1
|
Arani A, Murphy MC, Bhopalwala H, Arunachalam SP, Rossman PJ, Trzasko JD, Glaser K, Sui Y, Gunderson T, Arruda-Olson AM, Manduca A, Kantarci K, Ehman RL, Araoz PA. Sex Differences in Aging-related Myocardial Stiffening Quantitatively Measured with MR Elastography. Radiol Cardiothorac Imaging 2024; 6:e230140. [PMID: 38780427 PMCID: PMC11211939 DOI: 10.1148/ryct.230140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Purpose To investigate the feasibility of using quantitative MR elastography (MRE) to characterize the influence of aging and sex on left ventricular (LV) shear stiffness. Materials and Methods In this prospective study, LV myocardial shear stiffness was measured in 109 healthy volunteers (age range: 18-84 years; mean age, 40 years ± 18 [SD]; 57 women, 52 men) enrolled between November 2018 and September 2019, using a 5-minute MRE acquisition added to a clinical MRI protocol. Linear regression models were used to estimate the association of cardiac MRI and MRE characteristics with age and sex; models were also fit to assess potential age-sex interaction. Results Myocardial shear stiffness significantly increased with age in female (age slope = 0.03 kPa/year ± 0.01, P = .009) but not male (age slope = 0.008 kPa/year ± 0.009, P = .38) volunteers. LV ejection fraction (LVEF) increased significantly with age in female volunteers (0.23% ± 0.08 per year, P = .005). LV end-systolic volume (LVESV) decreased with age in female volunteers (-0.20 mL/m2 ± 0.07, P = .003). MRI parameters, including T1, strain, and LV mass, did not demonstrate this interaction (P > .05). Myocardial shear stiffness was not significantly correlated with LVEF, LV stroke volume, body mass index, or any MRI strain metrics (P > .05) but showed significant correlations with LV end-diastolic volume/body surface area (BSA) (slope = -3 kPa/mL/m2 ± 1, P = .004, r2 = 0.08) and LVESV/BSA (-1.6 kPa/mL/m2 ± 0.5, P = .003, r2 = 0.08). Conclusion This study demonstrates that female, but not male, individuals experience disproportionate LV stiffening with natural aging, and these changes can be noninvasively measured with MRE. Keywords: Cardiac, Elastography, Biological Effects, Experimental Investigations, Sexual Dimorphisms, MR Elastography, Myocardial Shear Stiffness, Quantitative Stiffness Imaging, Aging Heart, Myocardial Biomechanics, Cardiac MRE Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Arvin Arani
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Matthew C. Murphy
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Huzefa Bhopalwala
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Shivaram P. Arunachalam
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Phillip J. Rossman
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Joshua D. Trzasko
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Kevin Glaser
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Yi Sui
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Tina Gunderson
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Adelaide M. Arruda-Olson
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Armando Manduca
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Kejal Kantarci
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Richard L. Ehman
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Philip A. Araoz
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| |
Collapse
|
2
|
Li Y, Gao Q, Chen N, Zhang Y, Wang J, Li C, He X, Jiao Y, Zhang Z. Clinical studies of magnetic resonance elastography from 1995 to 2021: Scientometric and visualization analysis based on CiteSpace. Quant Imaging Med Surg 2022; 12:5080-5100. [PMID: 36330182 PMCID: PMC9622435 DOI: 10.21037/qims-22-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To assess the knowledge framework around magnetic resonance elastography (MRE) and to explore MRE research hotspots and emerging trends. METHODS The Science Citation Index Expanded of the Web of Science Core Collection was searched on 22 October 2021 for MRE-related studies published between 1995 and 2021. Excel 2016 and CiteSpace V (version 5.8.R3) were used to analyze the downloaded data. RESULTS In all, 1,236 articles published by 726 authors from 540 institutions in 40 countries were included in this study. The top 10 authors published 57.6% of all included articles. The 3 most productive countries were the USA (n=631), Germany (n=202), and France (n=134), and the 3 most productive institutions were the Mayo Clinic (n=240), Charité (n=131), and the University of Illinois (n=56). The USA and the Mayo Clinic had the highest betweenness centrality among countries and institutions, respectively, and played an important role in the field of MRE. In this study, the 24,347 distinct references were clustered into 48 categories via reasonable clustering using specific keywords, forming the knowledge framework. Among the 294 co-occurring keywords, "hepatic fibrosis", "stiffness", "skeletal muscle", "acoustic strain wave", "in vivo", and "non-invasive assessment" were research hotspots. "Diagnostic performance", "diagnostic accuracy", "hepatic steatosis", "chronic hepatitis B", "radiation force impulse", "children", and "echo" were frontier topics. CONCLUSIONS Scientometric and visualized analysis of MRE can provide information regarding the knowledge framework, research hotspots, frontier areas, and emerging trends in this field.
Collapse
Affiliation(s)
- Youwei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuanfang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Juan Wang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chang Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuan He
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
The effects of geometry on stiffness measurements in high-field magnetic resonance elastography: A study on rodent cardiac phantoms. J Mech Behav Biomed Mater 2022; 133:105302. [DOI: 10.1016/j.jmbbm.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
|
4
|
Arani A, Manduca A, Ehman RL, Huston Iii J. Harnessing brain waves: a review of brain magnetic resonance elastography for clinicians and scientists entering the field. Br J Radiol 2021; 94:20200265. [PMID: 33605783 PMCID: PMC8011257 DOI: 10.1259/bjr.20200265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brain magnetic resonance elastography (MRE) is an imaging technique capable of accurately and non-invasively measuring the mechanical properties of the living human brain. Recent studies have shown that MRE has potential to provide clinically useful information in patients with intracranial tumors, demyelinating disease, neurodegenerative disease, elevated intracranial pressure, and altered functional states. The objectives of this review are: (1) to give a general overview of the types of measurements that have been obtained with brain MRE in patient populations, (2) to survey the tools currently being used to make these measurements possible, and (3) to highlight brain MRE-based quantitative biomarkers that have the highest potential of being adopted into clinical use within the next 5 to 10 years. The specifics of MRE methodology strategies are described, from wave generation to material parameter estimations. The potential clinical role of MRE for characterizing and planning surgical resection of intracranial tumors and assessing diffuse changes in brain stiffness resulting from diffuse neurological diseases and altered intracranial pressure are described. In addition, the emerging technique of functional MRE, the role of artificial intelligence in MRE, and promising applications of MRE in general neuroscience research are presented.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
5
|
Troelstra MA, Runge JH, Burnhope E, Polcaro A, Guenthner C, Schneider T, Razavi R, Ismail TF, Martorell J, Sinkus R. Shear wave cardiovascular MR elastography using intrinsic cardiac motion for transducer-free non-invasive evaluation of myocardial shear wave velocity. Sci Rep 2021; 11:1403. [PMID: 33446701 PMCID: PMC7809276 DOI: 10.1038/s41598-020-79231-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Changes in myocardial stiffness may represent a valuable biomarker for early tissue injury or adverse remodeling. In this study, we developed and validated a novel transducer-free magnetic resonance elastography (MRE) approach for quantifying myocardial biomechanics using aortic valve closure-induced shear waves. Using motion-sensitized two-dimensional pencil beams, septal shear waves were imaged at high temporal resolution. Shear wave speed was measured using time-of-flight of waves travelling between two pencil beams and corrected for geometrical biases. After validation in phantoms, results from twelve healthy volunteers and five cardiac patients (two left ventricular hypertrophy, two myocardial infarcts, and one without confirmed pathology) were obtained. Torsional shear wave speed in the phantom was 3.0 ± 0.1 m/s, corresponding with reference speeds of 2.8 ± 0.1 m/s. Geometrically-biased flexural shear wave speed was 1.9 ± 0.1 m/s, corresponding with simulation values of 2.0 m/s. Corrected septal shear wave speeds were significantly higher in patients than healthy volunteers [14.1 (11.0-15.8) m/s versus 3.6 (2.7-4.3) m/s, p = 0.001]. The interobserver 95%-limits-of-agreement in healthy volunteers were ± 1.3 m/s and interstudy 95%-limits-of-agreement - 0.7 to 1.2 m/s. In conclusion, myocardial shear wave speed can be measured using aortic valve closure-induced shear waves, with cardiac patients showing significantly higher shear wave speeds than healthy volunteers. This non-invasive measure may provide valuable insights into the pathophysiology of heart failure.
Collapse
Affiliation(s)
- Marian Amber Troelstra
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen Henk Runge
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma Burnhope
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alessandro Polcaro
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Philips Research, Hamburg, Germany
| | - Torben Schneider
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Philips, Guildford, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jordi Martorell
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| |
Collapse
|
6
|
Dong H, Jin N, Kannengiesser S, Raterman B, White RD, Kolipaka A. Magnetic resonance elastography for estimating in vivo stiffness of the abdominal aorta using cardiac-gated spin-echo echo-planar imaging: a feasibility study. NMR IN BIOMEDICINE 2021; 34:e4420. [PMID: 33021342 DOI: 10.1002/nbm.4420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Magnetic resonance elastography (MRE)-derived aortic stiffness is a potential biomarker for multiple cardiovascular diseases. Currently, gradient-recalled echo (GRE) MRE is a widely accepted technique to estimate aortic stiffness. However, multi-slice GRE MRE requires multiple breath-holds (BHs), which can be challenging for patients who cannot consistently hold their breath. The aim of this study was to investigate the feasibility of a multi-slice spin-echo echo-planar imaging (SE-EPI) MRE sequence for quantifying in vivo aortic stiffness using a free-breathing (FB) protocol and a single-BH protocol. METHOD On Scanner 1, 25 healthy subjects participated in the validation of FB SE-EPI against FB GRE. On Scanner 2, another 15 healthy subjects were recruited to compare FB SE-EPI with single-BH SE-EPI. Among all volunteers, five participants were studied on both scanners to investigate the inter-scanner reproducibility of FB SE-EPI aortic MRE. Bland-Altman analysis, Lin's concordance correlation coefficient (LCCC) and coefficient of variation (COV) were evaluated. The phase-difference signal-to-noise ratios (PD SNR) were compared. RESULTS Aortic MRE using FB SE-EPI and FB GRE yielded similar stiffnesses (paired t-test, P = 0.19), with LCCC = 0.97. The FB SE-EPI measurements were reproducible (intra-scanner LCCC = 0.96) and highly repeatable (LCCC = 0.99). The FB SE-EPI MRE was also reproducible across different scanners (inter-scanner LCCC = 0.96). Single-BH SE-EPI scans yielded similar stiffness to FB SE-EPI scans (LCCC = 0.99) and demonstrated a low COV of 2.67% across five repeated measurements. CONCLUSION Multi-slice SE-EPI aortic MRE using an FB protocol or a single-BH protocol is reproducible and repeatable with advantage over multi-slice FB GRE in reducing acquisition time. Additionally, FB SE-EPI MRE provides a potential alternative to BH scans for patients who have challenges in holding their breath.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ning Jin
- Siemens Medical Solution, Columbus, Ohio, USA
| | | | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
7
|
Manduca A, Bayly PJ, Ehman RL, Kolipaka A, Royston TJ, Sack I, Sinkus R, Van Beers BE. MR elastography: Principles, guidelines, and terminology. Magn Reson Med 2020; 85:2377-2390. [PMID: 33296103 DOI: 10.1002/mrm.28627] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Magnetic resonance elastography (MRE) is a phase contrast-based MRI technique that can measure displacement due to propagating mechanical waves, from which material properties such as shear modulus can be calculated. Magnetic resonance elastography can be thought of as quantitative, noninvasive palpation. It is increasing in clinical importance, has become widespread in the diagnosis and staging of liver fibrosis, and additional clinical applications are being explored. However, publications have reported MRE results using many different parameters, acquisition techniques, processing methods, and varied nomenclature. The diversity of terminology can lead to confusion (particularly among clinicians) about the meaning of and interpretation of MRE results. This paper was written by the MRE Guidelines Committee, a group formalized at the first meeting of the ISMRM MRE Study Group, to clarify and move toward standardization of MRE nomenclature. The purpose of this paper is to (1) explain MRE terminology and concepts to those not familiar with them, (2) define "good practices" for practitioners of MRE, and (3) identify opportunities to standardize terminology, to avoid confusion.
Collapse
Affiliation(s)
- Armando Manduca
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip J Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Richard L Ehman
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arunark Kolipaka
- Department of Radiology, Ohio State University, Columbus, Ohio, USA
| | - Thomas J Royston
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ingolf Sack
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Sinkus
- Imaging Sciences & Biomedical Engineering, Kings College London, London, United Kingdom
| | | |
Collapse
|
8
|
Cai JS, Chen HY, Chen JY, Lu YF, Sun JZ, Zhou Y, Yu RS. Reduced field-of-view diffusion-weighted imaging (DWI) in patients with gastric cancer: Comparison with conventional DWI techniques at 3.0T: A preliminary study. Medicine (Baltimore) 2020; 99:e18616. [PMID: 31895817 PMCID: PMC6946437 DOI: 10.1097/md.0000000000018616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To evaluate the qualitative image quality and quantitative apparent diffusion coefficient (ADC) value of reduced field-of view (rFOV) and full field-of-view (fFOV) diffusion-weighted imaging (DWI) sequences at 3.0 T in patients with gastric cancer.Fifty-three patients (37 males, 16 females; mean age, 63.3 ± 10.3 years) with 60 lesions with gastric cancer who underwent magnetic resonance (MR) scans, including both rFOV-DWI and fFOV-DWI, were retrospectively analyzed. Two observers subjectively evaluated image quality for both the fFOV-DWI and rFOV-DWI sequences regarding the anatomic details, distortion, lesion conspicuity, artifacts, and overall image quality. The mean ADC values of gastric cancer were calculated. The Wilcoxon test and paired samples t test were used. Interobserver agreement was assessed using kappa statistics.The mean scores based on the 2 observers demonstrated significant differences in image quality in terms of anatomic details, distortion, lesion conspicuity, artifacts and overall image quality at both b values between rFOV-DWI and fFOV-DWI (P < .05) in the whole gastric area. rFOV-DWI yielded significantly better scores in image quality at b = 800 seconds/mm (P < .05) in patients with esophagogastric junction cancers, but there were no significant differences in the gastric corpus and gastric antrum region. The mean tumor ADC values of rFOV-DWI were significantly lower than those of fFOV-DWI (1.237 ± 0.228 × 10-3 mm/second vs 1.683 ± 0.322 × 10-3 mm/second, P < .001).rFOV-DWI yielded significantly better image quality (anatomic details, distortion, lesion conspicuity, artifacts, overall image quality) and more accurate ADC measurements than fFOV-DWI did.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Zhou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|