at 1.5T and has the potential to offer a noninvasive alternative to DSC perfusion in monitoring high-grade gliomas following therapy.
Collapse
Affiliation(s)
- Sebastian Lambrecht
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Dapeng Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Omar Dzaye
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David O Kamson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonas Reis
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Matthias Holdhoff
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peter Van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Doris D M Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Zhu D, Xu F, Liu D, Hillis AE, Lin D, van Zijl PC, Qin Q. Evaluation of 3D stack-of-spiral turbo FLASH acquisitions for pseudo-continuous and velocity-selective ASL-derived brain perfusion mapping. Magn Reson Med 2023; 90:939-949. [PMID: 37125611 PMCID: PMC11054979 DOI: 10.1002/mrm.29681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE The most-used 3D acquisitions for ASL are gradient and spin echo (GRASE)- and stack-of-spiral (SOS)-based fast spin echo, which require multiple shots. Alternatively, turbo FLASH (TFL) allows longer echo trains, and SOS-TFL has the potential to reduce the number of shots to even single-shot, thus improving the temporal resolution. Here we compare the performance of 3D SOS-TFL and 3D GRASE for ASL at 3T. METHODS The 3D SOS-TFL readout was optimized with respect to fat suppression and excitation flip angles for pseudo-continuous ASL- and velocity-selective (VS)ASL-derived cerebral blood flow (CBF) mapping as well as for VSASL-derived cerebral blood volume (CBV) mapping. Results were compared with 3D GRASE readout on healthy volunteers in terms of perfusion quantification and temporal SNR (tSNR) efficiency. CBF and CBV mapping derived from 3D SOS-TFL-based ASL was demonstrated on one stroke patient, and the potential for single-shot acquisitions was exemplified. RESULTS SOS-TFL with a 15° flip angle resulted in adequate tSNR efficiency with negligible image blurring. Selective water excitation was necessary to eliminate fat-induced artifacts. For pseudo-continuous ASL- and VSASL-based CBF and CBV mapping, compared to the employed four-shot 3D GRASE with an acceleration factor of 2, the fully sampled 3D SOS-TFL delivered comparable performance (with a similar scan time) using three shots, which could be further undersampled to achieve single-shot acquisition with higher tSNR efficiency. SOS-TFL had reduced CSF contamination for VSASL-CBF. CONCLUSION 3D SOS-TFL acquisition was found to be a viable substitute for 3D GRASE for ASL with sufficient tSNR efficiency, minimal relaxation-induced blurring, reduced CSF contamination, and the potential of single-shot, especially for VSASL.
Collapse
Affiliation(s)
- Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dapeng Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye Elizabeth Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Qin Q, Alsop DC, Bolar DS, Hernandez‐Garcia L, Meakin J, Liu D, Nayak KS, Schmid S, van Osch MJP, Wong EC, Woods JG, Zaharchuk G, Zhao MY, Zun Z, Guo J. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magn Reson Med 2022; 88:1528-1547. [PMID: 35819184 PMCID: PMC9543181 DOI: 10.1002/mrm.29371] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David C. Alsop
- Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | | | - James Meakin
- Department of Radiology, Nuclear Medicine and AnatomyRadboud University Medical CenterNijmegenThe Netherlands
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Krishna S. Nayak
- Magnetic Resonance Engineering Laboratory, Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sophie Schmid
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Eric C. Wong
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Joseph G. Woods
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Greg Zaharchuk
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Zungho Zun
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | |
Collapse
|
7
|
Li W, Xu F, Zhu D, van Zijl PCM, Qin Q. T 2 -oximetry-based cerebral venous oxygenation mapping using Fourier-transform-based velocity-selective pulse trains. Magn Reson Med 2022; 88:1292-1302. [PMID: 35608208 PMCID: PMC9247032 DOI: 10.1002/mrm.29300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Purpose To develop a T2‐oximetry method for quantitative mapping of cerebral venous oxygenation fraction (Yv) using Fourier‐transform–based velocity‐selective (FT‐VS) pulse trains. Methods The venous isolation preparation was achieved by using an FT‐VS inversion plus a nonselective inversion (NSI) pulse to null the arterial blood signal while minimally affected capillary blood flows out into the venular vasculature during the outflow time (TO), and then applying an Fourier transform based velocity selective saturation (FT‐VSS) pulse to suppress the tissue signal. A multi‐echo readout was employed to obtain venous T2 (T2,v) efficiently with the last echo used to detect the residual CSF signal and correct its contamination in the fitting. Here we compared the performance of this FT‐VS–based venous isolation preparations with a traditional velocity‐selective saturation (VSS)–based approach (quantitative imaging of extraction of oxygen and tissue consumption [QUIXOTIC]) with different cutoff velocities for Yv mapping on 6 healthy volunteers at 3 Tesla. Results The FT‐VS–based methods yielded higher venous blood signal and temporal SNR with less CSF contamination than the velocity‐selective saturation–based results. The averaged Yv values across the whole slice measured in different experiments were close to the global Yv measured from the individual internal jugular vein. Conclusion The feasibility of the FT‐VS–based Yv estimation was demonstrated on healthy volunteers. The obtained high venous signal as well as the mitigation of CSF contamination led to a good agreement between the T2,v and Yv measured in the proposed method with the values in the literature. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 2022; 32:2976-2987. [DOI: 10.1007/s00330-021-08406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
|
9
|
Li L, Law C, Marrett S, Chai Y, Huber L, Jezzard P, Bandettini P. Quantification of cerebral blood volume changes caused by visual stimulation at 3 T using DANTE-prepared dual-echo EPI. Magn Reson Med 2021; 87:1846-1862. [PMID: 34817081 DOI: 10.1002/mrm.29099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE We investigate the influence of moving blood-attenuation effects when using "delay alternating with nutation for tailored excitation" (DANTE) pulses in conjunction with blood oxygen level dependent (BOLD) of functional MRI (fMRI) at 3 T. Based on the effects of including DANTE pulses, we propose quantification of cerebral blood volume (CBV) changes following functional stimulation. METHODS Eighteen volunteers in total underwent fMRI scans at 3 T. Seven volunteers were scanned to investigate the effects of DANTE pulses on the fMRI signal. CBV changes in response to visual stimulation were quantified in 11 volunteers using a DANTE-prepared dual-echo EPI sequence. RESULTS The inflow effects from flowing blood in arteries and draining vein effects from flowing blood in large veins can be suppressed by use of a DANTE preparation module. Using DANTE-prepared dual-echo EPI, we quantitatively measured intravascular-weighted microvascular CBV changes of 25.4%, 29.8%, and 32.6% evoked by 1, 5, and 10 Hz visual stimulation, respectively. The extravascular fraction (∆S/S)extra at TE = 30 ms in total BOLD signal was determined to be 64.8 ± 3.4%, which is in line with previous extravascular component estimation at 3 T. Results show that the microvascular CBV changes are linearly dependent on total BOLD changes at TE = 30 ms with a slope of 0.113, and this relation is independent of stimulation frequency and subject. CONCLUSION The DANTE preparation pulses can be incorporated into a standard EPI fMRI sequence for the purpose of minimizing inflow effects and reducing draining veins effects in large vessels. Additionally, the DANTE-prepared dual-echo EPI sequence is a promising fast imaging tool for quantification of intravascular-weighted CBV change in the microvascular space at 3 T.
Collapse
Affiliation(s)
- Linqing Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine Law
- Systems Neuroscience and Pain Lab, Stanford University, Stanford, California, USA
| | - Sean Marrett
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuhui Chai
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Laurentius Huber
- MR-Methods Group, MBIC, FPN, Maastricht University, Maastricht, Netherlands
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bandettini
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Xu F, Zhu D, Fan H, Lu H, Liu D, Li W, Qin Q. Magnetic resonance angiography and perfusion mapping by arterial spin labeling using Fourier transform-based velocity-selective pulse trains: Examination on a commercial perfusion phantom. Magn Reson Med 2021; 86:1360-1368. [PMID: 33934396 PMCID: PMC8861891 DOI: 10.1002/mrm.28805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Benchmarking of flow and perfusion MR techniques on standardized phantoms can facilitate the use of advanced angiography and perfusion-mapping techniques across multiple sites, field strength, and vendors. Here, MRA and perfusion mapping by arterial spin labeling (ASL) using Fourier transform (FT)-based velocity-selective saturation and inversion pulse trains were evaluated on a commercial perfusion phantom. METHODS The FT velocity-selective saturation-based MRA and FT velocity-selective inversion-based ASL perfusion imaging were compared with time-of-flight and pseudo-continuous ASL at 3 T on the perfusion phantom at two controlled flow rates, 175 mL/min and 350 mL/min. Velocity-selective MRA (VSMRA) and velocity-selective ASL (VSASL) were each performed with three velocity-encoding directions: foot-head, left-right, and oblique 45°. The contrast-to-noise ratio for MRA scans and perfusion-weighted signal, as well as labeling efficiency for ASL methods, were quantified. RESULTS On this phantom with feeding tubes having only vertical and transverse flow directions, VSMRA and VSASL exhibited the dependence of velocity-encoding directions. The foot-head-encoded VSMRA and VSASL generated similar signal contrasts as time of flight and pseudo-continuous ASL for the two flow rates, respectively. The oblique 45°-encoded VSMRA yielded more uniform contrast-to-noise ratio across slices than foot-head and left-right-encoded VSMRA scans. The oblique 45°-encoded VSASL elevated labeling efficiency from 0.22-0.68 to 0.82-0.90 through more uniform labeling of the entire feeding tubes. CONCLUSION Both FT velocity-selective saturation-based VSMRA and FT velocity-selective inversion-based VSASL were characterized on a commercial perfusion phantom. Careful selection of velocity-encoding directions along the major vessels is recommended for their applications in various organs.
Collapse
Affiliation(s)
- Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongli Fan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Zhang L, Zhu Y, Qi Y, Wan L, Ren L, Zhu Y, Zhang N, Liang D, Li Y, Zheng H, Liu X. T 2-Weighted Whole-Brain Intracranial Vessel Wall Imaging at 3 Tesla With Cerebrospinal Fluid Suppression. Front Neurosci 2021; 15:665076. [PMID: 34248480 PMCID: PMC8267868 DOI: 10.3389/fnins.2021.665076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background T2-weighted (T2w) intracranial vessel wall imaging (IVWI) provides good contrast to differentiate intracranial vasculopathies and discriminate various important plaque components. However, the strong cerebrospinal fluid (CSF) signal in T2w images interferes with depicting the intracranial vessel wall. In this study, we propose a T2-prepared sequence for whole-brain IVWI at 3T with CSF suppression. Methods A preparation module that combines T2 preparation and inversion recovery (T2IR) was used to suppress the CSF signal and was incorporated into the commercial three-dimensional (3D) turbo spin echo sequence-Sampling Perfection with Application optimized Contrast using different flip angle Evolution (SPACE). This new technique (hereafter called T2IR-SPACE) was evaluated on nine healthy volunteers and compared with two other commonly used 3D T2-weighted sequences: T2w-SPACE and FLAIR-SPACE (FLAIR: fluid-attenuated inversion recovery). The signal-to-noise ratios (SNRs) of the vessel wall (VW) and CSF and contrast-to-noise ratios (CNRs) between them were measured and compared among these three T2-weighted sequences. Subjective wall visualization of the three T2-weighted sequences was scored blindly and independently by two radiologists using a four-point scale followed by inter-rater reproducibility analysis. A pilot study of four stroke patients was performed to preliminarily evaluate the diagnostic value of this new sequence, which was compared with two conventional T2-weighted sequences. Results T2IR-SPACE had the highest CNR (11.01 ± 6.75) compared with FLAIR-SPACE (4.49 ± 3.15; p < 0.001) and T2w-SPACE (-56.16 ± 18.58; p < 0.001). The subjective wall visualization score of T2IR-SPACE was higher than those of FLAIR-SPACE and T2w-SPACE (T2IR-SPACE: 2.35 ± 0.59; FLAIR-SPACE: 0.52 ± 0.54; T2w-SPACE: 1.67 ± 0.58); the two radiologists' scores showed excellent agreement (ICC = 0.883). Conclusion The T2IR preparation module markedly suppressed the CSF signal without much SNR loss of the other tissues (i.e., vessel wall, white matter, and gray matter) compared with the IR pulse. Our results suggest that T2IR-SPACE is a potential alternative T2-weighted sequence for assessing intracranial vascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yulong Qi
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liwen Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen No. 2 People's Hospital, Shenzhen, China
| | - Yi Zhu
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
12
|
Li W, Liu D, van Zijl PCM, Qin Q. Three-dimensional whole-brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform-based velocity-selective pulse trains. Magn Reson Med 2021; 86:1420-1433. [PMID: 33955583 DOI: 10.1002/mrm.28815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop 3D MRI methods for cerebral blood volume (CBV) and venous cerebral blood volume (vCBV) estimation with whole-brain coverage using Fourier transform-based velocity-selective (FT-VS) pulse trains. METHODS For CBV measurement, FT-VS saturation pulse trains were used to suppress static tissue, whereas CSF contamination was corrected voxel-by-voxel using a multi-readout acquisition and a fast CSF T2 scan. The vCBV mapping was achieved by inserting an arterial-nulling module that included a FT-VS inversion pulse train. Using these methods, CBV and vCBV maps were obtained on 6 healthy volunteers at 3 T. RESULTS The mean CBV and vCBV values in gray matter and white matter in different areas of the brain showed high correlation (r = 0.95 and P < .0001). The averaged CBV and vCBV values of the whole brain were 5.4 ± 0.6 mL/100 g and 2.5 ± 0.3 mL/100 g in gray matter, and 2.6 ± 0.5 mL/100 g and 1.5 ± 0.2 mL/100 g in white matter, respectively, comparable to the literature. CONCLUSION The feasibility of FT-VS-based CBV and vCBV estimation was demonstrated for 3D acquisition with large spatial coverage.
Collapse
Affiliation(s)
- Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Liu D, Li W, Xu F, Zhu D, Shin T, Qin Q. Ensuring both velocity and spatial responses robust to B0/B1+ field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling. Magn Reson Med 2021; 85:2723-2734. [PMID: 33349968 PMCID: PMC7962600 DOI: 10.1002/mrm.28622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To evaluate both velocity and spatial responses of velocity-selective arterial spin labeling (VS-ASL), using velocity-insensitive and velocity-compensated waveforms for control modules, as well as a novel dynamic phase-cycling approach, at different B0 / B 1 + field inhomogeneities. METHODS In the presence of imperfect refocusing, the mechanism of phase-cycling the refocusing pulses through four dynamics was first theoretically analyzed with the conventional velocity-selective saturation (VSS) pulse train. Numerical simulations were then deployed to compare the performance of the Fourier-transform based velocity-selective inversion (FT-VSI) with these three different schemes in terms of both velocity and spatial responses under various B0 / B 1 + conditions. Phantom and human brain scans were performed to evaluate the three methods at B 1 + scales of 0.8, 1.0, and 1.2. RESULTS The simulations of FT-VSI showed that, under nonuniform B0 / B 1 + conditions, the scheme with velocity-insensitive control was susceptible to DC bias of the static spins as systematic error, while the scheme with velocity-compensated control had deteriorated velocity-selective labeling profiles and, thus, reduced labeling efficiency. Through numerical simulation, phantom scans, and brain perfusion measurements, the dynamic phase-cycling method demonstrated considerable improvements over these issues. CONCLUSION The proposed dynamic phase-cycling approach was demonstrated for the velocity-selective label and control modules with both velocity and spatial responses robust to a wide range of B0 and B 1 + field inhomogeneities.
Collapse
Affiliation(s)
- Dapeng Liu
- Department of Radiology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Wenbo Li
- Department of Radiology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Feng Xu
- Department of Radiology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Zhu
- Department of Biomedical Engineering; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qin Qin
- Department of Radiology; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Holmes JH, Jen ML, Eisenmenger LB, Schubert T, Turski PA, Johnson KM. Spatial dependency and the role of local susceptibility for velocity selective arterial spin labeling (VS-ASL) relative tagging efficiency using accelerated 3D radial sampling with a BIR-8 preparation. Magn Reson Med 2021; 86:293-307. [PMID: 33615527 DOI: 10.1002/mrm.28726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Velocity selective arterial spin labeling (VS-ASL) is a promising approach for non-contrast perfusion imaging that provides robustness to vascular geometry and transit times; however, VS-ASL assumes spatially uniform tagging efficiency. This work presents a mapping approach to investigate VS-ASL relative tagging efficiency including the impact of local susceptibility effects on a BIR-8 preparation. METHODS Numerical simulations of tagging efficiency were performed to evaluate sensitivity to regionally varying local susceptibility gradients and blood velocity. Tagging efficiency mapping was performed in susceptibility phantoms and healthy human subjects (N = 7) using a VS-ASL preparation module followed by a short, high spatial resolution 3D radial-based image acquisition. Tagging efficiency maps were compared to 4D-flow, B1 , and B0 maps acquired in the same imaging session for six of the seven subjects. RESULTS Numerical simulations were found to predict reduced tagging efficiency with the combination of high blood velocity and local gradient fields. Phantom experiments corroborated numerical results. Relative efficiency mapping in normal volunteers showed unique efficiency patterns depending on individual subject anatomy and physiology. Uniform tagging efficiency was generally observed in vivo, but reduced efficiency was noted in regions of high blood velocity and local susceptibility gradients. CONCLUSION We demonstrate an approach to map the relative tagging efficiency and show application of this methodology to a novel BIR-8 preparation recently proposed in the literature. We present results showing rapid flow in the presence of local susceptibility gradients can lead to complicated signal modulations in both tag and control images and reduced tagging efficiency.
Collapse
Affiliation(s)
- James H Holmes
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mu-Lan Jen
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick A Turski
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Lee H, Wehrli FW. Venous cerebral blood volume mapping in the whole brain using venous-spin-labeled 3D turbo spin echo. Magn Reson Med 2020; 84:1991-2003. [PMID: 32243708 DOI: 10.1002/mrm.28262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/12/2022]
Abstract
PURPOSE Venous cerebral blood volume (CBVv ) is a major contributor to BOLD contrast, and therefore is an important parameter for understanding the underlying mechanism. Here, we propose a velocity-selective venous spin labeling (VS-VSL)-prepared 3D turbo spin echo pulse sequence for whole-brain baseline CBVv mapping. METHODS Unlike previous CBVv measurement techniques that exploit the interrelationship between BOLD signals and CBVv , in the proposed VS-VSL technique both arterial blood and cerebrospinal fluid (CSF) signals were suppressed before the VS pulse train for exclusive labeling of venous blood, while a single-slab 3D turbo spin echo readout was used because of its relative immunity to magnetic field variations. Furthermore, two approximations were made to the VS-VSL signal model for simplified derivation of CBVv . In vivo studies were performed at 3T field strength in 8 healthy subjects. The performance of the proposed VS-VSL method in baseline CBVv estimation was first evaluated in comparison to the existing, hyperoxia-based method. Then, data were also acquired using VS-VSL under hypercapnic and hyperoxic gas breathing challenges for further validation of the technique. RESULTS The proposed technique yielded physiologically plausible baseline CBVv values, and when compared with the hyperoxia-based method, showed no statistical difference. Furthermore, data acquired using VS-VSL yielded average CBVv of 2.89%/1.78%, 3.71%/2.29%, and 2.88%/1.76% for baseline, hypercapnia, and hyperoxia, respectively, in gray/white matter regions. As expected, hyperoxia had negligible effect (P > .8), whereas hypercapnia demonstrated vasodilation (P << .01). CONCLUSION Upon further validation of the quantification model, the method is expected to have merit for 3D CBVv measurements across the entire brain.
Collapse
Affiliation(s)
- Hyunyeol Lee
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Lambin P, Lieverse RIY, Eckert F, Marcus D, Oberije C, van der Wiel AMA, Guha C, Dubois LJ, Deasy JO. Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy. Semin Radiat Oncol 2020; 30:187-193. [PMID: 32381298 PMCID: PMC8412054 DOI: 10.1016/j.semradonc.2019.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is now strong clinical and preclinical evidence that lymphocytes, for example, CD8+ T cells, are key effectors of immunotherapy and that irradiation of large blood vessels, the heart, and lymphoid organs (including nodes, spleen, bones containing bone marrow, and thymus in children) causes transient or persistent lymphopenia. Furthermore, there is extensive clinical evidence, across multiple cancer sites and treatment modalities, that lymphopenia correlates strongly with decreased overall survival. At the moment, we lack quantitative evidence to establish the relationship between dose-volume and dose-rate to critical normal structures and lymphopenia. Therefore, we propose that data should be systematically recorded to characterise a possible quantitative relationship. This might enable us to improve the efficacy of radiotherapy and develop strategies to predict and prevent treatment-related lymphopenia. In anticipation of more quantitative data, we recommend the application of the principle of As Low As Reasonably Achievable to lymphocyte-rich regions for radiotherapy treatment planning to reduce the radiation doses to these structures, thus moving toward "Lymphocyte-Sparing Radiotherapy."
Collapse
Affiliation(s)
- Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Relinde I Y Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Cary Oberije
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Alexander M A van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY
| | - Ludwig J Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Msayib Y, Craig M, Simard MA, Larkin JR, Shin DD, Liu TT, Sibson NR, Okell TW, Chappell MA. Robust estimation of quantitative perfusion from multi-phase pseudo-continuous arterial spin labeling. Magn Reson Med 2020; 83:815-829. [PMID: 31429999 PMCID: PMC6899553 DOI: 10.1002/mrm.27965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Multi-phase PCASL has been proposed as a means to achieve accurate perfusion quantification that is robust to imperfect shim in the labeling plane. However, there exists a bias in the estimation process that is a function of noise in the data. In this work, this bias is characterized and then addressed in animal and human data. METHODS The proposed algorithm to overcome bias uses the initial biased voxel-wise estimate of phase tracking error to cluster regions with different off-resonance phase shifts, from which a high-SNR estimate of regional phase offset is derived. Simulations were used to predict the bias expected at typical SNR. Multi-phase PCASL in 3 rat strains (n = 21) at 9.4 T was considered, along with 20 human subjects previously imaged using ASL at 3 T. The algorithm was extended to include estimation of arterial blood flow velocity. RESULTS Based on simulations, a perfusion estimation bias of 6-8% was expected using 8-phase data at typical SNR. This bias was eliminated when a high-precision estimate of phase error was available. In the preclinical data, the bias-corrected measure of perfusion (107 ± 14 mL/100g/min) was lower than the standard analysis (116 ± 14 mL/100g/min), corresponding to a mean observed bias across strains of 8.0%. In the human data, bias correction resulted in a 15% decrease in the estimate of perfusion. CONCLUSIONS Using a retrospective algorithmic approach, it was possible to exploit common information found in multiple voxels within a whole region of the brain, offering superior SNR and thus overcoming the bias in perfusion quantification from multi-phase PCASL.
Collapse
Affiliation(s)
- Y. Msayib
- Department of Engineering ScienceInstitute of Biomedical EngineeringUniversity of OxfordOxfordUnited Kingdom
| | - M. Craig
- Department of Engineering ScienceInstitute of Biomedical EngineeringUniversity of OxfordOxfordUnited Kingdom
| | - M. A. Simard
- Department of OncologyCancer Research UK and Medical Research Council (CRUK/MRC) Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - J. R. Larkin
- Department of OncologyCancer Research UK and Medical Research Council (CRUK/MRC) Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | | | - T. T. Liu
- Center for Functional MRIUniversity of CaliforniaSan DiegoCalifornia
| | - N. R. Sibson
- Department of OncologyCancer Research UK and Medical Research Council (CRUK/MRC) Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - T. W. Okell
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - M. A. Chappell
- Department of Engineering ScienceInstitute of Biomedical EngineeringUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative NeuroimagingFMRIBNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
18
|
Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. Neuroimage 2020; 207:116358. [DOI: 10.1016/j.neuroimage.2019.116358] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
|
19
|
Driver ID, Stobbe RW, Wise RG, Beaulieu C. Venous contribution to sodium MRI in the human brain. Magn Reson Med 2019; 83:1331-1338. [PMID: 31556169 PMCID: PMC6972645 DOI: 10.1002/mrm.27996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. METHODS Density-weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co-registered 1 H T 2 ∗ -weighted images and venous partial volume estimates were calculated by down-sampling the finer spatial resolution venous maps from the T 2 ∗ -weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. RESULTS Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). CONCLUSION Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ.
Collapse
Affiliation(s)
- Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Qin Q, Qu Y, Li W, Liu D, Shin T, Zhao Y, Lin DD, van Zijl PC, Wen Z. Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains. Magn Reson Med 2019; 81:3544-3554. [PMID: 30737847 PMCID: PMC6820852 DOI: 10.1002/mrm.27668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/28/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Velocity-selective saturation (VSS) pulse trains provide a viable alternative to the spatially selective methods for measuring cerebral blood volume (CBV) by reducing the sensitivity to arterial transit time. This study is to compare the Fourier-transform-based velocity-selective saturation (FT-VSS) pulse trains with the conventional flow-dephasing VSS techniques for CBV quantification. METHODS The proposed FT-VSS label and control modules were compared with VSS pulse trains utilizing double refocused hyperbolic tangent (DRHT) and 8-segment B1-insensitive rotation (BIR-8). This was done using both numerical simulations and phantom studies to evaluate their sensitivities to gradient imperfections such as eddy currents. DRHT, BIR-8, and FT-VSS prepared CBV mapping was further compared for velocity-encoding gradients along 3 orthogonal directions in healthy subjects at 3T. RESULTS The phantom studies exhibited more consistent immunity to gradient imperfections for the utilized FT-VSS pulse trains. Compared to DRHT and BIR-8, FT-VSS delivered more robust CBV results across the 3 VS encoding directions with significantly reduced artifacts along the superior-inferior direction and improved temporal signal-to-noise ratio (SNR) values. Average CBV values obtained from FT-VSS based sequences were 5.3 mL/100 g for gray matter and 2.3 mL/100 g for white matter, comparable to literature expectations. CONCLUSION Absolute CBV quantification utilizing advanced FT-VSS pulse trains had several advantages over the existing approaches using flow-dephasing VSS modules. A greater immunity to gradient imperfections and the concurrent tissue background suppression of FT-VSS pulse trains enabled more robust CBV measurements and higher SNR than the conventional VSS pulse trains.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Taehoon Shin
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Doris D. Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C.M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
22
|
Matson GB. Design strategies for improved velocity-selective pulse sequences. Magn Reson Imaging 2017; 44:146-156. [PMID: 28890384 DOI: 10.1016/j.mri.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/05/2017] [Indexed: 11/28/2022]
Abstract
Over the years, a variety of MRI methods have been developed for visualizing or measuring blood flow without the use of contrast agents. One particular class of methods uses flow-encoding gradients associated with an RF pulse sequence to distinguish spins in flowing blood from stationary spins. While a strength of these particular methods is that, in general, they can be tailored to capture a desired range of blood flow, such sequences either do not provide a sharp transition from stationary spins to flowing spins, or else are long, generating relaxation losses and undesirable SAR, and have limited immunity to resonance offsets and to RF inhomogeneity. This article provides design methods for improving these longer RF pulse sequences, especially to provide improved immunity to RF inhomogeneity, and also to improve immunity to resonance offsets, as well as to minimize RF sequence length. These design methods retain the flexibility to capture a desired range of blood flow, with sharp transitions between stationary spins and flowing blood. These improvement strategies are demonstrated through Bloch equations simulations of examples of these new sequences in the presence of blood flow. Examples of improved sequences that should prove suitable for use at 3.0Tesla are presented.
Collapse
Affiliation(s)
- Gerald B Matson
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, United States.
| |
Collapse
|