1
|
Simchick G, Allen TJ, Hernando D. Reproducibility of intravoxel incoherent motion quantification in the liver across field strengths and gradient hardware. Magn Reson Med 2024; 92:2652-2669. [PMID: 39119838 PMCID: PMC11436311 DOI: 10.1002/mrm.30237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To evaluate reproducibility and interlobar agreement of intravoxel incoherent motion (IVIM) quantification in the liver across field strengths and MR scanners with different gradient hardware. METHODS Cramer-Rao lower bound optimization was performed to determine optimized monopolar and motion-robust 2D (b-value and first-order motion moment [M1]) IVIM-DWI acquisitions. Eleven healthy volunteers underwent diffusion MRI of the liver, where each optimized acquisition was obtained five times across three MRI scanners. For each data set, IVIM estimates (diffusion coefficient (D), pseudo-diffusion coefficients (d 1 * $$ {d}_1^{\ast } $$ andd 2 * $$ {d}_2^{\ast } $$ ), blood velocity SDs (Vb1 and Vb2), and perfusion fractions [f1 and f2]) were obtained in the right and left liver lobes using two signal models (pseudo-diffusion and M1-dependent physical) with and without T2 correction (fc1 and fc2) and three fitting techniques (tri-exponential region of interest-based full and segmented fitting and blood velocity SD distribution fitting). Reproducibility and interlobar agreement were compared across methods using within-subject and pairwise coefficients of variation (CVw and CVp), paired sample t-tests, and Bland-Altman analysis. RESULTS Using a combination of motion-robust 2D (b-M1) data acquisition, M1-dependent physical signal modeling with T2 correction, and blood velocity SD distribution fitting, multiscanner reproducibility with median CVw = 5.09%, 11.3%, 9.20%, 14.2%, and 12.6% for D, Vb1, Vb2, fc1, and fc2, respectively, and interlobar agreement with CVp = 8.14%, 11.9%, 8.50%, 49.9%, and 42.0%, respectively, was achieved. CONCLUSION Recently proposed advanced IVIM acquisition, signal modeling, and fitting techniques may facilitate reproducible IVIM quantification in the liver, as needed for establishment of IVIM-based quantitative biomarkers for detection, staging, and treatment monitoring of diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Allen
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Baidya Kayal E, Ganguly S, Kandasamy D, Khare K, Sharma R, Bakhshi S, Mehndiratta A. Reproducibility of spatial penalty-based methodologies for intravoxel incoherent motion analysis with diffusion MRI. Sci Rep 2024; 14:22811. [PMID: 39354013 PMCID: PMC11445472 DOI: 10.1038/s41598-024-71173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Objective was to assess the precision and reproducibility of spatial penalty-based intravoxel incoherent motion (IVIM) methods in comparison to the conventional bi-exponential (BE) model-based IVIM methods. IVIM-MRI (11 b-values; 0-800 s/mm2) of forty patients (N = 40; Age = 17.7 ± 5.9 years; Male:Female = 30:10) with biopsy-proven osteosarcoma were acquired on a 1.5 Tesla scanner at 3 time-points: (i) baseline, (ii) after 1-cycle and (iii) after 3-cycles of neoadjuvant chemotherapy. Diffusion coefficient (D), Perfusion coefficient (D*) and Perfusion fraction (f) were estimated at three time-points in whole tumor and healthy muscle tissue using five methodologies (1) BE with three-parameter-fitting (BE), (2) Segmented-BE with two-parameter-fitting (BESeg-2), (3) Segmented-BE with one-parameter-fitting (BESeg-1), (4) BE with adaptive Total-Variation-penalty (BE + TV) and (5) BE with adaptive Huber-penalty (BE + HPF). Within-subject coefficient-of-variation (wCV) and between-subject coefficient-of-variation (bCV) of IVIM parameters were measured in healthy and tumor tissue. For precision and reproducibility, intra-scan comparison of wCV and bCV among five IVIM methods were performed using Friedman test followed by Wilcoxon-signed-ranks (WSR) post-hoc test. Experimental results demonstrated that BE + TV and BE + HPF showed significantly (p < 10-3) lower wCV and bCV for D (wCV: 24-32%; bCV: 22-31%) than BE method (wCV: 38-49%; bCV: 36-46%) across three time-points in healthy muscle and tumor. BE + TV and BE + HPF also demonstrated significantly (p < 10-3) lower wCV and bCV for estimating D* (wCV: 89-108%; bCV: 83-102%) and f (wCV: 55-60%; bCV: 56-60%) than BE, BESeg-2 and BESeg-1 methods (D*-wCV: 102-122%; D*-bCV: 98-114% and f-wCV: 96-130%; f-bCV: 94-125%) in both tumor and healthy tissue across three time-points. Spatial penalty based IVIM analysis methods BE + TV and BE + HPF demonstrated lower variability and improved precision and reproducibility in the current clinical settings.
Collapse
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shuvadeep Ganguly
- Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kedar Khare
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Raju Sharma
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Hu G, Ye C, Zhong M, Lei C, Qin J, Wang L. IVIM parameters mapping with artificial neural network based on mean deviation prior. Med Phys 2024. [PMID: 39241221 DOI: 10.1002/mp.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND The diffusion and perfusion parameters derived from intravoxel incoherent motion (IVIM) imaging provide promising biomarkers for noninvasively quantifying and managing various diseases. Nevertheless, due to the distribution gap between simulated and real datasets, the out-of-distribution (OOD) problem occurred in supervised learning-based methods degrades their performance and hinders their real applications. PURPOSE To address the OOD problem in supervised methods and to further improve the accuracy and stability of IVIM parameter estimation, this work proposes a novel learning framework called IterANN, based on mean deviation prior (MDP) between training and estimated IVIM parameters on the test set. METHODS Specifically, MDP indicates that the mean of the estimated IVIM parameters always locates between the mean of IVIM parameters in the test and train sets. In IterANN, we adopt a very simple artificial neural network (ANN) architecture of two hidden layers with 12 neurons per hidden layer, an input layer containing the signals acquired at multiple b-values and an output layer composed of three IVIM parameters ( D $D$ , F $F$ andD S t a r $DStar$ ). Inspired by MDP, the distribution of IVIM parameters in the training set (simulated data) is iteratively updated so that their mean gradually approaches the predicted values of the real data. This aims to achieve a strong correlation between the simulated data and the real data. To validate the effectiveness of IterANN, we compare it with several methods on both simulation and real acquisition datasets, including 21 healthy and 3 tumor subjects, in terms of residual errors of IVIM parameters or DW signals, the coefficients of variation (CV) of IVIM parameters, and the parameter contrast-to-noise ratio (PCNR) between normal and tumor tissues. RESULTS On two simulation datasets, the proposed IterANN achieves the lowest residual error in IVIM parameters, especially in the case of low signal-to-noise ratio (SNR = 10), the residual error of D $D$ , F $F$ andD S t a r $DStar$ is decreased by15.82 % / 14.92 % , 81.19 % / 74.04 % , 50.77 % / 1.549 % $15.82\%/14.92\%, 81.19\%/74.04\%, 50.77\%/1.549\%$ (Gaussian distribution /realistic distribution) respectively comparing to the suboptimal method. On real dataset, the IterANN achieves the highest PCNR when comparing the normal and tumor regions. Additionally, the proposed IterANN demonstrated better stability, with its CV being significantly lower than that of other methods in the vast majority of cases (p < 0.01 $p<0.01$ , paired-sample Student's t-test). CONCLUSIONS The superior performance of IterANN demonstrates that updating the distribution of the train set based on MDP can effectively solve the OOD problem, which allows us not only to improve the accuracy and stability of the estimated IVIM parameters, but also to increase the potential of IVIM in disease diagnosis.
Collapse
Affiliation(s)
- Guodong Hu
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Chen Ye
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Ming Zhong
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chao Lei
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Junpeng Qin
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Lihui Wang
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Bolan PJ, Saunders SL, Kay K, Gross M, Akcakaya M, Metzger GJ. Improved quantitative parameter estimation for prostate T 2 relaxometry using convolutional neural networks. MAGMA (NEW YORK, N.Y.) 2024; 37:721-735. [PMID: 39042205 PMCID: PMC11417079 DOI: 10.1007/s10334-024-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Quantitative parameter mapping conventionally relies on curve fitting techniques to estimate parameters from magnetic resonance image series. This study compares conventional curve fitting techniques to methods using neural networks (NN) for measuring T2 in the prostate. MATERIALS AND METHODS Large physics-based synthetic datasets simulating T2 mapping acquisitions were generated for training NNs and for quantitative performance comparisons. Four combinations of different NN architectures and training corpora were implemented and compared with four different curve fitting strategies. All methods were compared quantitatively using synthetic data with known ground truth, and further compared on in vivo test data, with and without noise augmentation, to evaluate feasibility and noise robustness. RESULTS In the evaluation on synthetic data, a convolutional neural network (CNN), trained in a supervised fashion using synthetic data generated from naturalistic images, showed the highest overall accuracy and precision amongst the methods. On in vivo data, this best performing method produced low-noise T2 maps and showed the least deterioration with increasing input noise levels. DISCUSSION This study showed that a CNN, trained with synthetic data in a supervised manner, may provide superior T2 estimation performance compared to conventional curve fitting, especially in low signal-to-noise regions.
Collapse
Affiliation(s)
- Patrick J Bolan
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA.
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Sara L Saunders
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell Gross
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mehmet Akcakaya
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN, 55455, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Jalnefjord O, Björkman-Burtscher IM. Comparison of methods for intravoxel incoherent motion parameter estimation in the brain from flow-compensated and non-flow-compensated diffusion-encoded data. Magn Reson Med 2024; 92:303-318. [PMID: 38321596 DOI: 10.1002/mrm.30042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Joint analysis of flow-compensated (FC) and non-flow-compensated (NC) diffusion MRI (dMRI) data has been suggested for increased robustness of intravoxel incoherent motion (IVIM) parameter estimation. For this purpose, a set of methods commonly used or previously found useful for IVIM analysis of dMRI data obtained with conventional diffusion encoding were evaluated in healthy human brain. METHODS Five methods for joint IVIM analysis of FC and NC dMRI data were compared: (1) direct non-linear least squares fitting, (2) a segmented fitting algorithm with estimation of the diffusion coefficient from higher b-values of NC data, (3) a Bayesian algorithm with uniform prior distributions, (4) a Bayesian algorithm with spatial prior distributions, and (5) a deep learning-based algorithm. Methods were evaluated on brain dMRI data from healthy subjects and simulated data at multiple noise levels. Bipolar diffusion encoding gradients were used with b-values 0-200 s/mm2 and corresponding flow weighting factors 0-2.35 s/mm for NC data and by design 0 for FC data. Data were acquired twice for repeatability analysis. RESULTS Measurement repeatability as well as estimation bias and variability were at similar levels or better with the Bayesian algorithm with spatial prior distributions and the deep learning-based algorithm for IVIM parametersD $$ D $$ andf $$ f $$ , and for the Bayesian algorithm only forv d $$ {v}_d $$ , relative to the other methods. CONCLUSION A Bayesian algorithm with spatial prior distributions is preferable for joint IVIM analysis of FC and NC dMRI data in the healthy human brain, but deep learning-based algorithms appear promising.
Collapse
Affiliation(s)
- Oscar Jalnefjord
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Section of Neuroradiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
6
|
Basukala D, Mikheev A, Sevilimedu V, Gilani N, Moy L, Pinker-Domenig K, Thakur SB, Sigmund EE. Multisite MRI Intravoxel Incoherent Motion Repeatability and Reproducibility across 3 T Scanners in a Breast Diffusion Phantom: A BReast Intravoxel Incoherent Motion Multisite (BRIMM) Study. J Magn Reson Imaging 2024; 59:2226-2237. [PMID: 37702382 PMCID: PMC10932866 DOI: 10.1002/jmri.29008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Monoexponential apparent diffusion coefficient (ADC) and biexponential intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging is helpful in the characterization of breast tumors. However, repeatability/reproducibility studies across scanners and across sites are scarce. PURPOSE To evaluate the repeatability and reproducibility of ADC and IVIM parameters (tissue diffusivity (Dt), perfusion fraction (Fp) and pseudo-diffusion (Dp)) within and across sites employing MRI scanners from different vendors utilizing 16-channel breast array coils in a breast diffusion phantom. STUDY TYPE Phantom repeatability. PHANTOM A breast phantom containing tubes of different polyvinylpyrrolidone (PVP) concentrations, water, fat, and sponge flow chambers, together with an MR-compatible liquid crystal (LC) thermometer. FIELD STRENGTH/SEQUENCE Bipolar gradient twice-refocused spin echo sequence and monopolar gradient single spin echo sequence at 3 T. ASSESSMENT Studies were performed twice in each of two scanners, located at different sites, on each of 2 days, resulting in four studies per scanner. ADCs of the PVP and water were normalized to the vendor-provided calibrated values at the temperature indicated by the LC thermometer for repeatability/reproducibility comparisons. STATISTICAL TESTS ADC and IVIM repeatability and reproducibility within and across sites were estimated via the within-system coefficient of variation (wCV). Pearson correlation coefficient (r) was also computed between IVIM metrics and flow speed. A P value <0.05 was considered statistically significant. RESULTS ADC and Dt demonstrated excellent repeatability (<2%; <3%, respectively) and reproducibility (both <5%) at the two sites. Fp and Dp exhibited good repeatability (mean of two sites 3.67% and 5.59%, respectively) and moderate reproducibility (mean of two sites 15.96% and 13.3%, respectively). The mean intersite reproducibility (%) of Fp/Dp/Dt was 50.96/13.68/5.59, respectively. Fp and Dt demonstrated high correlations with flow speed while Dp showed lower correlations. Fp correlations with flow speed were significant at both sites. DATA CONCLUSION IVIM reproducibility results were promising and similar to ADC, particularly for Dt. The results were reproducible within both sites, and a progressive trend toward reproducibility across sites except for Fp. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dibash Basukala
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Varadan Sevilimedu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nima Gilani
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Linda Moy
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Katja Pinker-Domenig
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sunitha B. Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric E. Sigmund
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
7
|
Liu K, Lin Z, Zheng T, Ba R, Zhang Z, Li H, Zhang H, Tal A, Wu D. Improving Microstructural Estimation in Time-Dependent Diffusion MRI With a Bayesian Method. J Magn Reson Imaging 2024. [PMID: 38769739 DOI: 10.1002/jmri.29434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Accurately fitting diffusion-time-dependent diffusion MRI (td-dMRI) models poses challenges due to complex and nonlinear formulas, signal noise, and limited clinical data acquisition. PURPOSE Introduce a Bayesian methodology to refine microstructural fitting within the IMPULSED (Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion) model and optimize the prior distribution within the Bayesian framework. STUDY TYPE Retrospective. POPULATION Involving 69 pediatric patients (median age 6 years, interquartile range [IQR] 3-9 years, 61% male) with 41 low-grade and 28 high-grade gliomas, of which 76.8% were identified within the brainstem or cerebellum. FIELD STRENGTH/SEQUENCE 3 T, oscillating gradient spin-echo (OGSE) and pulsed gradient spin-echo (PGSE). ASSESSMENT The Bayesian method's performance in fitting cell diameter (d $$ d $$ ), intracellular volume fraction (f in $$ {f}_{in} $$ ), and extracellular diffusion coefficient (D ex $$ {D}_{ex} $$ ) was compared against the NLLS method, considering simulated and experimental data. The tumor region-of-interest (ROI) were manually delineated on the b0 images. The diagnostic performance in distinguishing high- and low-grade gliomas was assessed, and fitting accuracy was validated against H&E-stained pathology. STATISTICAL TESTS T-test, receiver operating curve (ROC), area under the curve (AUC) and DeLong's test were conducted. Significance considered at P < 0.05. RESULTS Bayesian methodology manifested increased accuracy with robust estimates in simulation (RMSE decreased by 29.6%, 40.9%, 13.6%, and STD decreased by 29.2%, 43.5%, and 24.0%, respectively ford $$ d $$ ,f in $$ {f}_{in} $$ , andD ex $$ {D}_{ex} $$ compared to NLLS), indicating fewer outliers and reduced error. Diagnostic performance for tumor grade was similar in both methods, however, Bayesian method generated smoother microstructural maps (outliers ratio decreased by 45.3% ± 19.4%) and a marginal enhancement in correlation with H&E staining result (r = 0.721 forf in $$ {f}_{in} $$ compared to r = 0.698 using NLLS, P = 0.5764). DATA CONCLUSION The proposed Bayesian method substantially enhances the accuracy and robustness of IMPULSED model estimation, suggesting its potential clinical utility in characterizing cellular microstructure. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Kuiyuan Liu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zixuan Lin
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tianshu Zheng
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruicheng Ba
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zelin Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Haotian Li
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Sharifzadeh Javidi S, Ahadi R, Saligheh Rad H. Improving Accuracy of Intravoxel Incoherent Motion Reconstruction using Kalman Filter in Combination with Neural Networks: A Simulation Study. J Biomed Phys Eng 2024; 14:141-150. [PMID: 38628891 PMCID: PMC11016822 DOI: 10.31661/jbpe.v0i0.2104-1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 04/19/2024]
Abstract
Background The intravoxel Incoherent Motion (IVIM) model extracts perfusion map and diffusion coefficient map using diffusion-weighted imaging. The main limitation of this model is inaccuracy in the presence of noise. Objective This study aims to improve the accuracy of IVIM output parameters. Material and Methods In this simulated and analytical study, the Kalman filter is applied to reject artifact and measurement noise. The proposed method purifies the diffusion coefficient from blood motion and noise, and then an artificial neural network is deployed in estimating perfusion parameters. Results Based on the T-test results, however, the estimated parameters of the conventional method were significantly different from actual values, those of the proposed method were not substantially different from actual. The accuracy of f and D* also was improved by using Artificial Neural Network (ANN) and their bias was minimized to 4% and 12%, respectively. Conclusion The proposed method outperforms the conventional method and is a promising technique, leading to reproducible and valid maps of D, f, and D*.
Collapse
Affiliation(s)
- Sam Sharifzadeh Javidi
- Department of Physics and Medical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Medicine School, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Department of Physics and Medical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Federau C. Clinical Interpretation of Intravoxel Incoherent Motion Perfusion Imaging in the Brain. Magn Reson Imaging Clin N Am 2024; 32:85-92. [PMID: 38007285 DOI: 10.1016/j.mric.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Intravoxel incoherent motion (IVIM) perfusion imaging extracts information on blood motion in biological tissue from diffusion-weighted MR images. The method is attractive from a clinical stand point, because it measures in essence local quantitative perfusion, without intravenous contrast injection. Currently, the clinical interpretation of IVIM perfusion maps focuses on the IVIM perfusion fraction maps, but improvements in image quality of the IVIM pseudo-diffusion maps, using advanced postprocessing tools involving artificial intelligence, could lead to an increased interest in this parameters, as it could provide additional local perfusion information in the clinical setting, not otherwise available with other perfusion techniques.
Collapse
Affiliation(s)
- Christian Federau
- AI Medical AG, Goldhaldenstr 22a, Zollikon 8702, Switzerland; University of Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Sharifzadeh Javidi S, Shirazinodeh A, Saligheh Rad H. Intravoxel Incoherent Motion Quantification Dependent on Measurement SNR and Tissue Perfusion: A Simulation Study. J Biomed Phys Eng 2023; 13:555-562. [PMID: 38148961 PMCID: PMC10749416 DOI: 10.31661/jbpe.v0i0.2102-1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/28/2021] [Indexed: 12/28/2023]
Abstract
Background The intravoxel incoherent motion (IVIM) model extracts both functional and structural information of a tissue using motion-sensitizing gradients. Objective The Objective of the present work is to investigate the impact of signal to noise ratio (SNR) and physiologic conditions on the validity of IVIM parameters. Material and Methods This study is a simulation study, modeling IVIM at a voxel, and also done 10,000 times for every single simulation. Complex noises with various standard deviations were added to signal in-silico to investigate SNR effects on output validity. Besides, some blood perfusion situations for different tissues were considered based on their physiological range to explore the impacts of blood fraction at each voxel on the validity of the IVIM outputs. Coefficient variation (CV) and bias of the estimations were computed to assess the validity of the IVIM parameters. Results This study has shown that the validity of IVIM output parameters highly depends on measurement SNR and physiologic characteristics of the studied organ. Conclusion IVIM imaging could be useful if imaging parameters are correctly selected for each specific organ, considering hardware limitations.
Collapse
Affiliation(s)
- Sam Sharifzadeh Javidi
- Department of Medical Physics and Biomedical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazinodeh
- Department of Medical Physics and Biomedical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Department of Medical Physics and Biomedical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hellström M, Löfstedt T, Garpebring A. Denoising and uncertainty estimation in parameter mapping with approximate Bayesian deep image priors. Magn Reson Med 2023; 90:2557-2571. [PMID: 37582257 DOI: 10.1002/mrm.29823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE To mitigate the problem of noisy parameter maps with high uncertainties by casting parameter mapping as a denoising task based on Deep Image Priors. METHODS We extend the concept of denoising with Deep Image Prior (DIP) into parameter mapping by treating the output of an image-generating network as a parametrization of tissue parameter maps. The method implicitly denoises the parameter mapping process by filtering low-level image features with an untrained convolutional neural network (CNN). Our implementation includes uncertainty estimation from Bernoulli approximate variational inference, implemented with MC dropout, which provides model uncertainty in each voxel of the denoised parameter maps. The method is modular, so the specifics of different applications (e.g., T1 mapping) separate into application-specific signal equation blocks. We evaluate the method on variable flip angle T1 mapping, multi-echo T2 mapping, and apparent diffusion coefficient mapping. RESULTS We found that deep image prior adapts successfully to several applications in parameter mapping. In all evaluations, the method produces noise-reduced parameter maps with decreased uncertainty compared to conventional methods. The downsides of the proposed method are the long computational time and the introduction of some bias from the denoising prior. CONCLUSION DIP successfully denoise the parameter mapping process and applies to several applications with limited hyperparameter tuning. Further, it is easy to implement since DIP methods do not use network training data. Although time-consuming, uncertainty information from MC dropout makes the method more robust and provides useful information when properly calibrated.
Collapse
Affiliation(s)
- Max Hellström
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Tommy Löfstedt
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Department of Computing Science, Umeå University, Umeå, Sweden
| | | |
Collapse
|
12
|
Liu J, Karfoul A, Marage L, Shu H, Gambarota G. Estimation of intravoxel incoherent motion (IVIM) parameters in vertebral bone marrow: a comparative study of five algorithms. MAGMA (NEW YORK, N.Y.) 2023; 36:837-847. [PMID: 36715885 DOI: 10.1007/s10334-023-01064-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To access the performances of different algorithms for quantification of Intravoxel incoherent motion (IVIM) parameters D, f, [Formula: see text] in Vertebral Bone Marrow (VBM). MATERIALS AND METHODS Five algorithms were studied: four deterministic algorithms (the One-Step and three segmented methods: Two-Step, Three-Step, and Fixed-[Formula: see text] algorithm) based on the least-squares (LSQ) method and a Bayesian probabilistic algorithm. Numerical simulations and quantification of IVIM parameters D, f, [Formula: see text] in vivo in vertebral bone marrow, were done on six healthy volunteers. The One-way repeated-measures analysis of variance (ANOVA) followed by Bonferroni's multiple comparison test (p value = 0.05) was applied. RESULTS In numerical simulations, the Bayesian algorithm provided the best estimation of D, f, [Formula: see text] compared to the deterministic algorithms. In vivo VBM-IVIM, the values of D and f estimated by the Bayesian algorithm were close to those of the One-Step method, in contrast to the three segmented methods. DISCUSSION The comparison of the five algorithms indicates that the Bayesian algorithm provides the best estimation of VBM-IVIM parameters, in both numerical simulations and in vivo data.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Image Science and Technology (LIST), School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China.
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China.
- Univ Rennes, Southeast University, INSERM, Centre de Recherche en Information Biomèdicale sino-français (CRIBs)-LIA, 35000, Rennes, France.
| | - Ahmad Karfoul
- Univ Rennes, Southeast University, INSERM, Centre de Recherche en Information Biomèdicale sino-français (CRIBs)-LIA, 35000, Rennes, France
- Univ Rennes, INSERM, LTSI-UMR 1099, 35000, Rennes, France
| | - Louis Marage
- Department of Medical Physics, Georges François Leclerc Cancer Center, 21000, Dijon, France
| | - Huazhong Shu
- Laboratory of Image Science and Technology (LIST), School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China
- Univ Rennes, Southeast University, INSERM, Centre de Recherche en Information Biomèdicale sino-français (CRIBs)-LIA, 35000, Rennes, France
| | - Giulio Gambarota
- Univ Rennes, Southeast University, INSERM, Centre de Recherche en Information Biomèdicale sino-français (CRIBs)-LIA, 35000, Rennes, France
- Univ Rennes, INSERM, LTSI-UMR 1099, 35000, Rennes, France
| |
Collapse
|
13
|
Cromb D, Slator PJ, De La Fuente M, Price AN, Rutherford M, Egloff A, Counsell SJ, Hutter J. Assessing within-subject rates of change of placental MRI diffusion metrics in normal pregnancy. Magn Reson Med 2023; 90:1137-1150. [PMID: 37183839 PMCID: PMC10962570 DOI: 10.1002/mrm.29665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. METHODS Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both aT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion (T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit. RESULTS There was a significant decline in placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals forT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). TheT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). CONCLUSION Whole placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although onlyT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change ofT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmentalT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Paddy J. Slator
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Miguel De La Fuente
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Anthony N. Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| |
Collapse
|
14
|
Bolan PJ, Saunders SL, Kay K, Gross M, Akcakaya M, Metzger GJ. Improved Quantitative Parameter Estimation for Prostate T2 Relaxometry using Convolutional Neural Networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.11.23284194. [PMID: 36711813 PMCID: PMC9882442 DOI: 10.1101/2023.01.11.23284194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This work seeks to evaluate multiple methods for quantitative parameter estimation from standard T2 mapping acquisitions in the prostate. The T2 estimation performance of methods based on neural networks (NN) was quantitatively compared to that of conventional curve fitting techniques. Large physics-based synthetic datasets simulating T2 mapping acquisitions were generated for training NNs and for quantitative performance comparisons. Ten combinations of different NN architectures, training strategies, and training corpora were implemented and compared with four different curve fitting strategies. All methods were compared quantitatively using synthetic data with known ground truth, and further compared on in vivo test data, with and without noise augmentation, to evaluate feasibility and noise robustness. In the evaluation on synthetic data, a convolutional neural network (CNN), trained in a supervised fashion using synthetic data generated from naturalistic images, showed the highest overall accuracy and precision amongst all the methods. On in vivo data, this best-performing method produced low-noise T2 maps and showed the least deterioration with increasing input noise levels. This study showed that a CNN, trained with synthetic data in a supervised manner, may provide superior T2 estimation performance compared to conventional curve fitting, especially in low signal-to-noise regions.
Collapse
Affiliation(s)
- Patrick J Bolan
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
- Department of Radiology, University of Minnesota, Minneapolis MN
| | - Sara L Saunders
- Department of Biomedical Engineering, University of Minnesota, Minneapolis MN
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
- Department of Radiology, University of Minnesota, Minneapolis MN
| | - Mitchell Gross
- Department of Biomedical Engineering, University of Minnesota, Minneapolis MN
| | - Mehmet Akcakaya
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
- Department of Radiology, University of Minnesota, Minneapolis MN
| |
Collapse
|
15
|
Kaandorp MPT, Zijlstra F, Federau C, While PT. Deep learning intravoxel incoherent motion modeling: Exploring the impact of training features and learning strategies. Magn Reson Med 2023; 90:312-328. [PMID: 36912473 DOI: 10.1002/mrm.29628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE The development of advanced estimators for intravoxel incoherent motion (IVIM) modeling is often motivated by a desire to produce smoother parameter maps than least squares (LSQ). Deep neural networks show promise to this end, yet performance may be conditional on a myriad of choices regarding the learning strategy. In this work, we have explored potential impacts of key training features in unsupervised and supervised learning for IVIM model fitting. METHODS Two synthetic data sets and one in-vivo data set from glioma patients were used in training of unsupervised and supervised networks for assessing generalizability. Network stability for different learning rates and network sizes was assessed in terms of loss convergence. Accuracy, precision, and bias were assessed by comparing estimations against ground truth after using different training data (synthetic and in vivo). RESULTS A high learning rate, small network size, and early stopping resulted in sub-optimal solutions and correlations in fitted IVIM parameters. Extending training beyond early stopping resolved these correlations and reduced parameter error. However, extensive training resulted in increased noise sensitivity, where unsupervised estimates displayed variability similar to LSQ. In contrast, supervised estimates demonstrated improved precision but were strongly biased toward the mean of the training distribution, resulting in relatively smooth, yet possibly deceptive parameter maps. Extensive training also reduced the impact of individual hyperparameters. CONCLUSION Voxel-wise deep learning for IVIM fitting demands sufficiently extensive training to minimize parameter correlation and bias for unsupervised learning, or demands a close correspondence between the training and test sets for supervised learning.
Collapse
Affiliation(s)
- Misha P T Kaandorp
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Frank Zijlstra
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Federau
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,AI Medical, Zurich, Switzerland
| | - Peter T While
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Scalco E, Rizzo G, Mastropietro A. The quantification of IntraVoxel incoherent motion - MRI maps cannot preserve texture information: An evaluation based on simulated and in-vivo images. Comput Biol Med 2023; 154:106495. [PMID: 36669333 DOI: 10.1016/j.compbiomed.2022.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Radiomics can be applied on parametric maps obtained from IntraVoxel Incoherent Motion (IVIM) MRI to characterize heterogeneity in diffusion and perfusion tissue properties. The purpose of this work is to assess the accuracy and reproducibility of radiomic features computed from IVIM maps using different fitting methods. METHODS 200 digitally simulated IVIM-MRI images with various SNR containing different combinations of texture patterns were generated from ground truth maps of true diffusion D, pseudo-diffusion D* and perfusion fraction f. Four different methods (segmented least-square LSQ, Bayesian, supervised and unsupervised deep learning DL) were adopted to quantify IVIM maps from simulations and from two real images of liver tumor. Radiomic features were computed from ground truth and estimated maps. Accuracy and reproducibility among quantification methods were assessed. RESULTS Almost 50% of radiomic features computed from D maps using DL approaches, 36% using Bayes and 27% using LSQ presented errors lower than 50%. Radiomic features from f and D* maps were accurate only if computed using DL methods from histogram. High reproducibility (ICC>0.8) was found only for D maps among DL and Bayes methods, whereas features from f and D* maps were less reproducible, with LSQ approach in lower agreement with the others. CONCLUSIONS Texture patterns were preserved and correctly estimated only on D maps, except for LSQ approach. We suggest limiting radiomic analysis only to histogram and some texture features from D maps, to histogram features from f maps, and to avoid it on D* maps.
Collapse
Affiliation(s)
- Elisa Scalco
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy.
| | - Giovanna Rizzo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Alfonso Mastropietro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| |
Collapse
|
17
|
Stabinska J, Zöllner HJ, Thiel TA, Wittsack HJ, Ljimani A. Image downsampling expedited adaptive least-squares (IDEAL) fitting improves intravoxel incoherent motion (IVIM) analysis in the human kidney. Magn Reson Med 2023; 89:1055-1067. [PMID: 36416075 DOI: 10.1002/mrm.29517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To improve the reliability of intravoxel incoherent motion (IVIM) model parameter estimation for the DWI in the kidney using a novel image downsampling expedited adaptive least-squares (IDEAL) approach. METHODS The robustness of IDEAL was investigated using simulated DW-MRI data corrupted with different levels of Rician noise. Subsequently, the performance of the proposed method was tested by fitting bi- and triexponential IVIM model to in vivo renal DWI data acquired on a clinical 3 Tesla MRI scanner and compared to conventional approaches (fixed D* and segmented fitting). RESULTS The numerical simulations demonstrated that the IDEAL algorithm provides robust estimates of the IVIM parameters in the presence of noise (SNR of 20) as indicated by relatively low absolute percentage bias (maximal sMdPB <20%) and normalized RMSE (maximal RMSE <28%). The analysis of the in vivo data showed that the IDEAL-based IVIM parameter maps were less noisy and more visually appealing than those obtained using the fixed D* and segmented methods. Further, coefficients of variation for nearly all IVIM parameters were significantly reduced in cortex and medulla for IDEAL-based biexponential (coefficients of variation: 4%-50%) and triexponential (coefficients of variation: 7.5%-75%) IVIM modelling compared to the segmented (coefficients of variation: 4%-120%) and fixed D* (coefficients of variation: 17%-174%) methods, reflecting greater accuracy of this method. CONCLUSION The proposed fitting algorithm yields more robust IVIM parameter estimates and is less susceptible to poor SNR than the conventional fitting approaches. Thus, the IDEAL approach has the potential to improve the reliability of renal DW-MRI analysis for clinical applications.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Helge J Zöllner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas A Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Simchick G, Hernando D. Precision of region of interest-based tri-exponential intravoxel incoherent motion quantification and the role of the Intervoxel spatial distribution of flow velocities. Magn Reson Med 2022; 88:2662-2678. [PMID: 35968580 PMCID: PMC9529845 DOI: 10.1002/mrm.29406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE The purpose of this work was to obtain precise tri-exponential intravoxel incoherent motion (IVIM) quantification in the liver using 2D (b-value and first-order motion moment [M1 ]) IVIM-DWI acquisitions and region of interest (ROI)-based fitting techniques. METHODS Diffusion MRI of the liver was performed in 10 healthy volunteers using three IVIM-DWI acquisitions: conventional monopolar, optimized monopolar, and optimized 2D (b-M1 ). For each acquisition, bi-exponential and tri-exponential full, segmented, and over-segmented ROI-based fitting and a newly proposed blood velocity SDdistribution (BVD) fitting technique were performed to obtain IVIM estimates in the right and left liver lobes. Fitting quality was evaluated using corrected Akaike information criterion. Precision metrics (test-retest repeatability, inter-reader reproducibility, and inter-lobar agreement) were evaluated using Bland-Altman analysis, repeatability/reproducibility coefficients (RPCs), and paired sample t-tests. Precision was compared across acquisitions and fitting methods. RESULTS High repeatability and reproducibility was observed in the estimations of the diffusion coefficient (Dtri = [1.03 ± 0.11] × 10-3 mm2 /s; RPCs ≤ 1.34 × 10-4 mm2 /s), perfusion fractions (F1 = 3.19 ± 1.89% and F2 = 16.4 ± 2.07%; RPCs ≤ 2.51%), and blood velocity SDs (Vb,1 = 1.44 ± 0.14 mm/s and Vb,2 = 3.62 ± 0.13 mm/s; RPCs ≤ 0.41 mm/s) in the right liver lobe using the 2D (b-M1 ) acquisition in conjunction with BVD fitting. Using these methods, significantly larger (p < 0.01) estimates of Dtri and F1 were observed in the left lobe in comparison to the right lobe, while estimates of Vb,1 and Vb,2 demonstrated high interlobar agreement (RPCs ≤ 0.45 mm/s). CONCLUSIONS The 2D (b-M1 ) IVIM-DWI data acquisition in conjunction with BVD fitting enables highly precise tri-exponential IVIM quantification in the right liver lobe.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Gurney-Champion OJ, Landry G, Redalen KR, Thorwarth D. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy. Semin Radiat Oncol 2022; 32:377-388. [DOI: 10.1016/j.semradonc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Mastropietro A, Procissi D, Scalco E, Rizzo G, Bertolino N. A supervised deep neural network approach with standardized targets for enhanced accuracy of IVIM parameter estimation from multi-SNR images. NMR IN BIOMEDICINE 2022; 35:e4774. [PMID: 35587618 PMCID: PMC9539583 DOI: 10.1002/nbm.4774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Extraction of intravoxel incoherent motion (IVIM) parameters from noisy diffusion-weighted (DW) images using a biexponential fitting model is computationally challenging, and the reliability of the estimated perfusion-related quantities represents a limitation of this technique. Artificial intelligence can overcome the current limitations and be a suitable solution to advance use of this technique in both preclinical and clinical settings. The purpose of this work was to develop a deep neural network (DNN) approach, trained on numerical simulated phantoms with different signal to noise ratios (SNRs), to improve IVIM parameter estimation. The proposed approach is based on a supervised fully connected DNN having 3 hidden layers, 18 inputs and 3 targets with standardized values. 14 × 103 simulated DW images, based on a Shepp-Logan phantom, were randomly generated with varying SNRs (ranging from 10 to 100). 7 × 103 images (1000 for each SNR) were used for training. Performance accuracy was assessed in simulated images and the proposed approach was compared with the state-of-the-art Bayesian approach and other DNN algorithms. The DNN approach was also evaluated in vivo on a high-field MRI preclinical scanner. Our DNN approach showed an overall improvement in accuracy when compared with the Bayesian approach and other DNN methods in most of the simulated conditions. The in vivo results demonstrated the feasibility of the proposed approach in real settings and generated quantitative results comparable to those obtained using the Bayesian and unsupervised approaches, especially for D and f, and with lower variability in homogeneous regions. The DNN architecture proposed in this work outlines two innovative features as compared with other studies: (1) the use of standardized targets to improve the estimation of parameters, and (2) the implementation of a single DNN to enhance the IVIM fitting at different SNRs, providing a valuable alternative tool to compute IVIM parameters in conditions of high background noise.
Collapse
Affiliation(s)
| | - Daniel Procissi
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Elisa Scalco
- Istituto di Tecnologie BiomedicheConsiglio Nazionale delle RicercheSegrateItaly
| | - Giovanna Rizzo
- Istituto di Tecnologie BiomedicheConsiglio Nazionale delle RicercheSegrateItaly
| | - Nicola Bertolino
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
21
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
22
|
Simchick G, Geng R, Zhang Y, Hernando D. b value and first-order motion moment optimized data acquisition for repeatable quantitative intravoxel incoherent motion DWI. Magn Reson Med 2022; 87:2724-2740. [PMID: 35092092 PMCID: PMC9275352 DOI: 10.1002/mrm.29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To design a b value and first-order motion moment (M1 ) optimized data acquisition for repeatable intravoxel incoherent motion (IVIM) quantification in the liver. METHODS Cramer-Rao lower bound optimization was performed to determine optimal monopolar and optimal 2D samplings of the b-M1 space based on noise performance. Monte Carlo simulations were used to evaluate the bias and variability in estimates obtained using the proposed optimal samplings and conventional monopolar sampling. Diffusion MRI of the liver was performed in 10 volunteers using 3 IVIM acquisitions: conventional monopolar, optimized monopolar, and b-M1 -optimized gradient waveforms (designed based on the optimal 2D sampling). IVIM parameter maps of diffusion coefficient, perfusion fraction, and blood velocity SD were obtained using nonlinear least squares fitting. Noise performance (SDs), stability (outlier percentage), and test-retest or scan-rescan repeatability (intraclass correlation coefficients) were evaluated and compared across acquisitions. RESULTS Cramer-Rao lower bound and Monte Carlo simulations demonstrated improved noise performance of the optimal 2D sampling in comparison to monopolar samplings. Evaluating the designed b-M1 -optimized waveforms in healthy volunteers, significant decreases (p < 0.05) in the SDs and outlier percentages were observed for measurements of diffusion coefficient, perfusion fraction, and blood velocity SD in comparison to measurements obtained using monopolar samplings. Good-to-excellent repeatability (intraclass correlation coefficients ≥ 0.77) was observed for all 3 parameters in both the right and left liver lobes using the b-M1 -optimized waveforms. CONCLUSIONS 2D b-M1 -optimized data acquisition enables repeatable IVIM quantification with improved noise performance. 2D acquisitions may advance the establishment of IVIM quantitative biomarkers for liver diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruiqi Geng
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuxin Zhang
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
The use of MRI radiomic models for the diagnosis, prognosis and treatment response prediction of tumors has been increasingly reported in literature. However, its widespread adoption in clinics is hampered by issues related to features stability. In the MRI radiomic workflow, the main factors that affect radiomic features computation can be found in the image acquisition and reconstruction phase, in the image pre-processing steps, and in the segmentation of the region of interest on which radiomic indices are extracted. Deep Neural Networks (DNNs), having shown their potentiality in the medical image processing and analysis field, can be seen as an attractive strategy to partially overcome the issues related to radiomic stability and mitigate their impact. In fact, DNN approaches can be prospectively integrated in the MRI radiomic workflow to improve image quality, obtain accurate and reproducible segmentations and generate standardized images. In this review, DNN methods that can be included in the image processing steps of the radiomic workflow are described and discussed, in the light of a detailed analysis of the literature in the context of MRI radiomic reliability.
Collapse
|
24
|
Fadnavis S, Endres S, Wen Q, Wu YC, Cheng H, Koudoro S, Rane S, Rokem A, Garyfallidis E. Bifurcated Topological Optimization for IVIM. Front Neurosci 2021; 15:779025. [PMID: 34975382 PMCID: PMC8714828 DOI: 10.3389/fnins.2021.779025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
In this work, we shed light on the issue of estimating Intravoxel Incoherent Motion (IVIM) for diffusion and perfusion estimation by characterizing the objective function using simplicial homology tools. We provide a robust solution via topological optimization of this model so that the estimates are more reliable and accurate. Estimating the tissue microstructure from diffusion MRI is in itself an ill-posed and a non-linear inverse problem. Using variable projection functional (VarPro) to fit the standard bi-exponential IVIM model we perform the optimization using simplicial homology based global optimization to better understand the topology of objective function surface. We theoretically show how the proposed methodology can recover the model parameters more accurately and consistently by casting it in a reduced subspace given by VarPro. Additionally we demonstrate that the IVIM model parameters cannot be accurately reconstructed using conventional numerical optimization methods due to the presence of infinite solutions in subspaces. The proposed method helps uncover multiple global minima by analyzing the local geometry of the model enabling the generation of reliable estimates of model parameters.
Collapse
Affiliation(s)
- Shreyas Fadnavis
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- *Correspondence: Shreyas Fadnavis
| | - Stefan Endres
- Faculty of Production Engineering, Leibniz Institute of Materials Engineering (IWT), Bremen, Germany
- Department of Chemical Engineering, Institute of Applied Materials, University of Pretoria, Pretoria, South Africa
| | - Qiuting Wen
- Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yu-Chien Wu
- Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hu Cheng
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Serge Koudoro
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
| | - Swati Rane
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
25
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
26
|
Kaandorp MPT, Barbieri S, Klaassen R, van Laarhoven HWM, Crezee H, While PT, Nederveen AJ, Gurney‐Champion OJ. Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn Reson Med 2021; 86:2250-2265. [PMID: 34105184 PMCID: PMC8362093 DOI: 10.1002/mrm.28852] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Earlier work showed that IVIM-NETorig , an unsupervised physics-informed deep neural network, was faster and more accurate than other state-of-the-art intravoxel-incoherent motion (IVIM) fitting approaches to diffusion-weighted imaging (DWI). This study presents a substantially improved version, IVIM-NEToptim , and characterizes its superior performance in pancreatic cancer patients. METHOD In simulations (signal-to-noise ratio [SNR] = 20), the accuracy, independence, and consistency of IVIM-NET were evaluated for combinations of hyperparameters (fit S0, constraints, network architecture, number of hidden layers, dropout, batch normalization, learning rate), by calculating the normalized root-mean-square error (NRMSE), Spearman's ρ, and the coefficient of variation (CVNET ), respectively. The best performing network, IVIM-NEToptim was compared to least squares (LS) and a Bayesian approach at different SNRs. IVIM-NEToptim 's performance was evaluated in an independent dataset of 23 patients with pancreatic ductal adenocarcinoma. Fourteen of the patients received no treatment between two repeated scan sessions and nine received chemoradiotherapy between the repeated sessions. Intersession within-subject standard deviations (wSD) and treatment-induced changes were assessed. RESULTS In simulations (SNR = 20), IVIM-NEToptim outperformed IVIM-NETorig in accuracy (NRMSE(D) = 0.177 vs 0.196; NMRSE(f) = 0.220 vs 0.267; NMRSE(D*) = 0.386 vs 0.393), independence (ρ(D*, f) = 0.22 vs 0.74), and consistency (CVNET (D) = 0.013 vs 0.104; CVNET (f) = 0.020 vs 0.054; CVNET (D*) = 0.036 vs 0.110). IVIM-NEToptim showed superior performance to the LS and Bayesian approaches at SNRs < 50. In vivo, IVIM-NEToptim showed significantly less noisy parameter maps with lower wSD for D and f than the alternatives. In the treated cohort, IVIM-NEToptim detected the most individual patients with significant parameter changes compared to day-to-day variations. CONCLUSION IVIM-NEToptim is recommended for accurate, informative, and consistent IVIM fitting to DWI data.
Collapse
Affiliation(s)
- Misha P. T. Kaandorp
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
- Department of Circulation and Medical ImagingNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| | | | - Remy Klaassen
- Department of Medical OncologyCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Hanneke W. M. van Laarhoven
- Department of Medical OncologyCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Hans Crezee
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Peter T. While
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
- Department of Circulation and Medical ImagingNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| | - Aart J. Nederveen
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Oliver J. Gurney‐Champion
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
27
|
Xia N, Li Y, Xue Y, Li W, Zhang Z, Wen C, Li J, Ye Q. Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer's disease. Brain Imaging Behav 2021; 16:617-626. [PMID: 34480258 DOI: 10.1007/s11682-021-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is the most common type of dementia, and characterizing brain changes in AD is important for clinical diagnosis and prognosis. This study was designed to evaluate the classification performance of intravoxel incoherent motion (IVIM) diffusion-weighted imaging in differentiating between AD patients and normal control (NC) subjects and to explore its potential effectiveness as a neuroimaging biomarker. METHODS Thirty-one patients with probable AD and twenty NC subjects were included in the prospective study. IVIM data were subjected to postprocessing, and parameters including the apparent diffusion coefficient (ADC), slow diffusion coefficient (Ds), fast diffusion coefficient (Df), perfusion fraction (fp) and Df*fp were calculated. The classification model was developed and confirmed with cross-validation (group A/B) using Support Vector Machine (SVM). Correlations between IVIM parameters and Mini-Mental State Examination (MMSE) scores in AD patients were investigated using partial correlation analysis. RESULTS Diffusion MRI revealed significant region-specific differences that aided in differentiating AD patients from controls. Among the analyzed regions and parameters, the Df of the right precuneus (PreR) (ρ = 0.515; P = 0.006) and the left cerebellum (CL) (ρ = 0.429; P = 0.026) demonstrated significant associations with the cognitive function of AD patients. An area under the receiver operating characteristics curve (AUC) of 0.84 (95% CI: 0.66, 0.99) was calculated for the validation in dataset B after the prediction model was trained on dataset A. When the datasets were reversed, an AUC of 0.90 (95% CI: 0.75, 1.00) was calculated for the validation in dataset A, after the prediction model trained in dataset B. CONCLUSION IVIM imaging is a promising method for the classification of AD and NC subjects, and IVIM parameters of precuneus and cerebellum might be effective biomarker for the diagnosis of AD.
Collapse
Affiliation(s)
- Nengzhi Xia
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanxuan Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingnan Xue
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weikang Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenhua Zhang
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Caiyun Wen
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiance Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiong Ye
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China.
| |
Collapse
|
28
|
Freitas AC, Gaspar AS, Sousa I, Teixeira RPAG, Hajnal JV, Nunes RG. Improving B 1 + parametric estimation in the brain from multispin-echo sequences using a fusion bootstrap moves solver. Magn Reson Med 2021; 86:2426-2440. [PMID: 34231250 DOI: 10.1002/mrm.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To simultaneously estimate the B 1 + field (along with the T2 ) in the brain with multispin-echo (MSE) sequences and dictionary matching. METHODS T2 mapping provides clinically relevant information such as in the assessment of brain degenerative diseases. It is commonly obtained with MSE sequences, and accuracy can be further improved by matching the MSE signal to a precomputed dictionary of echo-modulation curves. For additional T1 quantification, transmit B 1 + field knowledge is also required. Preliminary work has shown that although simultaneous brain B 1 + estimation along with T2 is possible, it presents a bimodal distribution with the main peak coinciding with the true value. By taking advantage of this, the B 1 + maps are expected to be spatially smooth by applying an iterative method that takes into account each pixel neighborhood known as the fusion bootstrap moves solver (FBMS). The effect of the FBMS on B 1 + accuracy and piecewise smoothness is investigated and different spatial regularization levels are compared. Total variation regularization was used for both B 1 + and T2 simultaneous estimation because of its simplicity as an initial proof-of-concept; future work could explore non edge-preserving regularization independently for B 1 + . RESULTS Improvements in B 1 + accuracy (up to 45.37% and 16.81% B 1 + error decrease) and recovery of spatially homogeneous maps are shown in simulations and in vivo 3.0T brain data, respectively. CONCLUSION Accurate B 1 + estimated values can be obtained from widely available MSE sequences while jointly estimating T2 maps with the use of echo-modulation curve matching and FBMS at no further cost.
Collapse
Affiliation(s)
- Andreia C Freitas
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia S Gaspar
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Sousa
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rui P A G Teixeira
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Rita G Nunes
- Institute for Systems and Robotics (ISR-Lisboa)/LaRSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Jerome NP, Vidić I, Egnell L, Sjøbakk TE, Østlie A, Fjøsne HE, Goa PE, Bathen TF. Understanding diffusion-weighted MRI analysis: Repeatability and performance of diffusion models in a benign breast lesion cohort. NMR IN BIOMEDICINE 2021; 34:e4508. [PMID: 33738878 DOI: 10.1002/nbm.4508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Diffusion-weighted MRI (DWI) is an important tool for oncology research, with great clinical potential for the classification and monitoring of breast lesions. The utility of parameters derived from DWI, however, is influenced by specific analysis choices. The purpose of this study was to critically evaluate repeatability and curve-fitting performance of common DWI signal representations, for a prospective cohort of patients with benign breast lesions. Twenty informed, consented patients with confirmed benign breast lesions underwent repeated DWI (3 T) using: sagittal single-shot spin-echo echo planar imaging, bipolar encoding, TR/TE: 11,600/86 ms, FOV: 180 x 180 mm, matrix: 90 x 90, slices: 60 x 2.5 mm, iPAT: GRAPPA 2, fat suppression, and 13 b-values: 0-700 s/mm2 . A phase-reversed scan (b = 0 s/mm2 ) was acquired for distortion correction. Voxel-wise repeat-measures coefficients of variation (CoVs) were derived for monoexponential (apparent diffusion coefficient [ADC]), biexponential (intravoxel incoherent motion: f, D, D*) and stretched exponential (α, DDC) across the parameter histograms for lesion regions of interest (ROIs). Goodness-of-fit for each representation was assessed by Bayesian information criterion. The volume of interest (VOI) definition was repeatable (CoV 13.9%). Within lesions, and across both visits and the cohort, there was no dominant best-fit model, with all representations giving the best fit for a fraction of the voxels. Diffusivity measures from the signal representations (ADC, D, DDC) all showed good repeatability (CoV < 10%), whereas parameters associated with pseudodiffusion (f, D*) performed poorly (CoV > 50%). The stretching exponent α was repeatable (CoV < 12%). This pattern of repeatability was consistent over the central part of the parameter percentiles. Assumptions often made in diffusion studies about analysis choices will influence the detectability of changes, potentially obscuring useful information. No single signal representation prevails within or across lesions, or across repeated visits; parameter robustness is therefore a critical consideration. Our results suggest that stretched exponential representation is more repeatable than biexponential, with pseudodiffusion parameters unlikely to provide clinically useful biomarkers.
Collapse
Affiliation(s)
- Neil Peter Jerome
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Igor Vidić
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Egnell
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torill E Sjøbakk
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Agnes Østlie
- Department of Radiology, St. Olavs Hospital, Trondheim, Norway
| | - Hans E Fjøsne
- Department of Radiology, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Erik Goa
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
30
|
Spinner GR, Federau C, Kozerke S. Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain: Analysis of cancer and acute stroke. Med Image Anal 2021; 73:102144. [PMID: 34261009 DOI: 10.1016/j.media.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The intravoxel incoherent motion (IVIM) model allows to map diffusion (D) and perfusion-related parameters (F and D*). Parameter estimation is, however, error-prone due to the non-linearity of the signal model, the limited signal-to-noise ratio (SNR) and the small volume fraction of perfusion in the in-vivo brain. In the present work, the performance of Bayesian inference was examined in the presence of brain pathologies characterized by hypo- and hyperperfusion. In particular, a hierarchical and a spatial prior were combined. Performance was compared relative to conventional segmented least squares regression, hierarchical prior only (non-segmented and segmented data likelihoods) and a deep learning approach. Realistic numerical brain IVIM simulations were conducted to assess errors relative to ground truth. In-vivo, data of 11 central nervous system cancer patients and 9 patients with acute stroke were acquired. The proposed method yielded reduced error in simulations for both the cancer and acute stroke scenarios compared to other methods across the whole investigated SNR range. The contrast-to-noise ratio of the proposed method was better or on par compared to the other techniques in-vivo. The proposed Bayesian approach hence improves IVIM parameter estimation in brain cancer and acute stroke.
Collapse
Affiliation(s)
- Georg Ralph Spinner
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Christian Federau
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland.
| |
Collapse
|
31
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
32
|
Jerome NP, Periquito JS. Analysis of Renal Diffusion-Weighted Imaging (DWI) Using Apparent Diffusion Coefficient (ADC) and Intravoxel Incoherent Motion (IVIM) Models. Methods Mol Biol 2021; 2216:611-635. [PMID: 33476027 DOI: 10.1007/978-1-0716-0978-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Analysis of renal diffusion-weighted imaging (DWI) data to derive markers of tissue properties requires careful consideration of the type, extent, and limitations of the acquired data. Alongside data quality and general suitability for quantitative analysis, choice of diffusion model, fitting algorithm, and processing steps can have consequences for the precision, accuracy, and reliability of derived diffusion parameters. Here we introduce and discuss important steps for diffusion-weighted image processing, and in particular give example analysis protocols and pseudo-code for analysis using the apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) models. Following an overview of general principles, we provide details of optional steps, and steps for validation of results. Illustrative examples are provided, together with extensive notes discussing wider context of individual steps, and notes on potential pitfalls.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.
Collapse
Affiliation(s)
- Neil Peter Jerome
- Institute for Circulation and Diagnostic Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.
| | - João S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
33
|
Löfstedt T, Hellström M, Bylund M, Garpebring A. Bayesian non-linear regression with spatial priors for noise reduction and error estimation in quantitative MRI with an application in T1 estimation. Phys Med Biol 2020; 65:225036. [PMID: 32947277 DOI: 10.1088/1361-6560/abb9f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a method that can reduce and estimate uncertainty in quantitative MR parameter maps without the need for hand-tuning of any hyperparameters. METHODS We present an estimation method where uncertainties are reduced by incorporating information on spatial correlations between neighbouring voxels. The method is based on a Bayesian hierarchical non-linear regression model, where the parameters of interest are sampled, using Markov chain Monte Carlo (MCMC), from a high-dimensional posterior distribution with a spatial prior. The degree to which the prior affects the model is determined by an automatic hyperparameter search using an information criterion and is, therefore, free from manual user-dependent tuning. The samples obtained further provide a convenient means to obtain uncertainties in both voxels and regions. The developed method was evaluated on T 1 estimations based on the variable flip angle method. RESULTS The proposed method delivers noise-reduced T 1 parameter maps with associated error estimates by combining MCMC sampling, the widely applicable information criterion, and total variation-based denoising. The proposed method results in an overall decrease in estimation error when compared to conventional voxel-wise maximum likelihood estimation. However, this comes with an increased bias in some regions, predominately at tissue interfaces, as well as an increase in computational time. CONCLUSIONS This study provides a method that generates more precise estimates compared to the conventional method, without incorporating user subjectivity, and with the added benefit of uncertainty estimation.
Collapse
Affiliation(s)
- Tommy Löfstedt
- Department of Radiation Sciences, Umeå University, Umeå, Sweden. Department of Computing Science, Umeå University, Umeå, Sweden. Equally contributing authors
| | | | | | | |
Collapse
|
34
|
Ye C, Xu D, Qin Y, Wang L, Wang R, Li W, Kuai Z, Zhu Y. Accurate intravoxel incoherent motion parameter estimation using Bayesian fitting and reduced number of low b-values. Med Phys 2020; 47:4372-4385. [PMID: 32403175 DOI: 10.1002/mp.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Intravoxel incoherent motion (IVIM) magnetic resonance imaging is a potential noninvasive technique for the diagnosis of brain tumors. However, perfusion-related parameter mapping is a persistent problem. The purpose of this paper is to investigate the IVIM parameter mapping of brain tumors using Bayesian fitting and low b-values. METHODS Bayesian shrinkage prior (BSP) fitting method and different low b-value distributions were used to estimate IVIM parameters (diffusion D, pseudo-diffusion D*, and perfusion fraction F). The results were compared to those obtained by least squares (LSQ) on both simulated and in vivo brain data. Relative error (RE) and reproducibility were used to evaluate the results. The differences of IVIM parameters between brain tumor and normal regions were compared and used to assess the performance of Bayesian fitting in the IVIM application of brain tumor. RESULTS In tumor regions, the value of D* tended to be decreased when the number of low b-values was insufficient, especially with LSQ. BSP required less low b-values than LSQ for the correct estimation of perfusion parameters of brain tumors. The IVIM parameter maps of brain tumors yielded by BSP had smaller variability, lower RE, and higher reproducibility with respect to those obtained by LSQ. Obvious differences were observed between tumor and normal regions in parameters D (P < 0.05) and F (P < 0.001), especially F. BSP generated fewer outliers than LSQ, and distinguished better tumors from normal regions in parameter F. CONCLUSIONS Intravoxel incoherent motion parameters clearly allow brain tumors to be differentiated from normal regions. Bayesian fitting yields robust IVIM parameter mapping with fewer outliers and requires less low b-values than LSQ for the parameter estimation.
Collapse
Affiliation(s)
- Chen Ye
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Daoyun Xu
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Yongbin Qin
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wuchao Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zixiang Kuai
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuemin Zhu
- Univ Lyon, INSA Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, F-69621, France
| |
Collapse
|
35
|
Iima M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends. Magn Reson Med Sci 2020; 20:125-138. [PMID: 32536681 PMCID: PMC8203481 DOI: 10.2463/mrms.rev.2019-0124] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent developments in MR hardware and software have allowed a surge of interest in intravoxel incoherent motion (IVIM) MRI in oncology. Beyond diffusion-weighted imaging (and the standard apparent diffusion coefficient mapping most commonly used clinically), IVIM provides information on tissue microcirculation without the need for contrast agents. In oncology, perfusion-driven IVIM MRI has already shown its potential for the differential diagnosis of malignant and benign tumors, as well as for detecting prognostic biomarkers and treatment monitoring. Current developments in IVIM data processing, and its use as a method of scanning patients who cannot receive contrast agents, are expected to increase further utilization. This paper reviews the current applications, challenges, and future trends of perfusion-driven IVIM in oncology.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital
| |
Collapse
|
36
|
Huang HM. Reliable estimation of brain intravoxel incoherent motion parameters using denoised diffusion-weighted MRI. NMR IN BIOMEDICINE 2020; 33:e4249. [PMID: 31922646 DOI: 10.1002/nbm.4249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, we evaluate whether diffusion-weighted magnetic resonance imaging (DW-MRI) data after denoising can provide a reliable estimation of brain intravoxel incoherent motion (IVIM) perfusion parameters. Brain DW-MRI was performed in five healthy volunteers on a 3 T clinical scanner with 12 different b-values ranging from 0 to 1000 s/mm2 . DW-MRI data denoised using the proposed method were fitted with a biexponential model to extract perfusion fraction (PF), diffusion coefficient (D) and pseudo-diffusion coefficient (D*). To further evaluate the accuracy and precision of parameter estimation, IVIM parametric images obtained from one volunteer were used to resimulate the DW-MRI data using the biexponential model with the same b-values. Rician noise was added to generate DW-MRI data with various signal-to-noise ratio (SNR) levels. The experimental results showed that the denoised DW-MRI data yielded precise estimates for all IVIM parameters. We also found that IVIM parameters were significantly different between gray matter and white matter (P < 0.05), except for D* (P = 0.6). Our simulation results show that the proposed image denoising method displays good performance in estimating IVIM parameters (both bias and coefficient of variation were <12% for PF, D and D*) in the presence of different levels of simulated Rician noise (SNRb=0 = 20-40). Simulations and experiments show that brain DW-MRI data after denoising can provide a reliable estimation of IVIM parameters.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
37
|
Lanzarone E, Mastropietro A, Scalco E, Vidiri A, Rizzo G. A novel bayesian approach with conditional autoregressive specification for intravoxel incoherent motion diffusion-weighted MRI. NMR IN BIOMEDICINE 2020; 33:e4201. [PMID: 31884712 DOI: 10.1002/nbm.4201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The Intra-Voxel Incoherent Motion (IVIM) model is largely adopted to estimate slow and fast diffusion coefficients of water molecules in biological tissues, which are used in cancer applications. The most reported fitting approach is a voxel-wise segmented non-linear least square, whereas Bayesian approaches with a direct fit, also considering spatial regularization, were proposed too. In this work a novel segmented Bayesian method was proposed, also in combination with a spatial regularization through a Conditional Autoregressive (CAR) prior specification. The two segmented Bayesian approaches, with and without CAR specification, were compared with two standard least-square and a direct Bayesian fitting methods. All approaches were tested on simulated images and real data of patients with head-and-neck and rectal cancer. Estimation accuracy and maps noisiness were quantified on simulated images, whereas the coefficient of variation and the goodness of fit were evaluated for real data. Both versions of the segmented Bayesian approach outperformed the standard methods on simulated images for pseudo-diffusion (D∗ ) and perfusion fraction (f), whilst the segmented least-square fitting remained the less biased for the diffusion coefficient (D). On real data, Bayesian approaches provided the less noisy maps, and the two Bayesian methods without CAR generally estimated lower values for f and D∗ coefficients with respect to the other approaches. The proposed segmented Bayesian approaches were superior, in terms of estimation accuracy and maps quality, to the direct Bayesian model and the least-square fittings. The CAR method improved the estimation accuracy, especially for D∗ .
Collapse
Affiliation(s)
- Ettore Lanzarone
- Institute for Applied Mathematics and Information Technologies (IMATI-CNR), Milan, Italy
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB-CNR), Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), Segrate (MI), Italy
| | - Elisa Scalco
- Institute of Biomedical Technologies (ITB-CNR), Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), Segrate (MI), Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB-CNR), Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR), Segrate (MI), Italy
| |
Collapse
|
38
|
Lévy S, Rapacchi S, Massire A, Troalen T, Feiweier T, Guye M, Callot V. Intravoxel Incoherent Motion at 7 Tesla to quantify human spinal cord perfusion: limitations and promises. Magn Reson Med 2020; 84:1198-1217. [DOI: 10.1002/mrm.28195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Lévy
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- Aix‐Marseille Univ, IFSTTAR, LBA Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| | - Stanislas Rapacchi
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
| | - Aurélien Massire
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| | | | | | - Maxime Guye
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
| | - Virginie Callot
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| |
Collapse
|
39
|
Hu YC, Yan LF, Han Y, Duan SJ, Sun Q, Li GF, Wang W, Wei XC, Zheng DD, Cui GB. Can the low and high b-value distribution influence the pseudodiffusion parameter derived from IVIM DWI in normal brain? BMC Med Imaging 2020; 20:14. [PMID: 32041549 PMCID: PMC7011602 DOI: 10.1186/s12880-020-0419-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Background Our study aims to reveal whether the low b-values distribution, high b-values upper limit, and the number of excitation (NEX) influence the accuracy of the intravoxel incoherent motion (IVIM) parameter derived from multi-b-value diffusion-weighted imaging (DWI) in the brain. Methods This prospective study was approved by the local Ethics Committee and informed consent was obtained from each participant. The five consecutive multi-b DWI with different b-value protocols (0–3500 s/mm2) were performed in 22 male healthy volunteers on a 3.0-T MRI system. The IVIM parameters from normal white matter (WM) and gray matter (GM) including slow diffusion coefficient (D), fast perfusion coefficient (D*) and perfusion fraction (f) were compared for differences among defined groups with different IVIM protocols by one-way ANOVA. Results The D* and f value of WM or GM in groups with less low b-values distribution (less than or equal to 5 b-values) were significantly lower than ones in any other group with more low b-values distribution (all P < 0.05), but no significant differences among groups with more low b-values distribution (P > 0.05). In addition, no significant differences in the D, D* and f value of WM or GM were found between group with one and more NEX of low b-values distribution (all P > 0.05). IVIM parameters in normal WM and GM strongly depended on the choice of the high b-value upper limit. Conclusions Metrics of IVIM parameters can be affected by low and high b value distribution. Eight low b-values distribution with high b-value upper limit of 800–1000 s/mm2 may be the relatively proper set when performing brain IVIM studies.
Collapse
Affiliation(s)
- Yu-Chuan Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Yu Han
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Shi-Jun Duan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Gang-Feng Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Wen Wang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Xiao-Cheng Wei
- MR Research China, GE Healthcare China, Beijing, 100176, China
| | - Dan-Dan Zheng
- MR Research China, GE Healthcare China, Beijing, 100176, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China.
| |
Collapse
|
40
|
Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, Nery F, Sharma K, Pohlmann A, Dekkers IA, Vallee JP, Derlin K, Notohamiprodjo M, Lim RP, Palmucci S, Serai SD, Periquito J, Wang ZJ, Froeling M, Thoeny HC, Prasad P, Schneider M, Niendorf T, Pullens P, Sourbron S, Sigmund EE. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:177-195. [PMID: 31676990 PMCID: PMC7021760 DOI: 10.1007/s10334-019-00790-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Objectives Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. Materials and methods Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. Results Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65–74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. Discussion The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field. Electronic supplementary material The online version of this article (10.1007/s10334-019-00790-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Anna Caroli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Paul Vallee
- Department of Diagnostic, Geneva University Hospital and University of Geneva, 1211, Geneva-14, Switzerland
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Mike Notohamiprodjo
- Die Radiologie, Munich, Germany.,Department of Radiology, University Hospital Tuebingen, Tübingen, Germany
| | - Ruth P Lim
- Department of Radiology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harriet C Thoeny
- Department of Radiology, Hôpital Cantonal Fribourgois (HFR), University of Fribourg, 1708, Fribourg, Switzerland
| | - Pottumarthi Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Moritz Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Pim Pullens
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium.,Department of Radiology, University Hospital Ghent, Ghent, Belgium
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Eric E Sigmund
- Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Health, New York, NY, USA
| |
Collapse
|
41
|
Iima M, Honda M, Sigmund EE, Ohno Kishimoto A, Kataoka M, Togashi K. Diffusion MRI of the breast: Current status and future directions. J Magn Reson Imaging 2019; 52:70-90. [PMID: 31520518 DOI: 10.1002/jmri.26908] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is increasingly being incorporated into routine breast MRI protocols in many institutions worldwide, and there are abundant breast DWI indications ranging from lesion detection and distinguishing malignant from benign tumors to assessing prognostic biomarkers of breast cancer and predicting treatment response. DWI has the potential to serve as a noncontrast MR screening method. Beyond apparent diffusion coefficient (ADC) mapping, which is a commonly used quantitative DWI measure, advanced DWI models such as intravoxel incoherent motion (IVIM), non-Gaussian diffusion MRI, and diffusion tensor imaging (DTI) are extensively exploited in this field, allowing the characterization of tissue perfusion and architecture and improving diagnostic accuracy without the use of contrast agents. This review will give a summary of the clinical literature along with future directions. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:70-90.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eric E Sigmund
- Department of Radiology, NYU Langone Health, New York, New York, USA.,Center for Advanced Imaging and Innovation (CAI2R), New York, New York, USA
| | - Ayami Ohno Kishimoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Barbieri S, Gurney‐Champion OJ, Klaassen R, Thoeny HC. Deep learning how to fit an intravoxel incoherent motion model to diffusion‐weighted MRI. Magn Reson Med 2019; 83:312-321. [DOI: 10.1002/mrm.27910] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022]
Affiliation(s)
| | - Oliver J. Gurney‐Champion
- Joint Department of Physics The Institute of Cancer Research London United Kingdom
- The Royal Marsden NHS Foundation Trust London United Kingdom
| | - Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology and LEXOR (Laboratory for Experimental Oncology and Radiobiology) Academic Medical Center Amsterdam The Netherlands
| | - Harriet C. Thoeny
- Department of Radiology HFR Fribourg‐Hôpital Cantonal Fribourg Switzerland
| |
Collapse
|
43
|
Rydhög A, Pasternak O, Ståhlberg F, Ahlgren A, Knutsson L, Wirestam R. Estimation of diffusion, perfusion and fractional volumes using a multi-compartment relaxation-compensated intravoxel incoherent motion (IVIM) signal model. Eur J Radiol Open 2019; 6:198-205. [PMID: 31193664 PMCID: PMC6538803 DOI: 10.1016/j.ejro.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Compartmental diffusion MRI models that account for intravoxel incoherent motion (IVIM) of blood perfusion allow for estimation of the fractional volume of the microvascular compartment. Conventional IVIM models are known to be biased by not accounting for partial volume effects caused by free water and cerebrospinal fluid (CSF), or for tissue-dependent relaxation effects. In this work, a three-compartment model (tissue, free water and blood) that includes relaxation terms is introduced. To estimate the model parameters, in vivo human data were collected with multiple echo times (TE), inversion times (TI) and b-values, which allowed a direct relaxation estimate alongside estimation of perfusion, diffusion and fractional volume parameters. Compared to conventional two-compartment models (with and without relaxation compensation), the three-compartment model showed less effects of CSF contamination. The proposed model yielded significantly different volume fractions of blood and tissue compared to the non-relaxation-compensated model, as well as to the conventional two-compartment model, suggesting that previously reported parameter ranges, using models that do not account for relaxation, should be reconsidered.
Collapse
Key Words
- CSF, cerebrospinal fluid
- Diffusion
- GM, grey matter
- IR, inversion recovery
- IVIM, intravoxel incoherent motion
- Intravoxel incoherent motion
- PVE, partial volume effect
- Perfusion fraction
- Pseudo-diffusion
- ROI, region of interest
- Relaxation
- SNR, signal-to-noise ratio
- T1, longitudinal relaxation time
- T2, transverse relaxation time
- TE, echo time
- TI, inversion time
- TR, repetition time
- WM, white matter
Collapse
Affiliation(s)
- Anna Rydhög
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Department of Diagnostic Radiology, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - André Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Gurney-Champion OJ, Collins DJ, Wetscherek A, Rata M, Klaassen R, van Laarhoven HWM, Harrington KJ, Oelfke U, Orton MR. Principal component analysis fosr fast and model-free denoising of multi b-value diffusion-weighted MR images. Phys Med Biol 2019; 64:105015. [PMID: 30965296 PMCID: PMC7655121 DOI: 10.1088/1361-6560/ab1786] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Despite the utility of tumour characterisation using quantitative parameter maps from multi-b-value diffusion-weighted MRI (DWI), clinicians often prefer the use of the image with highest diffusion-weighting (b-value), for instance for defining regions of interest (ROIs). However, these images are typically degraded by noise, as they do not utilize the information from the full acquisition. We present a principal component analysis (PCA) approach for model-free denoising of DWI data. PCA-denoising was compared to synthetic MRI, where a diffusion model is fitted for each voxel and a denoised image at a given b-value is generated from the model fit. A quantitative comparison of systematic and random errors was performed on data simulated using several diffusion models (mono-exponential, bi-exponential, stretched-exponential and kurtosis). A qualitative visual comparison was also performed for in vivo images in six healthy volunteers and three pancreatic cancer patients. In simulations, the reduction in random errors from PCA-denoising was substantial (up to 55%) and similar to synthetic MRI (up to 53%). Model-based synthetic MRI denoising resulted in substantial (up to 29% of signal) systematic errors, whereas PCA-denoising was able to denoise without introducing systematic errors (less than 2%). In vivo, the signal-to-noise ratio (SNR) and sharpness of PCA-denoised images were superior to synthetic MRI, resulting in clearer tumour boundaries. In the presence of motion, PCA-denoising did not cause image blurring, unlike image averaging or synthetic MRI. Multi-b-value MRI can be denoised model-free with our PCA-denoising strategy that reduces noise to a level similar to synthetic MRI, but without introducing systematic errors associated with the synthetic MRI method.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden
NHS Foundation Trust, London, United
Kingdom
| | - David J Collins
- Cancer Research UK Cancer Imaging Centre,
The Institute of Cancer Research and The
Royal Marsden NHS Foundation Trust, London, United
Kingdom
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden
NHS Foundation Trust, London, United
Kingdom
| | - Mihaela Rata
- Cancer Research UK Cancer Imaging Centre,
The Institute of Cancer Research and The
Royal Marsden NHS Foundation Trust, London, United
Kingdom
| | - Remy Klaassen
- Department of Medical Oncology, Cancer Center
Amsterdam, Amsterdam UMC, University of
Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center
Amsterdam, Amsterdam UMC, University of
Amsterdam, Amsterdam, The Netherlands
| | - Kevin J Harrington
- Targeted Therapy Team, The Institute of Cancer Research and The Royal Marsden
NHS Foundation Trust, London, United
Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden
NHS Foundation Trust, London, United
Kingdom
| | - Matthew R Orton
- Cancer Research UK Cancer Imaging Centre,
The Institute of Cancer Research and The
Royal Marsden NHS Foundation Trust, London, United
Kingdom
| |
Collapse
|
45
|
Vidić I, Jerome NP, Bathen TF, Goa PE, While PT. Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods. J Magn Reson Imaging 2019; 50:1478-1488. [DOI: 10.1002/jmri.26772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Igor Vidić
- Department of PhysicsNTNU, Norwegian University of Science and Technology Trondheim Norway
| | - Neil P. Jerome
- Department of Circulation and Medical ImagingNTNU, Norwegian University of Science and Technology Trondheim Norway
- Department of Radiology and Nuclear MedicineSt. Olav's University Hospital Trondheim Norway
| | - Tone F. Bathen
- Department of Circulation and Medical ImagingNTNU, Norwegian University of Science and Technology Trondheim Norway
- Department of Radiology and Nuclear MedicineSt. Olav's University Hospital Trondheim Norway
| | - Pål E. Goa
- Department of PhysicsNTNU, Norwegian University of Science and Technology Trondheim Norway
- Department of Radiology and Nuclear MedicineSt. Olav's University Hospital Trondheim Norway
| | - Peter T. While
- Department of Radiology and Nuclear MedicineSt. Olav's University Hospital Trondheim Norway
| |
Collapse
|
46
|
Spinner GR, Stoeck CT, Mathez L, von Deuster C, Federau C, Kozerke S. On probing intravoxel incoherent motion in the heart‐spin‐echo versus stimulated‐echo DWI. Magn Reson Med 2019; 82:1150-1163. [DOI: 10.1002/mrm.27777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Georg R. Spinner
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Linda Mathez
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | | | - Christian Federau
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| |
Collapse
|
47
|
Ye C, Xu D, Qin Y, Wang L, Wang R, Li W, Kuai Z, Zhu Y. Estimation of intravoxel incoherent motion parameters using low b-values. PLoS One 2019; 14:e0211911. [PMID: 30726298 PMCID: PMC6364995 DOI: 10.1371/journal.pone.0211911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) imaging is a magnetic resonance imaging (MRI) technique widely used in clinical applications for various organs. However, IVIM imaging at low b-values is a persistent problem. This paper aims to investigate in a systematic and detailed manner how the number of low b-values influences the estimation of IVIM parameters. To this end, diffusion-weighted (DW) data with different low b-values were simulated to get insight into the distributions of subsequent IVIM parameters. Then, in vivo DW data with different numbers of low b-values and different number of excitations (NEX) were acquired. Finally, least-squares (LSQ) and Bayesian shrinkage prior (BSP) fitting methods were implemented to estimate IVIM parameters. The influence of the number of low b-values on IVIM parameters was analyzed in terms of relative error (RE) and structural similarity (SSIM). The results showed that the influence of the number of low b-values on IVIM parameters is variable. LSQ is more dependent on the number of low b-values than BSP, but the latter is more sensitive to noise.
Collapse
Affiliation(s)
- Chen Ye
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Daoyun Xu
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
- * E-mail:
| | - Yongbin Qin
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wuchao Li
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zixiang Kuai
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuemin Zhu
- Univ Lyon, INSA Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
48
|
Isotropically weighted intravoxel incoherent motion brain imaging at 7T. Magn Reson Imaging 2018; 57:124-132. [PMID: 30472300 DOI: 10.1016/j.mri.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
Abstract
Perfusion magnetic resonance imaging (MRI) is a promising non-invasive technique providing insights regarding the brain's microvascular architecture in vivo. The scalar perfusion metrics can be used for quantitative diagnostics of various brain abnormalities, in particular, in the stroke cases and tumours. However, conventional MRI-based perfusion approaches such as dynamic contrast-enhanced perfusion imaging or arterial spin labelling have a few weaknesses, for instance, contrast agent deposition, low signal-to-noise ratio, limited temporal and spatial resolution, and specific absorption rate constraints. As an alternative, the intravoxel incoherent motion (IVIM) approach exploits an extension of diffusion MRI in order to estimate perfusion parameters in the human brain. Application of IVIM imaging at ultra-high field MRI might employ the advantage of a higher signal-to-noise ratio, and thereby the use of higher spatial and temporal resolutions. In the present work, we demonstrate an application of recently developed isotropic diffusion weighted sequences to the evaluation of IVIM parameters at an ultra-high 7T field. The used sequence exhibits high immunity to image degrading factors and allows one to acquire the data in a fast and efficient way. Utilising the bi-exponential fitting model of the signal attenuation, we performed an extensive analysis of the IVIM scalar metrics obtained by a isotropic diffusion weighted sequence in vivo and compared results with a conventional pulsed gradient sequence at 7T. In order to evaluate a possible metric bias originating from blood flows, we additionally used a truncated b-value protocol (b-values from 100 to 200 s/mm2 with the step 20 s/mm2) accompanied to the full range (b-values from 0 to 200 s/mm2). The IVIM scalar metrics have been assessed and analysed together with a large and middle vessel density atlas of the human brain. We found that the diffusion coefficients and perfusion fractions of the voxels consisting of large and middle vessels have higher values in contrast to other tissues. Additionally, we did not find a strong dependence of the IVIM metrics on the density values of the vessel atlas. Perspectives and limitations of the developed isotropic diffusion weighted perfusion are presented and discussed.
Collapse
|
49
|
Lin C, Liu CC, Huang HM. A general-threshold filtering method for improving intravoxel incoherent motion parameter estimates. Phys Med Biol 2018; 63:175008. [PMID: 30091719 DOI: 10.1088/1361-6560/aad94b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we present an image denoising method for diffusion-weighted magnetic resonance imaging (DW-MRI) data. Our aim is to improve the estimation of intravoxel incoherent motion (IVIM) parameters using denoised DW-MRI data. A general-threshold filtering (GTF) reconstruction via total variation minimization has been proposed to improve image quality in few-view computed tomography. Here, we applied the combination of GTF and total difference to image denoising. Voxel-wise IVIM analysis was performed using both real and simulated DW-MRI data. Using an institutional review board-approved protocol with written informed consent, DW-MRI imaging was performed at a 3 T hybrid PET/MR system in 10 patients with Hodgkin lymphoma lesions. A simulated phantom consisting of four organs (liver, pancreas, spleen and kidney) was used to generate noisy DW-MRI data according to the IVIM model at different noise levels. DW-MRI data were denoised before IVIM parameter estimation. The proposed image denoising method was compared with the image denoising method using joint rank and edge constraints (JREC). The results of simulated data show that at the lower signal-to-noise ratios the proposed image denoising method outperformed the JREC method in terms of the accuracy and precision of the IVIM parameter estimates. The experimental results also show that the proposed image denoising method could yield better parametric images than the JREC method in terms of noise reduction and edge preservation.
Collapse
Affiliation(s)
- Chieh Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, No. 5 Fuxing Street, Gueishan Dist., Taoyuan 33305, Taiwan
| | | | | |
Collapse
|
50
|
Milani B, Ledoux JB, Rotzinger DC, Kanemitsu M, Vallée JP, Burnier M, Pruijm M. Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments. Magn Reson Med 2018; 81:583-593. [DOI: 10.1002/mrm.27393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Bastien Milani
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
- Département de Radiologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
- Center for Biomedical Imaging; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Jean-Baptiste Ledoux
- Département de Radiologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
- Center for Biomedical Imaging; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - David C. Rotzinger
- Département de Radiologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Michiko Kanemitsu
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Jean-Paul Vallée
- Département d'Imagerie et des Sciences de l'information Médicale; Hôpitaux Universitaires de Genève; Genève Switzerland
| | - Michel Burnier
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Menno Pruijm
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| |
Collapse
|