1
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2025; 35:8-32. [PMID: 38160135 PMCID: PMC11910262 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
2
|
Dingwell DA, Cunningham CH. Particle-based MR modeling with diffusion, microstructure, and enzymatic reactions. Magn Reson Med 2025; 93:369-383. [PMID: 39250417 DOI: 10.1002/mrm.30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE To develop a novel particle-based in silico MR model and demonstrate applications of this model to signal mechanisms which are affected by the spatial organization of particles, including metabolic reaction kinetics, microstructural effects on diffusion, and radiofrequency (RF) refocusing effects in gradient-echo sequences. METHODS The model was developed by integrating a forward solution of the Bloch equations with a Brownian dynamics simulator. Simulation configurations were then designed to model MR signal dynamics of interest, with a primary focus on hyperpolarized 13C MRI methods. Phantom scans and spectrophotometric assays were conducted to validate model results in vitro. RESULTS The model accurately reproduced the reaction kinetics of enzyme-mediated conversion of pyruvate to lactate. When varying proportions of restrictive structure were added to the reaction volume, nonlinear changes in the reaction rate measured in vitro were replicated in silico. Modeling of RF refocusing effects characterized the degree of diffusion-weighted contribution from preserved residual magnetization in nonspoiled gradient-echo sequences. CONCLUSIONS These results show accurate reproduction of a range of MR signal mechanisms, establishing the model's capability to investigate the multifactorial signal dynamics such as those underlying hyperpolarized 13C MRI data.
Collapse
Affiliation(s)
- Dylan Archer Dingwell
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhang G, Deh K, Park H, Cunningham CH, Bragagnolo ND, Lyashchenko S, Ahmmed S, Leftin A, Coffee E, Kelsen D, Hricak H, Miloushev V, Mayerhoefer M, Keshari KR. Assessment of the Feasibility of Hyperpolarized [1- 13C]pyruvate Whole-Abdomen MRI using D 2O Solvation in Humans. J Magn Reson Imaging 2024; 60:2747-2749. [PMID: 38440941 PMCID: PMC11374927 DOI: 10.1002/jmri.29322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Affiliation(s)
- Guannan Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kofi Deh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hijin Park
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nadia D. Bragagnolo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Serge Lyashchenko
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shake Ahmmed
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Elizabeth Coffee
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vesselin Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marius Mayerhoefer
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Blazey T, Shaw A, von Morze C. A vendor-neutral EPI sequence for hyperpolarized 13C MRI. Magn Reson Med 2024; 92:772-781. [PMID: 38525658 DOI: 10.1002/mrm.30090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE To develop a flexible, vendor-neutral EPI sequence for hyperpolarized 13C metabolic imaging. METHODS An open-source EPI sequence consisting of a metabolite-specific spectral-spatial RF excitation pulse and a customizable EPI readout was created using the Pulseq framework. To explore the flexibility of our sequence, we tested several versions of the sequence including a symmetric 3D readout with different spatial resolutions for each metabolite (1.0 cm3 and 1.5 cm3). A multichamber phantom constructed with a Shepp-Logan geometry, containing two chambers filled with either natural abundance 13C compounds or hyperpolarized (HP) [1-13C]pyruvate, was used to test each sequence. For experiments involving HP [1-13C]pyruvate, a single chamber was prefilled with nicotinamide adenine dinucleotide hydride and lactate dehydrogenase to facilitate the conversion of [1-13C]pyruvate to [1-13C]lactate. All experiments were performed on a Siemens Prisma 3T scanner. RESULTS All the sequence variations localized natural-abundance 13C ethylene glycol and methanol to the appropriate compartment of the multichamber phantom. [1-13C]pyruvate was detectable in both chambers following the injection of HP [1-13C]pyruvate, whereas [1-13C]lactate was only found in the chamber containing nicotinamide adenine dinucleotide hydride and lactate dehydrogenase. The conversion rate from [1-13C]pyruvate to [1-13C]lactate (kPL) was 0.01 s-1 (95% confidence interval [0.00, 0.02]). CONCLUSION We have developed and tested a vendor-neutral EPI sequence for imaging HP 13C agents. We have made all of our sequence creation and image reconstruction code freely available online for other investigators to use.
Collapse
Affiliation(s)
- Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Deh K, Zhang G, Park AH, Cunningham CH, Bragagnolo ND, Lyashchenko S, Ahmmed S, Leftin A, Coffee E, Hricak H, Miloushev V, Mayerhoefer M, Keshari KR. First in-human evaluation of [1- 13C]pyruvate in D 2O for hyperpolarized MRI of the brain: A safety and feasibility study. Magn Reson Med 2024; 91:2559-2567. [PMID: 38205934 PMCID: PMC11009889 DOI: 10.1002/mrm.30002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE To investigate the safety and value of hyperpolarized (HP) MRI of [1-13C]pyruvate in healthy volunteers using deuterium oxide (D2O) as a solvent. METHODS Healthy volunteers (n = 5), were injected with HP [1-13C]pyruvate dissolved in D2O and imaged with a metabolite-specific 3D dual-echo dynamic EPI sequence at 3T at one site (Site 1). Volunteers were monitored following the procedure to assess safety. Image characteristics, including SNR, were compared to data acquired in a separate cohort using water as a solvent (n = 5) at another site (Site 2). The apparent spin-lattice relaxation time (T1) of [1-13C]pyruvate was determined both in vitro and in vivo from a mono-exponential fit to the image intensity at each time point of our dynamic data. RESULTS All volunteers completed the study safely and reported no adverse effects. The use of D2O increased the T1 of [1-13C]pyruvate from 66.5 ± 1.6 s to 92.1 ± 5.1 s in vitro, which resulted in an increase in signal by a factor of 1.46 ± 0.03 at the time of injection (90 s after dissolution). The use of D2O also increased the apparent relaxation time of [1-13C]pyruvate by a factor of 1.4 ± 0.2 in vivo. After adjusting for inter-site SNR differences, the use of D2O was shown to increase image SNR by a factor of 2.6 ± 0.2 in humans. CONCLUSIONS HP [1-13C]pyruvate in D2O is safe for human imaging and provides an increase in T1 and SNR that may improve image quality.
Collapse
Affiliation(s)
- Kofi Deh
- Radiology, Memorial Sloan Kettering Cancer Center
| | | | - Angela Hijin Park
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario
| | | | - Serge Lyashchenko
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | - Shake Ahmmed
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | | | | | - Hedvig Hricak
- Radiology, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center
| | | | | | - Kayvan R. Keshari
- Radiology, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
6
|
Uthayakumar B, Soliman H, Chen AP, Bragagnolo N, Cappelletto NI, Endre R, Perks WJ, Ma N, Heyn C, Keshari KR, Cunningham CH. Evidence of 13 C-lactate oxidation in the human brain from hyperpolarized 13 C-MRI. Magn Reson Med 2024; 91:2162-2171. [PMID: 38230992 PMCID: PMC11225103 DOI: 10.1002/mrm.29919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE To test the hypothesis that lactate oxidation contributes to the 13 $$ {}^{13} $$ C-bicarbonate signal observed in the awake human brain using hyperpolarized 13 $$ {}^{13} $$ C MRI. METHODS Healthy human volunteers (N = 6) were scanned twice using hyperpolarized 13 $$ {}^{13} $$ C-MRI, with increased radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate on one set of scans. 13 $$ {}^{13} $$ C-lactate, 13 $$ {}^{13} $$ C-bicarbonate, and 13 $$ {}^{13} $$ C-pyruvate signals for 132 brain regions across each set of scans were compared using a clustered Wilcoxon signed-rank test. RESULTS Increased 13 $$ {}^{13} $$ C-lactate radiofrequency saturation resulted in a significantly lower 13 $$ {}^{13} $$ C-bicarbonate signal (p = 0.04). These changes were observed across the majority of brain regions. CONCLUSION Radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate leads to a decrease in 13 $$ {}^{13} $$ C-bicarbonate signal, demonstrating that the 13 $$ {}^{13} $$ C-lactate generated from the injected 13 $$ {}^{13} $$ C-pyruvate is being converted back to 13 $$ {}^{13} $$ C-pyruvate and oxidized throughout the human brain.
Collapse
Affiliation(s)
- Biranavan Uthayakumar
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Nadia Bragagnolo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicole I.C. Cappelletto
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ruby Endre
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - William J. Perks
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nathan Ma
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Chris Heyn
- Radiology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Uthayakumar B, Cappelletto NIC, Bragagnolo ND, Chen AP, Ma N, Perks WJ, Endre R, Tam F, Graham SJ, Heyn C, Keshari KR, Soliman H, Cunningham CH. Task Activation Results in Regional 13 C-Lactate Signal Increase in the Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577808. [PMID: 38352450 PMCID: PMC10862828 DOI: 10.1101/2024.02.01.577808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Hyperpolarized- 13 C magnetic resonance imaging (HP- 13 C MRI) was used to image changes in 13 C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain 13 C-pyruvate, 13 C-lactate and 13 C-bicarbonate production was imaged in healthy volunteers (N=6, ages 24-33) for the two conditions using two separate hyperpolarized 13 C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation. 13 C-metabolite signal was normalized by 13 C-metabolite signal from the brainstem and the percentage change in 13 C-metabolite signal conditions was calculated. A one-way Wilcoxon signed-rank test showed a significant increase in 13 C-lactate in regions of activation when compared to the remainder of the brain ( p = 0.02, V = 21). No significant increase was observed in 13 C-pyruvate ( p = 0.11, V = 17) or 13 C-bicarbonate ( p = 0.95, V = 3) signal. The results show an increase in 13 C-lactate production in the activated region that is measurable with HP- 13 C MRI.
Collapse
|
8
|
Traechtler J, Fuetterer M, Albannay MM, Hoh T, Kozerke S. Considerations for hyperpolarized 13 C MR at reduced field: Comparing 1.5T versus 3T. Magn Reson Med 2023; 89:1945-1960. [PMID: 36598063 DOI: 10.1002/mrm.29579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE In contrast to conventional MR, signal-to-noise ratio (SNR) is not linearly dependent on field strength in hyperpolarized MR, as polarization is generated outside the MR system. Moreover, field inhomogeneity-induced artifacts and other practical limitations associated with field strengths ≥ $$ \ge $$ 3T are alleviated at lower fields. The potential of hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging at 1.5T versus 3T is demonstrated in silico, in vitro, and in vivo for applications on clinical MR systems. THEORY AND METHODS Theoretical noise and SNR behavior at different field strengths are investigated based on simulations. A thorough field comparison between 1.5T and 3T is performed using thermal and hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging. Cardiac in vivo data is obtained in pigs using hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate spectroscopy and imaging at 1.5T and 3T. RESULTS Based on theoretical considerations and simulations, the SNR of hyperpolarized MR at identical acquisition bandwidths is independent of the field strength for typical coil setups, while adaptively changing the acquisition bandwidth proportional to the static magnetic field allows for net SNR gains of up to 40% at 1.5T compared to 3T. In vitro 13 $$ {}^{13} $$ C data verified these considerations with less than 7% deviation. In vivo feasibility of hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate dynamic metabolic spectroscopy and imaging at 1.5T is demonstrated in the pig heart with comparable SNR between 1.5T and 3T while B 0 $$ {}_0 $$ artifacts are noticeably reduced at 1.5T. CONCLUSION Hyperpolarized 13 $$ {}^{13} $$ C MR at lower field strengths is favorable in terms of SNR and off-resonance effects, which makes 1.5T a promising alternative to 3T, especially for clinical cardiac metabolic imaging.
Collapse
Affiliation(s)
- Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Mohammed M Albannay
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Tobias Hoh
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Li Y, Vigneron DB, Xu D. Current human brain applications and challenges of dynamic hyperpolarized carbon-13 labeled pyruvate MR metabolic imaging. Eur J Nucl Med Mol Imaging 2021; 48:4225-4235. [PMID: 34432118 PMCID: PMC8566394 DOI: 10.1007/s00259-021-05508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The ability of hyperpolarized carbon-13 MR metabolic imaging to acquire dynamic metabolic information in real time is crucial to gain mechanistic insights into metabolic pathways, which are complementary to anatomic and other functional imaging methods. This review presents the advantages of this emerging functional imaging technology, describes considerations in clinical translations, and summarizes current human brain applications. Despite rapid development in methodologies, significant technological and physiological related challenges continue to impede broader clinical translation.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| |
Collapse
|
10
|
Guo R, Weingärtner S, Šiurytė P, T Stoeck C, Füetterer M, E Campbell-Washburn A, Suinesiaputra A, Jerosch-Herold M, Nezafat R. Emerging Techniques in Cardiac Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 55:1043-1059. [PMID: 34331487 DOI: 10.1002/jmri.27848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and a significant contributor of health care costs. Noninvasive imaging plays an essential role in the management of patients with cardiovascular disease. Cardiac magnetic resonance (MR) can noninvasively assess heart and vascular abnormalities, including biventricular structure/function, blood hemodynamics, myocardial tissue composition, microstructure, perfusion, metabolism, coronary microvascular function, and aortic distensibility/stiffness. Its ability to characterize myocardial tissue composition is unique among alternative imaging modalities in cardiovascular disease. Significant growth in cardiac MR utilization, particularly in Europe in the last decade, has laid the necessary clinical groundwork to position cardiac MR as an important imaging modality in the workup of patients with cardiovascular disease. Although lack of availability, limited training, physician hesitation, and reimbursement issues have hampered widespread clinical adoption of cardiac MR in the United States, growing clinical evidence will ultimately overcome these challenges. Advances in cardiac MR techniques, particularly faster image acquisition, quantitative myocardial tissue characterization, and image analysis have been critical to its growth. In this review article, we discuss recent advances in established and emerging cardiac MR techniques that are expected to strengthen its capability in managing patients with cardiovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Guo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Weingärtner
- Department of Imaging Physics, Magnetic Resonance Systems Lab, Delft University of Technology, Delft, The Netherlands
| | - Paulina Šiurytė
- Department of Imaging Physics, Magnetic Resonance Systems Lab, Delft University of Technology, Delft, The Netherlands
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Füetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Avan Suinesiaputra
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Michael Jerosch-Herold
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Larson PEZ, Gordon JW. Hyperpolarized Metabolic MRI-Acquisition, Reconstruction, and Analysis Methods. Metabolites 2021; 11:386. [PMID: 34198574 PMCID: PMC8231874 DOI: 10.3390/metabo11060386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/05/2023] Open
Abstract
Hyperpolarized metabolic MRI with 13C-labeled agents has emerged as a powerful technique for in vivo assessments of real-time metabolism that can be used across scales of cells, tissue slices, animal models, and human subjects. Hyperpolarized contrast agents have unique properties compared to conventional MRI scanning and MRI contrast agents that require specialized imaging methods. Hyperpolarized contrast agents have a limited amount of available signal, irreversible decay back to thermal equilibrium, bolus injection and perfusion kinetics, cellular uptake and metabolic conversion kinetics, and frequency shifts between metabolites. This article describes state-of-the-art methods for hyperpolarized metabolic MRI, summarizing data acquisition, reconstruction, and analysis methods in order to guide the design and execution of studies.
Collapse
Affiliation(s)
- Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA;
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94143, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA;
| |
Collapse
|
12
|
Lee CY, Soliman H, Bragagnolo ND, Sahgal A, Geraghty BJ, Chen AP, Endre R, Perks WJ, Detsky JS, Leung E, Chan M, Heyn C, Cunningham CH. Predicting response to radiotherapy of intracranial metastases with hyperpolarized
13
C MRI. J Neurooncol 2021; 152:551-557. [PMID: 33740165 PMCID: PMC8084843 DOI: 10.1007/s11060-021-03725-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is used to manage intracranial metastases in a significant fraction of patients. Local progression after SRS can often only be detected with increased volume of enhancement on serial MRI scans which may lag true progression by weeks or months. METHODS Patients with intracranial metastases (N = 11) were scanned using hyperpolarized13 C MRI prior to treatment with stereotactic radiosurgery (SRS). The status of each lesion was then recorded at six months post-treatment follow-up (or at the time of death). RESULTS The positive predictive value of13 C-lactate signal, measured pre-treatment, for prediction of progression of intracranial metastases at six months post-treatment with SRS was 0.8p < 0.05 , and the AUC from an ROC analysis was 0.77p < 0.05 . The distribution of13 C-lactate z-scores was different for intracranial metastases from different primary cancer types (F = 2.46,p = 0.1 ). CONCLUSIONS Hyperpolarized13 C imaging has potential as a method for improving outcomes for patients with intracranial metastases, by identifying patients at high risk of treatment failure with SRS and considering other therapeutic options such as surgery.
Collapse
Affiliation(s)
- Casey Y Lee
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nadia D Bragagnolo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Arjun Sahgal
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | | | - Ruby Endre
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - William J Perks
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jay S Detsky
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Eric Leung
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Chan
- Radiology, Trillium Health Partners, Mississauga, ON, Canada
| | - Chris Heyn
- Radiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences, Sunnybrook Research Institute, M7-613, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
13
|
Traechtler J, Vishnevskiy V, Fuetterer M, Kozerke S. Joint image and field map estimation for multi-echo hyperpolarized 13 C metabolic imaging of the heart. Magn Reson Med 2021; 86:258-276. [PMID: 33660300 DOI: 10.1002/mrm.28710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Image reconstruction of metabolic images from hyperpolarized 13 C multi-echo data acquisition is sensitive to susceptibility-induced phase offsets, which are particularly challenging in the heart. A model-based framework for joint estimation of metabolite images and field map from echo shift-encoded data is proposed. Using simulations, it is demonstrated that correction of signal spilling due to incorrect decomposition of metabolites and geometrical distortions over a wide range of off-resonance gradients is possible. In vivo feasibility is illustrated using hyperpolarized [1-13 C]pyruvate in the pig heart. METHODS The model-based reconstruction for multi-echo, multicoil data was implemented as a nonconvex minimization problem jointly optimizing for metabolic images and B0 . A comprehensive simulation framework for echo shift-encoded hyperpolarized [1-13 C]pyruvate imaging was developed and applied to assess reconstruction performance and distortion correction of the proposed method. In vivo data were obtained in four pigs using hyperpolarized [1-13 C]pyruvate on a clinical 3T MR system with a six-channel receiver coil. Dynamic images were acquired during suspended ventilation using cardiac-triggered multi-echo single-shot echo-planar imaging in short-axis orientation. RESULTS Simulations revealed that off-resonance gradients up to ±0.26 ppm/pixel can be corrected for with reduced signal spilling and geometrical distortions yielding an accuracy of ≥90% in terms of Dice similarity index. In vivo, improved geometrical consistency (10% Dice improvement) compared to image reconstruction without field map correction and with reference to anatomical data was achieved. CONCLUSION Joint image and field map estimation allows addressing off-resonance-induced geometrical distortions and metabolite spilling in hyperpolarized 13 C metabolic imaging of the heart.
Collapse
Affiliation(s)
- Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Valery Vishnevskiy
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Gordon JW, Autry AW, Tang S, Graham JY, Bok RA, Zhu X, Villanueva-Meyer JE, Li Y, Ohilger MA, Abraham MR, Xu D, Vigneron DB, Larson PEZ. A variable resolution approach for improved acquisition of hyperpolarized 13 C metabolic MRI. Magn Reson Med 2020; 84:2943-2952. [PMID: 32697867 PMCID: PMC7719570 DOI: 10.1002/mrm.28421] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To ameliorate tradeoffs between a fixed spatial resolution and signal-to-noise ratio (SNR) for hyperpolarized 13 C MRI. METHODS In MRI, SNR is proportional to voxel volume but retrospective downsampling or voxel averaging only improves SNR by the square root of voxel size. This can be exploited with a metabolite-selective imaging approach that independently encodes each compound, yielding high-resolution images for the injected substrate and coarser resolution images for downstream metabolites, while maintaining adequate SNR for each. To assess the efficacy of this approach, hyperpolarized [1-13 C]pyruvate data were acquired in healthy Sprague-Dawley rats (n = 4) and in two healthy human subjects. RESULTS Compared with a constant resolution acquisition, variable-resolution data sets showed improved detectability of metabolites in pre-clinical renal studies with a 3.5-fold, 8.7-fold, and 6.0-fold increase in SNR for lactate, alanine, and bicarbonate data, respectively. Variable-resolution data sets from healthy human subjects showed cardiac structure and neuro-vasculature in the higher resolution pyruvate images (6.0 × 6.0 mm2 for cardiac and 7.5 × 7.5 mm2 for brain) that would otherwise be missed due to partial-volume effects and illustrates the level of detail that can be achieved with hyperpolarized substrates in a clinical setting. CONCLUSION We developed a variable-resolution strategy for hyperpolarized 13 C MRI using metabolite-selective imaging and demonstrated that it mitigates tradeoffs between a fixed spatial resolution and SNR for hyperpolarized substrates, providing both high resolution pyruvate and coarse resolution metabolite data sets in a single exam. This technique shows promise to improve future studies by maximizing metabolite SNR while minimizing partial-volume effects from the injected substrate.
Collapse
Affiliation(s)
- Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Adam W. Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Jasmine Y. Graham
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xucheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael A. Ohilger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Maria Roselle Abraham
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, California, USA
| |
Collapse
|
15
|
Deh K, Granlund KL, Eskandari R, Kim N, Mamakhanyan A, Keshari KR. Dynamic volumetric hyperpolarized 13 C imaging with multi-echo EPI. Magn Reson Med 2020; 85:978-986. [PMID: 32820566 DOI: 10.1002/mrm.28466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE To generate dynamic, volumetric maps of hyperpolarized [1-13 C]pyruvate and its metabolic products in vivo. METHODS Maps of chemical species were generated with iterative least squares (IDEAL) reconstruction from multiecho echo-planar imaging (EPI) of phantoms of thermally polarized 13 C-labeled chemicals and mice injected with hyperpolarized [1-13 C]pyruvate on a preclinical 3T scanner. The quality of the IDEAL decomposition of single-shot and multishot phantom images was evaluated using quantitative results from a simple pulse-and-acquire sequence as the gold standard. Time course and area-under-the-curve plots were created to analyze the distribution of metabolites in vivo. RESULTS Improved separation of chemical species by IDEAL, evaluated by the amount of residual signal measured for chemicals not present in the phantoms, was observed as the number of EPI shots was increased from one to four. Dynamic three-dimensional metabolite maps of [1-13 C]pyruvate,[1-13 C]pyruvatehydrate, [1-13 C]lactate, [1-13 C]bicarbonate, and [1-13 C]alanine generated by IDEAL from interleaved multishot multiecho EPI of live mice were used to construct time course and area-under-the-curve graphs for the heart, kidneys, and liver, which showed good agreement with previously published results. CONCLUSIONS IDEAL decomposition of multishot multiecho 13C EPI images is a simple, yet robust method for generating high-quality dynamic volumetric maps of hyperpolarized [1-13 C]pyruvate and its products in vivo and has potential applications for the assessment of multiorgan metabolic phenomena.
Collapse
Affiliation(s)
- Kofi Deh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kristin L Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arsen Mamakhanyan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
16
|
Lee CY, Lau JYC, Geraghty BJ, Chen AP, Gu YP, Cunningham CH. Correlation of hyperpolarized 13 C-MRI data with tissue extract measurements. NMR IN BIOMEDICINE 2020; 33:e4269. [PMID: 32133713 DOI: 10.1002/nbm.4269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/26/2023]
Abstract
Hyperpolarized (HP) 13C MRI provides the means to monitor lactate metabolism noninvasively in tumours. Since 13C -lactate signal levels obtained from HP 13C imaging depend on multiple factors, such as the rate of 13C substrate delivery via the vasculature, the expression level of monocarboxylate transporters (MCTs) and lactate dehydrogenase (LDH), and the local lactate pool size, the interpretation of HP 13C metabolic images remains challenging. In this study, ex vivo tissue extract measurements (i.e., NMR isotopomer analysis, western blot analysis) derived from an MDA-MB-231 xenograft model in nude rats were used to test for correlations between the in vivo 13C data and the ex vivo measures. The lactate-to-pyruvate ratio from HP 13C MRI was strongly correlated with [1- 13C ]lactate concentration measured from the extracts using NMR (R = 0.69, p < 0.05), as well as negatively correlated with tumour wet weight (R = - 0.60, p < 0.05). In this tumour model, both MCT1 and MCT4 expressions were positively correlated with wet weight ( ρ = 0.78 and 0.93, respectively, p < 0.01). Lactate pool size and the lactate-to-pyruvate ratio were not significantly correlated.
Collapse
Affiliation(s)
- Casey Y Lee
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Yi-Ping Gu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Gordon JW, Chen HY, Dwork N, Tang S, Larson PEZ. Fast Imaging for Hyperpolarized MR Metabolic Imaging. J Magn Reson Imaging 2020; 53:686-702. [PMID: 32039520 DOI: 10.1002/jmri.27070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
MRI with hyperpolarized carbon-13 agents has created a new type of noninvasive, in vivo metabolic imaging that can be applied in cell, animal, and human studies. The use of 13 C-labeled agents, primarily [1-13 C]pyruvate, enables monitoring of key metabolic pathways with the ability to image substrate and products based on their chemical shift. Over 10 sites worldwide are now performing human studies with this new approach for studies of cancer, heart disease, liver disease, and kidney disease. Hyperpolarized metabolic imaging studies must be performed within several minutes following creation of the hyperpolarized agent due to irreversible decay of the net magnetization back to equilibrium, so fast imaging methods are critical. The imaging methods must include multiple metabolites, separated based on their chemical shift, which are also undergoing rapid metabolic conversion (via label exchange), further exacerbating the challenges of fast imaging. This review describes the state-of-the-art in fast imaging methods for hyperpolarized metabolic imaging. This includes the approach and tradeoffs between three major categories of fast imaging methods-fast spectroscopic imaging, model-based strategies, and metabolite specific imaging-as well additional options of parallel imaging, compressed sensing, tailored RF flip angles, refocused imaging methods, and calibration methods that can improve the scan coverage, speed, signal-to-noise ratio (SNR), resolution, and/or robustness of these studies. To date, these approaches have produced extremely promising initial human imaging results. Improvements to fast hyperpolarized metabolic imaging methods will provide better coverage, SNR, resolution, and reproducibility for future human imaging studies. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA.,UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA.,UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, California, USA
| |
Collapse
|
18
|
Lee CY, Soliman H, Geraghty BJ, Chen AP, Connelly KA, Endre R, Perks WJ, Heyn C, Black SE, Cunningham CH. Lactate topography of the human brain using hyperpolarized 13C-MRI. Neuroimage 2020; 204:116202. [DOI: 10.1016/j.neuroimage.2019.116202] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
|
19
|
Macdonald EB, Barton GP, Cox BL, Johnson KM, Strigel RM, Fain SB. Improved reconstruction stability for chemical shift encoded hyperpolarized 13 C magnetic resonance spectroscopic imaging using k-t spiral acquisitions. Magn Reson Med 2019; 84:25-38. [PMID: 31814173 DOI: 10.1002/mrm.28122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE A multiecho, field of view (FOV)-oversampled k-t spiral acquisition and direct iterative decomposition of water and fat with echo asymmetry and least-squares estimation reconstruction is demonstrated to improve the stability of hyperpolarized 13 C magnetic resonance spectroscopic imaging (MRSI) in the presence of signal ambiguities attributed to low-SNR (signal-to-noise-ratio) species, local uncertainties in metabolite peaks, and echo-to-echo signal inconsistencies. THEORY k-t spiral acquisitions redistribute readout points to be more densely spaced radially in k-space by acquiring an FOV and matrix that are oversampled by η. These more densely spaced spiral turns constitute effective intraspiral echoes and can supplement conventional interspiral echoes to improve spectral separation and reduce spectral cross-talk to better resolve 13 C-labeled species for spectroscopic imaging. METHODS Digital simulations and imaging phantom experiments were performed for a range of interspiral echo spacings and η using multiecho, k-t spiral acquisitions. Image spectral cross-talk artifacts were evaluated both qualitatively and quantitatively as the percent error in measured metabolite ratios. In vivo murine experiments evaluated the feasibility of multiecho, k-t spiral [1-13 C]pyruvate MRSI to reduce spectral cross-talk for 3 scenarios of different expected reconstruction stability. RESULTS Digital simulations and imaging phantom experiments both demonstrated reduced or comparable image spectral cross-talk and percent errors in measured metabolite ratios with increasing η and better choices of echo spacings. In vivo images displayed markedly reduced spectral cross-talk in lactate images acquired with η = 7 versus η = 1. CONCLUSION The precision of hyperpolarized 13 C metabolic imaging and quantification in the presence of low-SNR species, local uncertainties in metabolite resonances, and echo-to-echo signal inconsistencies can be improved with the use of FOV-oversampled k-t spiral acquisitions.
Collapse
Affiliation(s)
- Erin B Macdonald
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gregory P Barton
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin L Cox
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
20
|
Geraghty BJ, Lee CY, Chen AP, Perks WJ, Soliman H, Cunningham CH. Partial Fourier reconstruction for improved resolution in 3D hyperpolarized 13 C EPI. Magn Reson Med 2019; 83:2150-2159. [PMID: 31721293 DOI: 10.1002/mrm.28079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Asymmetric in-plane k-space sampling of EPI can reduce the minimum achievable TE in hyperpolarized 13 C with spectral-spatial radio frequency pulses, thereby reducing T 2 * weighting and signal-losses. Partial Fourier image reconstruction exploits the approximate Hermitian symmetry of k-space data and can be applied to asymmetric data sets to synthesize unmeasured data. Here we tested whether the application of partial Fourier image reconstruction would improve spatial resolution from hyperpolarized [1- 13 C ]pyruvate scans in the human brain. METHODS Fifteen healthy control subjects were imaged using a volumetric dual-echo echo-planar imaging sequence with spectral-spatial radio frequency excitation. Images were reconstructed by zero-filling as well as with the partial Fourier reconstruction algorithm projection-on-convex-sets. Resulting images were quantitatively evaluated with a no-reference image quality assessment. RESULTS The no-reference image sharpness metric agreed with perceived improvements in image resolution and contrast. The [1- 13 C ]lactate images benefitted most, followed by the [1- 13 C ]pyruvate images. The 13 C -bicarbonate images were improved by the smallest degree, likely owing to relatively lower SNR. CONCLUSIONS Partial Fourier imaging and reconstruction were shown to improve the sharpness and contrast of human HP 13 C brain data and is a viable method for enhancing resolution.
Collapse
Affiliation(s)
- Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Casey Y Lee
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - William J Perks
- Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Tran M, Latifoltojar A, Neves JB, Papoutsaki MV, Gong F, Comment A, Costa ASH, Glaser M, Tran-Dang MA, El Sheikh S, Piga W, Bainbridge A, Barnes A, Young T, Jeraj H, Awais R, Adeleke S, Holt C, O’Callaghan J, Twyman F, Atkinson D, Frezza C, Årstad E, Gadian D, Emberton M, Punwani S. First-in-human in vivo non-invasive assessment of intra-tumoral metabolic heterogeneity in renal cell carcinoma. BJR Case Rep 2019; 5:20190003. [PMID: 31428445 PMCID: PMC6699984 DOI: 10.1259/bjrcr.20190003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Intratumoral genetic heterogeneity and the role of metabolic reprogramming in renal cell carcinoma (RCC) have been extensively documented. However, the distribution of these metabolic changes within the tissue has not been explored. We report on the first-in-human in vivo non-invasive metabolic interrogation of RCC using hyperpolarized carbon-13 (13C) magnetic resonance imaging (HP-MRI) and describe the validation of in vivo lactate metabolic heterogeneity against multi-regional ex vivo mass spectrometry. HP-MRI provides an in vivo assessment of metabolism and provides a novel opportunity to safely and non-invasively assess cancer heterogeneity.
Collapse
Affiliation(s)
| | - Arash Latifoltojar
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | | | | | - Fiona Gong
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | | | - Ana S. H. Costa
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | | | - My-Anh Tran-Dang
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Soha El Sheikh
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Wivijin Piga
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Tim Young
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | - Hassan Jeraj
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | | | - Sola Adeleke
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Christopher Holt
- Pharmacy Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - James O’Callaghan
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Frazer Twyman
- Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | | | - David Gadian
- Institute of Child Health, University College London, London, UK
| | | | | |
Collapse
|
22
|
Illert P, Wängler B, Wängler C, Zöllner F, Uhrig T, Litau S, Pretze M, Röder T. Functionalizable composite nanoparticles as a dual magnetic resonance imaging/computed tomography contrast agent for medical imaging. J Appl Polym Sci 2019. [DOI: 10.1002/app.47571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Patrick Illert
- Institute of Chemical Process EngineeringMannheim University of Applied Sciences Paul‐Wittsack‐Street 10, 68163 Mannheim Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Frank Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Tanja Uhrig
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Marc Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Thorsten Röder
- Institute of Chemical Process EngineeringMannheim University of Applied Sciences Paul‐Wittsack‐Street 10, 68163 Mannheim Germany
| |
Collapse
|
23
|
Fuetterer M, Busch J, Traechtler J, Wespi P, Peereboom SM, Sauer M, Lipiski M, Fleischmann T, Cesarovic N, Stoeck CT, Kozerke S. Quantitative myocardial first-pass cardiovascular magnetic resonance perfusion imaging using hyperpolarized [1- 13C] pyruvate. J Cardiovasc Magn Reson 2018; 20:73. [PMID: 30415642 PMCID: PMC6231262 DOI: 10.1186/s12968-018-0495-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The feasibility of absolute myocardial blood flow quantification and suitability of hyperpolarized [1-13C] pyruvate as contrast agent for first-pass cardiovascular magnetic resonance (CMR) perfusion measurements are investigated with simulations and demonstrated in vivo in a swine model. METHODS A versatile simulation framework for hyperpolarized CMR subject to physical, physiological and technical constraints was developed and applied to investigate experimental conditions for accurate perfusion CMR with hyperpolarized [1-13C] pyruvate. Absolute and semi-quantitative perfusion indices were analyzed with respect to experimental parameter variations and different signal-to-noise ratio (SNR) levels. Absolute myocardial blood flow quantification was implemented with an iterative deconvolution approach based on Fermi functions. To demonstrate in vivo feasibility, velocity-selective excitation with an echo-planar imaging readout was used to acquire dynamic myocardial stress perfusion images in four healthy swine. Arterial input functions were extracted from an additional image slice with conventional excitation that was acquired within the same heartbeat. RESULTS Simulations suggest that obtainable SNR and B0 inhomogeneity in vivo are sufficient for the determination of absolute and semi-quantitative perfusion with ≤25% error. It is shown that for expected metabolic conversion rates, metabolic conversion of pyruvate can be neglected over the short duration of acquisition in first-pass perfusion CMR. In vivo measurements suggest that absolute myocardial blood flow quantification using hyperpolarized [1-13C] pyruvate is feasible with an intra-myocardial variability comparable to semi-quantitative perfusion indices. CONCLUSION The feasibility of quantitative hyperpolarized first-pass perfusion CMR using [1-13C] pyruvate has been investigated in simulations and demonstrated in swine. Using an approved and metabolically active compound is envisioned to increase the value of hyperpolarized perfusion CMR in patients.
Collapse
Affiliation(s)
- Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Julia Busch
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Sophie M. Peereboom
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Mareike Sauer
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Miriam Lipiski
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| |
Collapse
|
24
|
Gordon JW, Chen HY, Autry A, Park I, Van Criekinge M, Mammoli D, Milshteyn E, Bok R, Xu D, Li Y, Aggarwal R, Chang S, Slater JB, Ferrone M, Nelson S, Kurhanewicz J, Larson PEZ, Vigneron DB. Translation of Carbon-13 EPI for hyperpolarized MR molecular imaging of prostate and brain cancer patients. Magn Reson Med 2018; 81:2702-2709. [PMID: 30375043 DOI: 10.1002/mrm.27549] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop and translate a metabolite-specific imaging sequence using a symmetric echo planar readout for clinical hyperpolarized (HP) Carbon-13 (13 C) applications. METHODS Initial data were acquired from patients with prostate cancer (N = 3) and high-grade brain tumors (N = 3) on a 3T scanner. Samples of [1-13 C]pyruvate were polarized for at least 2 h using a 5T SPINlab system operating at 0.8 K. Following injection of the HP substrate, pyruvate, lactate, and bicarbonate (for brain studies) were sequentially excited with a singleband spectral-spatial RF pulse and signal was rapidly encoded with a single-shot echo planar readout on a slice-by-slice basis. Data were acquired dynamically with a temporal resolution of 2 s for prostate studies and 3 s for brain studies. RESULTS High pyruvate signal was seen throughout the prostate and brain, with conversion to lactate being shown across studies, whereas bicarbonate production was also detected in the brain. No Nyquist ghost artifacts or obvious geometric distortion from the echo planar readout were observed. The average error in center frequency was 1.2 ± 17.0 and 4.5 ± 1.4 Hz for prostate and brain studies, respectively, below the threshold for spatial shift because of bulk off-resonance. CONCLUSION This study demonstrated the feasibility of symmetric EPI to acquire HP 13 C metabolite maps in a clinical setting. As an advance over prior single-slice dynamic or single time point volumetric spectroscopic imaging approaches, this metabolite-specific EPI acquisition provided robust whole-organ coverage for brain and prostate studies while retaining high SNR, spatial resolution, and dynamic temporal resolution.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Adam Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Sarah Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
25
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
26
|
Lau JYC, Geraghty BJ, Chen AP, Cunningham CH. Improved tolerance to off-resonance in spectral-spatial EPI of hyperpolarized [1- 13 C]pyruvate and metabolites. Magn Reson Med 2018; 80:925-934. [PMID: 29380423 DOI: 10.1002/mrm.27086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/28/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Miller JJ, Lau AZ, Tyler DJ. Susceptibility-induced distortion correction in hyperpolarized echo planar imaging. Magn Reson Med 2017; 79:2135-2141. [PMID: 28722201 PMCID: PMC5836862 DOI: 10.1002/mrm.26839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/02/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Purpose Echo planar imaging is an attractive rapid imaging readout that can image hyperpolarized compounds in vivo. By alternating the sign of the phase encoding gradient waveform, spatial offsets arising from uncertain frequency shifts can be determined. We show here that blip‐reversed echo planar imaging can also be used to correct for susceptibility and B0 inhomogeneity effects that would otherwise produce image‐domain distortion in the heart. Methods Previously acquired blip‐reversed cardiac 3D‐Spectral‐Spatial echo planar imaging volumetric timecourses of hyperpolarized [1‐13C]pyruvate were distortion corrected by a deformation field estimated by reconstructing signal‐to‐noise ratio (SNR)‐weighted progressively subsampled temporally summed images of each metabolite. Results Reconstructing blip‐reversed data as proposed produced volumetric timecourses that overlaid with proton reference images more consistently than without such corrections. Conclusion The method proposed may form an attractive method to correct for image‐domain distortions in hyperpolarized echo planar imaging experiments. Magn Reson Med 79:2135–2141, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Jack J Miller
- Department of Physiology, Anatomy & Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom.,Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Angus Z Lau
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.,Health Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|