1
|
Shams Z, van der Kemp WJM, Klomp DWJ, Wiegers EC, Wijnen JP. 31P multi-echo MRSI with low B 1 + dual-band refocusing RF pulses. NMR IN BIOMEDICINE 2024:e5273. [PMID: 39390742 DOI: 10.1002/nbm.5273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
31P magnetic resonance spectroscopy (MRS) can spectrally resolve metabolites involved in phospholipid metabolism whose levels are altered in many cancers. Ultra-high field facilitates the detection of phosphomonoesters (PMEs) and phosphodiesters (PDEs) with increased SNR and spectral resolution. Utilizing multi-echo MR spectroscopic imaging (MRSI) further enhances SNR and enables T2 information estimation per metabolite. To address the specific absorption rate (SAR) challenges associated with high-power demanding adiabatic or composite block pulses in multi-echo phosphorus imaging, we present a dual-band refocusing RF pulse designed for operation at B1 amplitudes of 14.8 μT which holds potential for integration into multi-echo sequences. Phantom and in vivo experiments conducted in the brain at 7 Tesla validated the effectiveness of this low-power dual-band RF pulse. Furthermore, we implemented the dual-band RF pulse into a multi-echo MRSI sequence where it offered the potential to increase the number of echo pulses within the same acquisition time compared to high-power adiabatic implementation, demonstrating its feasibility and practicality.
Collapse
Affiliation(s)
- Zahra Shams
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evita C Wiegers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Lopez FV, O'Shea A, Huo Z, DeKosky ST, Trouard TP, Alexander GE, Woods AJ, Bowers D. Frontal-temporal regional differences in brain energy metabolism and mitochondrial function using 31P MRS in older adults. GeroScience 2024; 46:3185-3195. [PMID: 38225480 PMCID: PMC11009166 DOI: 10.1007/s11357-023-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is a major risk for cognitive decline and transition to dementia. One well-known age-related change involves decreased brain efficiency and energy production, mediated in part by changes in mitochondrial function. Damaged or dysfunctional mitochondria have been implicated in the pathogenesis of age-related neurodegenerative conditions like Alzheimer's disease (AD). The aim of the current study was to investigate mitochondrial function over frontal and temporal regions in a sample of 70 cognitively normal older adults with subjective memory complaints and a first-degree family history of AD. We hypothesized cerebral mitochondrial function and energy metabolism would be greater in temporal as compared to frontal regions based on the high energy consumption in the temporal lobes (i.e., hippocampus). To test this hypothesis, we used phosphorous (31P) magnetic resonance spectroscopy (MRS) which is a non-invasive and powerful method for investigating in vivo mitochondrial function via high energy phosphates and phospholipid metabolism ratios. We used a single voxel method (left temporal and bilateral prefrontal) to achieve optimal sensitivity. Results of separate repeated measures analyses of variance showed 31P MRS ratios of static energy, energy reserve, energy consumption, energy demand, and phospholipid membrane metabolism were greater in the left temporal than bilateral prefrontal voxels. Our findings that all 31P MRS ratios were greater in temporal than bifrontal regions support our hypothesis. Future studies are needed to determine whether findings are related to cognition in older adults.
Collapse
Affiliation(s)
- Francesca V Lopez
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA.
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology, Fixel Center for Neurological Diseases, College of Medicine, and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Theodore P Trouard
- Department of Biomedical Engineering, College of Engineering, and Evelyn F. McKnight Brain Institute, University of Arizona and Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Center for Cognitive Aging and Memory, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Neurology, Fixel Center of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Paech D, Weckesser N, Franke VL, Breitling J, Görke S, Deike-Hofmann K, Wick A, Scherer M, Unterberg A, Wick W, Bendszus M, Bachert P, Ladd ME, Schlemmer HP, Korzowski A. Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution 31P MR Spectroscopic Imaging at 7.0 T. Radiol Imaging Cancer 2024; 6:e220127. [PMID: 38133553 PMCID: PMC10825708 DOI: 10.1148/rycan.220127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Vanessa L. Franke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Breitling
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Görke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Katerina Deike-Hofmann
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Antje Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Scherer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bachert
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Mark E. Ladd
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Korzowski
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Igarashi T, Kim H, Sun PZ. Detection of tissue pH with quantitative chemical exchange saturation transfer magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4711. [PMID: 35141979 PMCID: PMC10249910 DOI: 10.1002/nbm.4711] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 05/12/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a novel means for sensitive detection of dilute labile protons and chemical exchange rates. By sensitizing to pH-dependent chemical exchange, CEST MRI has shown promising results in monitoring tissue statuses such as pH changes in disorders like acute stroke, tumor, and acute kidney injury. This article briefly reviews the basic principles for CEST imaging and quantitative measures, from the simplistic asymmetry analysis to multipool Lorentzian decoupling and quasi-steady-state reconstruction. In particular, the advantages and limitations of commonly used quantitative approaches for CEST applications are discussed.
Collapse
Affiliation(s)
- Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hahnsung Kim
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Ren J, Yu F, Greenberg BM. ATP line splitting in association with reduced intracellular magnesium and pH: a brain 31 P MR spectroscopic imaging (MRSI) study of pediatric patients with myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGADs). NMR IN BIOMEDICINE 2023; 36:e4836. [PMID: 36150743 DOI: 10.1002/nbm.4836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Over the past four decades, ATP, the obligatory energy molecule for keeping all cells alive and functioning, has been thought to contribute only one set of signals in brain 31 P MR spectra. Here we report for the first time the observation of two separate β-ATP peaks in brain spectra acquired from patients with myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGADs) using 3D MRSI at 7 T. In voxel spectra with β-ATP line splitting, these two peaks are separated by 0.46 ± 0.18 ppm (n = 6). Spectral lineshape analysis indicates that the upper field β-ATP peak is smaller in relative intensity (24 ± 11% versus 76 ± 11%), and narrower in linewidth (56.8 ± 10.3 versus 41.2 ± 10.3 Hz) than the downfield one. Data analysis also reveals a similar line splitting for the intracellular inorganic phosphate (Pi ) signal, which is characterized by two components with a smaller separation (0.16 ± 0.09 ppm) and an intensity ratio (26 ± 7%:74 ± 7%) comparable to that of β-ATP. While the major components of Pi and β-ATP correspond to a neutral intracellular pH (6.99 ± 0.01) and a free Mg2+ level (0.18 ± 0.02 mM, by Iotti's conversion formula) as found in healthy subjects, their minor counterparts relate to a slightly acidic pH (6.86 ± 0.07) and a 50% lower [Mg2+ ] (0.09 ± 0.02 mM), respectively. Data correlation between β-ATP and Pi signals appears to suggest an association between an increased [H+ ] and a reduced [Mg2+ ] in MOGAD patients.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fang Yu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Dorst J, Borbath T, Ruhm L, Henning A. Phosphorus transversal relaxation times and metabolite concentrations in the human brain at 9.4 T. NMR IN BIOMEDICINE 2022; 35:e4776. [PMID: 35607903 DOI: 10.1002/nbm.4776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A method to estimate phosphorus (31 P) transversal relaxation times (T2 s) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH and relaxation-corrected metabolite concentrations are reported. Echo time (TE) series of 31 P metabolite spectra were acquired using stimulated echo acquisition mode (STEAM) localization. Spectra were fitted using LCModel with accurately modeled Versatile Simulation, Pulses and Analysis (VeSPA) basis sets accounting for J-evolution of the coupled spin systems. T2 s were estimated by fitting a single exponential two-parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and estimated relaxation times were used to determine the relaxation-corrected brain metabolite concentrations on an assumption of 3 mM γ-ATP. The method was demonstrated in healthy human brain at a field strength of 9.4 T. T2 times of ATP and nicotinamide adenine dinucleotide (NAD) were shortest between 8 and 20 ms, followed by T2 s of inorganic phosphate between 25 and 50 ms, and phosphocreatine with a T2 of 100 ms. Phosphomonoesters and phosphodiesters had the longest T2 s of about 130 ms. The measured T2 s are comparable with literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable with literature values.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Dorst J, Borbath T, Landheer K, Avdievich N, Henning A. Simultaneous detection of metabolite concentration changes, water BOLD signal and pH changes during visual stimulation in the human brain at 9.4T. J Cereb Blood Flow Metab 2022; 42:1104-1119. [PMID: 35060409 PMCID: PMC9121534 DOI: 10.1177/0271678x221075892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
This study presents a method to directly link metabolite concentration changes and BOLD response in the human brain during visual stimulation by measuring the water and metabolite signals simultaneously. Therefore, the metabolite-cycling (MC) non-water suppressed semiLASER localization technique was optimized for functional 1H MRS in the human brain at 9.4 T. Data of 13 volunteers were acquired during a 26:40 min visual stimulation block-design paradigm. Activation-induced BOLD signal was observed in the MC water signal as well as in the NAA-CH3 and tCr-CH3 singlets. During stimulation, glutamate concentration increased 2.3 ± 2.0% to a new steady-state, while a continuous increase over the whole stimulation period could be observed in lactate with a mean increase of 35.6 ± 23.1%. These increases of Lac and Glu during brain activation confirm previous findings reported in literature. A positive correlation of the MC water BOLD signal with glutamate and lactate concentration changes was found. In addition, a pH decrease calculated from a change in the ratio of PCr to Cr was observed during brain activation, particularly at the onset of the stimulation.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Shaffer A, Kwok SS, Naik A, Anderson AT, Lam F, Wszalek T, Arnold PM, Hassaneen W. Ultra-High-Field MRI in the Diagnosis and Management of Gliomas: A Systematic Review. Front Neurol 2022; 13:857825. [PMID: 35449515 PMCID: PMC9016277 DOI: 10.3389/fneur.2022.857825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Importance: Gliomas, tumors of the central nervous system, are classically diagnosed through invasive surgical biopsy and subsequent histopathological study. Innovations in ultra-high field (UHF) imaging, namely 7-Tesla magnetic resonance imaging (7T MRI) are advancing preoperative tumor grading, visualization of intratumoral structures, and appreciation of small brain structures and lesions. Objective Summarize current innovative uses of UHF imaging techniques in glioma diagnostics and treatment. Methods A systematic review in accordance with PRISMA guidelines was performed utilizing PubMed. Case reports and series, observational clinical trials, and randomized clinical trials written in English were included. After removing unrelated studies and those with non-human subjects, only those related to 7T MRI were independently reviewed and summarized for data extraction. Some preclinical animal models are briefly described to demonstrate future usages of ultra-high-field imaging. Results We reviewed 46 studies (43 human and 3 animal models) which reported clinical usages of UHF MRI in the diagnosis and management of gliomas. Current literature generally supports greater resolution imaging from 7T compared to 1.5T or 3T MRI, improving visualization of cerebral microbleeds and white and gray matter, and providing more precise localization for radiotherapy targeting. Additionally, studies found that diffusion or susceptibility-weighted imaging techniques applied to 7T MRI, may be used to predict tumor grade, reveal intratumoral structures such as neovasculature and microstructures like axons, and indicate isocitrate dehydrogenase 1 mutation status in preoperative imaging. Similarly, newer imaging techniques such as magnetic resonance spectroscopy and chemical exchange saturation transfer imaging can be performed on 7T MRI to predict tumor grading and treatment efficacy. Geometrical distortion, a known challenge of 7T MRI, was at a tolerable level in all included studies. Conclusion UHF imaging has the potential to preoperatively and non-invasively grade gliomas, provide precise therapy target areas, and visualize lesions not seen on conventional MRI.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Aaron T Anderson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Fan Lam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| |
Collapse
|
9
|
Brakedal B, Dölle C, Riemer F, Ma Y, Nido GS, Skeie GO, Craven AR, Schwarzlmüller T, Brekke N, Diab J, Sverkeli L, Skjeie V, Varhaug K, Tysnes OB, Peng S, Haugarvoll K, Ziegler M, Grüner R, Eidelberg D, Tzoulis C. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease. Cell Metab 2022; 34:396-407.e6. [PMID: 35235774 DOI: 10.1016/j.cmet.2022.02.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
We conducted a double-blinded phase I clinical trial to establish whether nicotinamide adenine dinucleotide (NAD) replenishment therapy, via oral intake of nicotinamide riboside (NR), is safe, augments cerebral NAD levels, and impacts cerebral metabolism in Parkinson's disease (PD). Thirty newly diagnosed, treatment-naive patients received 1,000 mg NR or placebo for 30 days. NR treatment was well tolerated and led to a significant, but variable, increase in cerebral NAD levels-measured by 31phosphorous magnetic resonance spectroscopy-and related metabolites in the cerebrospinal fluid. NR recipients showing increased brain NAD levels exhibited altered cerebral metabolism, measured by 18fluoro-deoxyglucose positron emission tomography, and this was associated with mild clinical improvement. NR augmented the NAD metabolome and induced transcriptional upregulation of processes related to mitochondrial, lysosomal, and proteasomal function in blood cells and/or skeletal muscle. Furthermore, NR decreased the levels of inflammatory cytokines in serum and cerebrospinal fluid. Our findings nominate NR as a potential neuroprotective therapy for PD, warranting further investigation in larger trials.
Collapse
Affiliation(s)
- Brage Brakedal
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Frank Riemer
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Geir Olve Skeie
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Alexander R Craven
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Thomas Schwarzlmüller
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Njål Brekke
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Joseph Diab
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars Sverkeli
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Vivian Skjeie
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kristin Varhaug
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kristoffer Haugarvoll
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Mathias Ziegler
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Renate Grüner
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Korzowski A, Weckesser N, Franke VL, Breitling J, Goerke S, Schlemmer HP, Ladd ME, Bachert P, Paech D. Mapping an Extended Metabolic Profile of Gliomas Using High-Resolution 31P MRSI at 7T. Front Neurol 2022; 12:735071. [PMID: 35002914 PMCID: PMC8733158 DOI: 10.3389/fneur.2021.735071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorus magnetic resonance spectroscopic imaging (31P MRSI) is of particular interest for investigations of patients with brain tumors as it enables to non-invasively assess altered energy and phospholipid metabolism in vivo. However, the limited sensitivity of 31P MRSI hampers its broader application at clinical field strengths. This study aimed to identify the additional value of 31P MRSI in patients with glioma at ultra-high B0 = 7T, where the increase in signal-to-noise ratio may foster its applicability for clinical research. High-quality, 3D 31P MRSI datasets with an effective voxel size of 5.7 ml were acquired from the brains of seven patients with newly diagnosed glioma. An optimized quantification model was implemented to reliably extract an extended metabolic profile, including low-concentrated metabolites such as extracellular inorganic phosphate, nicotinamide adenine dinucleotide [NAD(H)], and uridine diphosphoglucose (UDPG), which may act as novel tumor markers; a background signal was extracted as well, which affected measures of phosphomonoesters beneficially. Application of this model to the MRSI datasets yielded high-resolution maps of 12 different 31P metabolites, showing clear metabolic differences between white matter (WM) and gray matter, and between healthy and tumor tissues. Moreover, differences between tumor compartments in patients with high-grade glioma (HGG), i.e., gadolinium contrast-enhancing/necrotic regions (C+N) and peritumoral edema, could also be suggested from these maps. In the group of patients with HGG, the most significant changes in metabolite intensities were observed in C+N compared to WM, i.e., for phosphocholine +340%, UDPG +54%, glycerophosphoethanolamine −45%, and adenosine-5′-triphosphate −29%. Furthermore, a prominent signal from mobile phospholipids appeared in C+N. In the group of patients with low-grade glioma, only the NAD(H) intensity changed significantly by −28% in the tumor compared to WM. Besides the potential of 31P MRSI at 7T to provide novel insights into the biochemistry of gliomas in vivo, the attainable spatial resolutions improve the interpretability of 31P metabolite intensities obtained from malignant tissues, particularly when only subtle differences compared to healthy tissues are expected. In conclusion, this pilot study demonstrates that 31P MRSI at 7T has potential value for the clinical research of glioma.
Collapse
Affiliation(s)
- Andreas Korzowski
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Weckesser
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Vanessa L Franke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Mark E Ladd
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Ren J, Sherry AD. 31 P-MRS of healthy human brain: Measurement of guanosine diphosphate mannose at 7 T. NMR IN BIOMEDICINE 2021; 34:e4576. [PMID: 34155714 DOI: 10.1002/nbm.4576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Guanosine diphosphate mannose (GDP-Man) is the donor substrate required for mannosylation in the synthesis of glycoproteins, glycolipids and the newly discovered glycoRNA. Normal GDP-Man biosynthesis plays a crucial role in support of a variety of cellular functions, including cell recognition, cell communication and immune responses against viruses. Here, we report the detection of GDP-Man in human brain for the first time, using 31 P MRS at 7 T. The presence of GDP-Man is evidenced by the detection of a weak 31 P doublet at -10.7 ppm that can be assigned to the phosphomannosyl group (Pβ) of the GDP-Man molecule. This weak but well-resolved signal lies 0.9 ppm upfield of UDP(G) Pβ-multiplet from a mixture of UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc. In reference to ATP (2.8 mM), the concentration of GDP-Man in human brain was estimated to be 0.02 ± 0.01 mM, about 15-fold lower than the total concentration of UDP(G) (0.30 ± 0.04, N = 17) and consistent with previous reports of UDP-Man in cells and brain tissue extracts measured by high-performance liquid chromatography. The reproducibility of the measured GDP-Man between test and 2-week retest was 21% ± 15% compared with 5% ± 4% for UDP(G) (N = 7). The measured concentrations of GDP-Man and UDP(G) are linearly correlated ([UDP(G)] = 4.3 [GDP-Man] + 0.02, with R = 0.66 and p = 0.0043), likely reflecting the effect of shared sugar precursors, which may vary among individuals in response to variation in nutritional intake and consumption. Given that GDP-Man has another set of doublet (Pα) at -8.3 ppm that overlaps with NAD(H) and UDP(G)-Pα signals, the amount of GDP-Man could potentially interfere with the deconvolution of these mixed signals in composition analysis. Importantly, this new finding may be useful in advancing our understanding of glycosylation and its role in the development of cancer, as well as infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
13
|
Ruhm L, Dorst J, Avdievitch N, Wright AM, Henning A. 3D 31 P MRSI of the human brain at 9.4 Tesla: Optimization and quantitative analysis of metabolic images. Magn Reson Med 2021; 86:2368-2383. [PMID: 34219281 DOI: 10.1002/mrm.28891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To present 31 P whole brain MRSI with a high spatial resolution to probe quantitative tissue analysis of 31 P MRSI at an ultrahigh field strength of 9.4 Tesla. METHODS The study protocol included a 31 P MRSI measurement with an effective resolution of 2.47 mL. For SNR optimization, the nuclear Overhauser enhancement at 9.4 Tesla was investigated. A sensitivity correction was achieved by applying a low rank approximation of the γ-adenosine triphosphate signal. Group analysis and regression on individual volunteers were performed to investigate quantitative concentration differences between different tissue types. RESULTS Differences in gray and white matter tissue 31 P concentrations could be investigated for 12 different 31 P resonances. In addition, the first highly resolved quantitative MRSI images measured at B0 = 9.4 Tesla of 31 P detectable metabolites with high SNR could be presented. CONCLUSION With an ultrahigh field strength B0 = 9.4 Tesla, 31 P MRSI moves further toward quantitative metabolic imaging, and subtle differences in concentrations between different tissue types can be detected.
Collapse
Affiliation(s)
- Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Nikolai Avdievitch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Peeters TH, van Uden MJ, Rijpma A, Scheenen TW, Heerschap A. 3D 31 P MR spectroscopic imaging of the human brain at 3 T with a 31 P receive array: An assessment of 1 H decoupling, T 1 relaxation times, 1 H- 31 P nuclear Overhauser effects and NAD . NMR IN BIOMEDICINE 2021; 34:e4169. [PMID: 31518036 PMCID: PMC8244063 DOI: 10.1002/nbm.4169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 05/02/2023]
Abstract
31 P MR spectroscopic imaging (MRSI) is a versatile technique to study phospholipid precursors and energy metabolism in the healthy and diseased human brain. However, mainly due to its low sensitivity, 31 P MRSI is currently limited to research purposes. To obtain 3D 31 P MRSI spectra with improved signal-to-noise ratio on clinical 3 T MR systems, we used a coil combination consisting of a dual-tuned birdcage transmit coil and a 31 P eight-channel phased-array receive insert. To further increase resolution and sensitivity we applied WALTZ4 1 H decoupling and continuous wave nuclear Overhauser effect (NOE) enhancement and acquired high-quality MRSI spectra with nominal voxel volumes of ~ 17.6 cm3 (effective voxel volume ~ 51 cm3 ) in a clinically relevant measurement time of ~ 13 minutes, without exceeding SAR limits. Steady-state NOE enhancements ranged from 15 ± 9% (γ-ATP) and 33 ± 3% (phosphocreatine) to 48 ± 11% (phosphoethanolamine). Because of these improvements, we resolved and detected all 31 P signals of metabolites that have also been reported for ultrahigh field strengths, including resonances for NAD+ , NADH and extracellular inorganic phosphate. T1 times of extracellular inorganic phosphate were longer than for intracellular inorganic phosphate (3.8 ± 1.4s vs 1.8 ± 0.65 seconds). A comparison of measured T1 relaxation times and NOE enhancements at 3 T with published values between 1.5 and 9.4 T indicates that T1 relaxation of 31 P metabolite spins in the human brain is dominated by dipolar relaxation for this field strength range. Even although intrinsic sensitivity is higher at ultrahigh fields, we demonstrate that at a clinical field strength of 3 T, similar 31 P MRSI information content can be obtained using a sophisticated coil design combined with 1 H decoupling and NOE enhancement.
Collapse
Affiliation(s)
- Tom H. Peeters
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Mark J. van Uden
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Anne Rijpma
- Department of Geriatric MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Tom W.J. Scheenen
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Erwin L. Hahn InstituteUniversity Hospital Duisburg‐EssenEssenGermany
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
15
|
Kim H, Krishnamurthy LC, Sun PZ. Brain pH Imaging and its Applications. Neuroscience 2021; 474:51-62. [PMID: 33493621 DOI: 10.1016/j.neuroscience.2021.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Acid-base homeostasis and pH regulation are critical for normal tissue metabolism and physiology, and brain tissue pH alters in many diseased states. Several noninvasive tissue pH Magnetic Resonance (MR) techniques have been developed over the past few decades to shed light on pH change during tissue function and dysfunction. Nevertheless, there are still challenges for mapping brain pH noninvasively at high spatiotemporal resolution. To address this unmet biomedical need, chemical exchange saturation transfer (CEST) MR techniques have been developed as a sensitive means for non-invasive pH mapping. This article briefly reviews the basic principles of different pH measurement techniques with a focus on CEST imaging of pH. Emerging pH imaging applications in the tumor are provided as examples throughout the narrative, and CEST pH imaging in acute stroke is discussed in the final section.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA, Decatur, GA, United States; Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
16
|
Dorst J, Ruhm L, Avdievich N, Bogner W, Henning A. Comparison of four 31P single-voxel MRS sequences in the human brain at 9.4 T. Magn Reson Med 2021; 85:3010-3026. [PMID: 33427322 DOI: 10.1002/mrm.28658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, different single-voxel localization sequences were implemented and systematically compared for the first time for phosphorous MRS (31 P-MRS) in the human brain at 9.4 T. METHODS Two multishot sequences, image-selected in vivo spectroscopy (ISIS) and a conventional slice-selective excitation combined with localization by adiabatic selective refocusing (semiLASER) variant of the spin-echo full intensity-acquired localized spectroscopy (SPECIAL-semiLASER), and two single-shot sequences, semiLASER and stimulated echo acquisition mode (STEAM), were implemented and optimized for 31 P-MRS in the human brain at 9.4 T. Pulses and coil setup were optimized, localization accuracy was tested in phantom experiments, and absolute SNR of the sequences was compared in vivo. The SNR per unit time (SNR/t) was derived and compared for all four sequences and verified experimentally for ISIS in two different voxel sizes (3 × 3 × 3 cm3 , 5 × 5 × 5 cm3 , 10-minute measurement time). Metabolite signals obtained with ISIS were quantified. The possible spectral quality in vivo acquired in clinically feasible time (3:30 minutes, 3 × 3 × 3 cm3 ) was explored for two different coil setups. RESULTS All evaluated sequences performed with good localization accuracy in phantom experiments and provided well-resolved spectra in vivo. However, ISIS has the lowest chemical shift displacement error, the best localization accuracy, the highest SNR/t for most metabolites, provides metabolite concentrations comparable to literature values, and is the only one of the sequences that allows for the detection of the whole 31 P spectrum, including β-adenosine triphosphate, with the used setup. The SNR/t of STEAM is comparable to the SNR/t of ISIS. The semiLASER and SPECIAL-semiLASER sequences provide good results for metabolites with long T2 . CONCLUSION At 9.4 T, high-quality single-voxel localized 31 P-MRS can be performed in the human brain with different localization methods, each with inherent characteristics suitable for different research issues.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Das N, Ren J, Spence JS, Rackley A, Chapman SB. Relationship of Parieto-Occipital Brain Energy Phosphate Metabolism and Cognition Using 31P MRS at 7-Tesla in Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2020; 12:222. [PMID: 33005142 PMCID: PMC7483543 DOI: 10.3389/fnagi.2020.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
Background The human brain has high energy requirements that continuously support healthy neuronal activity and cognition. A disruption in brain energy metabolism (BEM) may contribute to early neuropathological changes such as accumulation of β-amyloid and tau in vulnerable populations. One such population is amnestic mild cognitive impairment (aMCI) where some individuals are at risk for developing dementia, i.e. Alzheimer’s disease (AD). Recent advances in imaging technology are providing new avenues to measure BEM accurately using 31phosphorus magnetic resonance spectroscopy (31P MRS) at ultra-high-field (UHF) magnetic strength 7-Tesla. This study investigates whether a methodology using partial volume-coil 31P MRS at 7T over parieto-occipital lobes can accurately quantify high-energy phosphate and membrane phospholipid metabolites in aMCI. A secondary objective was to explore BEM and membrane phospholipid indices’ correspondence with cognitive performance in domains of executive function (EF), memory, attention, and visuospatial skills in aMCI, a heterogeneous population. Methods 19 aMCI participants enrolled in the study completed cognitive assessment and 31P MRS scan. BEM indices were measured using three energy indicators: energy reserve (PCr/t-ATP), energy consumption (intracellular_Pi/t-ATP), and metabolic state (PCr/intracellular_Pi) along with regulatory co-factors of BEM-intracellular Mg2 + and pH; whereas the ratio of phosphomonoesters (PMEs) to phosphodiesters (PDEs) – membrane phospholipid indicator. Results 31P MRS scan showed thirteen well-resolved peaks with precise quantification of the phosphorus metabolites at UHF. The higher BEM indices were associated with lower cognitive performance of memory [(energy reserve indicator: CVLT p = 0.004), (metabolic state indicator: CVLT p = 0.007)], executive function [(metabolic state indicator: TOSL (p = 0.044)], and attention [(pH: selective auditory task, p = 0.044)]. The finding of an inverse relationship observed in the parieto-occipital lobes suggests an association between neuronal energy markers with cognition in aMCI. Conclusion The significant contribution of this preliminary research was to establish the feasibility of utilizing a methodology at UHF to accurately measure high-energy phosphate and membrane phospholipid metabolites in a population with heterogeneous outcomes. This work offers a novel approach for future work to further elucidate early dementia biomarkers or precursors to the downstream accumulation of amyloid and tau using the combination of MRS-PET imaging modalities in AD.
Collapse
Affiliation(s)
- Namrata Das
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, United States
| | - Jimin Ren
- Advanced Imaging Research Center, and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, United States
| | - Audette Rackley
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, United States
| | - Sandra B Chapman
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
18
|
Borbath T, Murali-Manohar S, Wright AM, Henning A. In vivo characterization of downfield peaks at 9.4 T: T 2 relaxation times, quantification, pH estimation, and assignments. Magn Reson Med 2020; 85:587-600. [PMID: 32783249 DOI: 10.1002/mrm.28442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Relaxation times are a valuable asset when determining spectral assignments. In this study, apparent T2 relaxation times ( T 2 app ) of downfield peaks are reported in the human brain at 9.4 T and are used to guide spectral assignments of some downfield metabolite peaks. METHODS Echo time series of downfield metabolite spectra were acquired at 9.4 T using a metabolite-cycled semi-LASER sequence. Metabolite spectral fitting was performed using LCModel V6.3-1L while fitting a pH sweep to estimate the pH of the homocarnosine (hCs) imidazole ring. T 2 app were calculated by fitting the resulting relative amplitudes of the peaks to a mono-exponential decay across the TE series. Furthermore, estimated tissue concentrations of molecules were calculated using the relaxation times and internal water as a reference. RESULTS T 2 app of downfield metabolites are reported within a range from 16 to 32 ms except for homocarnosine with T 2 app of 50 ms. Correcting T 2 app for exchange rates ( T 2 c o r r ) resulted in relaxation times between 20 and 33 ms. The estimated pH values based on hCs imidazole range from 7.07 to 7.12 between subjects. Furthermore, analyzing the linewidths of the downfield peaks and their T 2 app contribution led to possible peak assignments. CONCLUSION T 2 app relaxation times were longer for the assigned metabolite peaks compared to the unassigned peaks. Tissue pH estimation in vivo with proton MRS and simultaneous quantification of amide protons at 8.30 ± 0.15 ppm is likely possible. Based on concentration, linewidth, and exchange rates measurements, tentative peak assignments are discussed for adenosine triphosphate (ATP), N-acetylaspartylglutamate (NAAG), and urea.
Collapse
Affiliation(s)
- Tamas Borbath
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Saipavitra Murali-Manohar
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive & Systems Neuroscience, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Korzowski A, Weinfurtner N, Mueller S, Breitling J, Goerke S, Schlemmer H, Ladd ME, Paech D, Bachert P. Volumetric mapping of intra‐ and extracellular pH in the human brain using
31
P MRSI at 7T. Magn Reson Med 2020; 84:1707-1723. [DOI: 10.1002/mrm.28255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Andreas Korzowski
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Nina Weinfurtner
- Division of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Sebastian Mueller
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Max‐Planck‐Institute for Nuclear Physics Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | | | - Mark E. Ladd
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Daniel Paech
- Division of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| |
Collapse
|
20
|
Hendriks AD, van der Kemp WJ, Luijten PR, Petridou N, Klomp DW. SNR optimized 31 P functional MRS to detect mitochondrial and extracellular pH change during visual stimulation. NMR IN BIOMEDICINE 2019; 32:e4137. [PMID: 31329342 PMCID: PMC6900119 DOI: 10.1002/nbm.4137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 05/04/2023]
Abstract
UNLABELLED Energy metabolism of the human visual cortex was investigated by performing 31 P functional MRS. INTRODUCTION The human brain is known to be the main glucose demanding organ of the human body and neuronal activity can increase this energy demand. In this study we investigate whether alterations in pH during activation of the brain can be observed with MRS, focusing on the mitochondrial inorganic phosphate (Pi) pool as potential marker of energy demand. METHODS Six participants were scanned with 16 consecutive 31 P-MRSI scans, which were divided in 4 blocks of 8:36 minutes of either rest or visual stimulation. Since the signals from the mitochondrial compartments of Pi are low, multiple approaches to achieve high SNR 31 P measurements were combined. This included: a close fitting 31 P RF coil, a 7 T-field strength, Ernst angle acquisitions and a stimulus with a large visual angle allowing large spectroscopy volumes containing activated tissue. RESULTS The targeted resonance downfield of the main Pi peak could be distinguished, indicating the high SNR of the 31 P spectra. The peak downfield of the main Pi peak is believed to be connected to mitochondrial performance. In addition, a BOLD effect in the PCr signal was observed as a signal increase of 2-3% during visual stimulation as compared to rest. When averaging data over multiple volunteers, a small subtle shift of about 0.1 ppm of the downfield Pi peak towards the main Pi peak could be observed in the first 4 minutes of visual stimulation, but no longer in the 4 to 8 minute scan window. Indications of a subtle shift during visual stimulation were found, but this effect remains small and should be further validated. CONCLUSION Overall, the downfield peak of Pi could be observed, revealing opportunities and considerations to measure specific acidity (pH) effects in the human visual cortex.
Collapse
Affiliation(s)
- Arjan D. Hendriks
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Natalia Petridou
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|